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Preface

This special issue of Advances in Data Science, part of the Association for Women
in Mathematics (AWM) Springer Series, offers a diverse collection of papers
in data science. Data science is a cross-disciplinary field relying on statistics,
computer science, and mathematics that is driven by problems from a wide range
of disciplines. This volume aims to make more visible the role of theoretical and
applied mathematics in data science.

Some contributions are products of the collaborations initiated during the third
“Women in Data Science and Mathematics” (WiSDM) Research Workshop that
took place between August 7 to August 11, 2023, at the Institute for Pure & Applied
Mathematics, a National Science Foundation math institute at the University of
California, Los Angeles. The goal of WiSDM is to bring small interdisciplinary
teams to work on real-world problems and focused open research questions for a
one-week workshop. Participants typically range from senior researchers to early
graduate students, collaborating as equals and building relationships centered on
shared research interests and complementary technical skills. This third edition con-
gregated six different groups and generated six contributions to the proceedings.

However, works included in the collection go beyond the WiSDM workshop.
Calls for contributions were extended to a network of WiSDM affiliates, a vibrant
group of previous workshop participants that is growing with each WiSDM edition,
and to a wider mathematical community composed by past participants’ institutions.
Ten additional submissions were collected, representing a diversity of research
advancements in applied mathematics.

Note that all the works were subjected to a single-blind peer-review process
where two to three experts reviewed the submission and provided recommendations
for the authors to improve their manuscript. We take this opportunity to thank the
anonymous reviewers for their constructive feedback and their valuable suggestions.

UFor further details about the projects and participants in WiSDM 2023 please refer to
Appendix “Appendix A WiSDM 2023: Projects and Participants”.
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Overall, we hope that this volume will constitute a useful resource for researchers
working in data science and applied mathematics. The in-depth discussions included
about complex data problems and cutting-edge methodologies from mathematics,
statistics, and computer science will help researchers to keep up with state-of-the-art
tools in data analysis. Furthermore, the interdisciplinary nature of the contributions,
some showcasing applications to real-world problems, will promote collaborations
among different fields and inspire novel practical demonstrations of the presented
research. Additionally, since the final papers are the result of collaborations between
researchers with different level of expertise, such as graduate students, post-doctoral
fellows, and junior and senior faculty members, we expect that this volume will
be accessible and particularly beneficial to junior researchers, providing insights,
guidance, and motivation to tackle new data science projects.

Chapter Summary

These proceedings cover a broad array of theory and applications illustrating the
wide use of tensor decompositions, graph-based algorithms, dimension reduction
techniques, and mathematically constrained machine learning. Works range from
early research results, to new algorithms inspired by related fields, to objective
evaluation of published methods. It also includes promising theoretical develop-
ments as well as novel application of techniques to practical problems. A special
section highlighting how data science tools can be used to examine aspects of higher
education concludes the volume.

Part I: Matrix and Tensor Methods

Part I includes novel contributions in the areas of tensor and matrix methods.
Essential to both chapters is the exploitation of the problem structure to produce
more efficient algorithms.

Chapter “Randomized Iterative Methods for Tensor Regression Under the t-
product” develops new algorithms that generalize iterative methods for matrix-
vector regression problems to the tensor regime. Tensor representations naturally
arise when dealing with complex multi-modal data (e.g., multidimensional arrays
such as video with spatial and time dimensions). This chapter presents a compre-
hensive survey of iterative methods for tensor regression (under the t-product) and
arrives at novel insights by extending variants of the Kaczmarz and Gauss-Seidel
methods to tensor regression settings. Results demonstrate the empirical efficacy
and accuracy of tensor methods while interesting follow-up theoretical directions
are delineated.

Chapter “Matrix exponentials: Lie-Trotter-Suzuki fractal decomposition, Gauss
Runge-Kutta polynomial formulation, and compressible features” compares two
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existing numerical approaches for efficient computation of the matrix exponential.
The matrix exponential is an important component when performing numerical
simulation of science or engineering time-dependent systems. The methods assume
that the system matrix can be expressed as the sum of two simple structured
matrices, specifically a diagonal matrix and a low-rank matrix, but use different
solution decompositions, yielding distinct numerical formulations and achieving
different levels of performance.

Part I1: Graph Algorithms

Part II contains contributions related to graph methods. These range from new
theoretical definitions of graph properties, to new problem formulations based on
graph regularizations or graph representations, to algorithms for making graph-
based computations more efficient.

Chapter “An exploration of graph distances, graph curvature, and applications
to network analysis” evaluates how notions of graph curvature induced by different
definitions of distance on a graph correlate with graph centrality measures. The
motivation behind the study is to investigate if some of these graph curvature
definitions are able to capture analogous intuitions from the continuous space,
where geometrical curvature characterizes how much the space differs from a flat
Euclidean space. The correlations computed in synthetic and real-world graphs
constitute a first step toward a better understanding of curvature on graphs, which
may prove fruitful for advancing new analysis tools.

Chapter “Time-Varying Graph Signal Recovery Using High-Order Smoothness
and Adaptive Low-rankness” proposes two new algorithms for recovering signals
in a graph, specifically time-varying signals. These are useful descriptions for
problems such as predicting sea surface temperatures, i.e., problems involving
time-series with given additional relationships among them, e.g., geographical
locations, which often can be represented via graphs. The proposed methods
combine high-order temporal smoothness and graph structures, and include a novel
low-rank regularization. A generalized recovery framework that encompasses the
new methods, as well as methods previously published, is presented too.

Chapter “Graph-Directed Topic Models of Text Documents” develops a new
topic modeling formulation that incorporates a graph-based regularization term.
A text document in a corpus can be represented via a bag-of-words model that
captures the distribution of corpus words in the document. However, extracting
knowledge requires more than representing individual documents. Topic modeling
is a methodology used to summarize the corpus in terms of topics, i.e., documents
are linear combinations of topics, where each topic corresponds to a specific word
distribution. Typically, a sparsity constraint is used. This work demonstrates how a
similarity graph between documents can be used as an alternative regularization.

Chapter “Linear independent component analysis in Wasserstein space” intro-
duces a framework for performing independent component analysis, i.e., identifying
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the set of independent random variables from observations of the (linearly) mixed
components, when the observations consist of probability measures or point-clouds,
not vectors in an Euclidean space. The framework proposed uses a Wasserstein-
based graph Laplacian. The work studies under which theoretical conditions the
eigenvectors of this Laplacian approximate the independent components and shows
preliminary results for data that is isometric and almost isometric to Euclidean data.

Chapter “Faster HodgeRank Approximation Algorithm for Statistical Ranking
and User Recommendation Problems” proposes a new algorithm to accelerate the
solution of the problem of statistical ranking on graphs. A ranking algorithm tries
to order entities by a given measure (e.g., preference, votes, etc.). The HodgeRank
algorithm is able to compute a global ranking from datasets with incomplete or
inconsistent scores, and is based on pairwise differences represented as edge flows
on a graph. This work develops a new method to run the HodgeRank algorithm
on smaller subgroups, to improve the scalability when the number of entities to be
ranked increases.

Chapter “A Comparison Study of Graph Laplacian Computation” compares
existing approaches for accelerating the numerical computation of the eigende-
composition of a graph Laplacian matrix. In data analysis, the eigendecomposition
of the graph Laplacian can be used to solve clustering or classification problems.
However, the methods become computationally demanding when the size of the
data, and consequently the size of the graph, is large. The methods evaluated are
based on different approximated eigendecompositions that only use a subsample
of the dataset, reducing their computational burden. This work performs extensive
numerical comparisons and reports trade-offs incurred by the different methods.

Part I11: Dimensionality Reduction

Part III focuses on novel developments on dimensionality reduction for improving
the efficiency on different data analysis tasks or for decreasing the complexity of
neural network model representations so that they can be deployed in resource-
limited settings.

Chapter “Supervised Dimension Reduction via Local Gradient Elongation” pro-
poses a novel geometric approach to perform nonlinear supervised dimensionality
reduction, i.e., obtain a low-dimensional representation of the input data features via
embeddings guided by the response variable (label). The method developed uses a
new metric that elongates the standard Euclidean distance in the direction of the
(univariate) label gradient. Also, it is able to consider different supervision levels
in the proposed local metric, i.e., different weights between feature distance and
label gradient. Demonstrations focus on visualization (of embedded features) and
prediction (of output variables to new input data) tasks, for synthetic datasets and
for real-world data from biology.

Chapter “Reducing NLP Model Embeddings for Deployment in Embedded
Systems” aims to reduce the number of parameters required to represent natural
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language processing (NLP) models while maintaining a tolerable level of per-
formance. NLP models often involve a large number of parameters (hundreds
of millions to billions) which makes for a problematic deployment in resource-
limited environments (e.g., embedded systems such as field-programmable gate
arrays FPGAs). This work applies dimensionality reduction methods to the token
embedding layer of the BERT model, a state-of-the-art large language model, to
produce new embedding vectors that maximize the variance of its components in a
smaller vector space.

Part 1V: Data Analysis and Machine Learning

Part IV demonstrates how tailored data analysis and machine learning algorithms
can improve applications in road safety, pharmacokinetics, inverse problems in
imaging, and speech recognition.

Chapter “Automated extraction of roadside slope from aerial LiDAR data in rural
North Carolina” devises a new Python-based, open-source, computational pipeline
for processing aerial LIDAR data with the goal of calculating slope grades adjacent
to roads on rural North Carolina. The slope of the roadside terrain is a significant
component in crash prediction but this data is scarce, particularly in rural regions
where physical surveys are impractical. LiDAR is a compelling alternative since
it has widespread availability, allowing for cost-effective and large-scale hazard
assessments. The processing pipeline includes roadway segmentation, road segment
identification, and linear regression fitting.

Chapter “A non-parametric optimal design algorithm for population pharma-
cokinetics” describes how the non-parametric estimation of the joint distribution
of the model parameters, from model observations, can be accelerated by using
directional derivatives of the log-likelihood function. This is a principled approach
that replaces the ad-hoc exploration of previous methods, allowing for less time
spent evaluating nonrelevant points and yielding a significant boost in computation
speed. Pharmacokinetics modeling aims to describe the evolution of the amount of
drug on a subject, given different conditions of elimination rate, input dose, apparent
distribution volume, etc. By reducing computation time, this approach may enable
faster therapeutic decisions.

Chapter “Unrolling Deep Learning End-to-End Method for Phase Retrieval”
proposes a deep learning framework for the phase retrieval problem. The approach
unfolds an iterative algorithm used for regularized optimization, specifically an
alternating direction method of multipliers (ADMM) formulation, into a feed-
forward network structure, yielding a framework that is interpretable and more
amenable to theoretical analysis. A convolutional neural network and a graph
convolutional network are learned as part of the unfolded structure, in order
to incorporate local and non-local smoothing regularizations. Recovering phase
information from intensity data is crucial in fields like coherent diffraction imaging
and crystallography.
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Chapter “Performance Analysis of MFCC and wav2vec on Stuttering Data”
develops machine learning models based on a Siamese neural network to accurately
identify types of dysfluency in speech. Scarcity of labeled data and inconsistency of
labels make it difficult to train accurate models and improve assistive technologies
for individuals with speech disorders. The approach focuses on evaluating different
feature representations for audio clips and on adding auxiliary classification tasks
to increase the generalization power of the model. Different settings are compared:
a single task to identify if the audio pairs provided belong to the same class, and
multitask configurations including classification of the six stuttering types and/or
binary classification of normal vs. stuttering.

Part V: Data Science and Higher Education

Part V illustrates how data analysis tools can be used to assess gender disparities in
STEM, and in some cases, serve as guidance for adjustments that may be beneficial
on different stages of the higher education pipeline.

Chapter “Active Learning for Reducing Gender Gaps in Undergraduate Com-
puting and Data Science” reports two instructors’ attempt to increase female
students’ confidence in computing via active learning and collaborative project-
based learning. The efforts focused on adapting the course design from a purely
introductory programming material to a more diverse offering including data science
and machine learning related topics. Surveys were administered during different
terms to assess change in student perceptions. The findings from the survey analysis
partially align with research suggesting that early educational interventions can
enhance comfort and interest in STEM for women.

Chapter “Quantifying and Documenting Gender-Based Inequalities in the Math-
ematical Sciences in the United States” examines gender inequality at the institu-
tional level within US PhD-granting math departments, where structural barriers
may exist in funding and hiring practices. The analysis is based on public data,
coming from a census of tenured or tenure-track faculty employed at PhD-
granting institutions in the United States and from the National Science Foundation,
and focuses on estimating quantitative relations between department’s gender
composition, the funding received, and the department’s perceived prestige. This
work illustrates the usefulness of data science tools for diagnosing issues in the
mathematical sciences itself.

Together, these studies highlight that while classroom-level interventions can
boost early interest and confidence, broader institutional changes are needed to
support long-term gender equity in STEM.

Los Alamos, NM, USA Cristina Garcia-Cardona
Chapel Hill, NC, USA Harlin Lee
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Randomized Iterative Methods for )
Tensor Regression Under the t-Product S

Alejandra Castillo (), Jamie Haddock (), Iryna Hartsock (),

Paulina Hoyos (), Lara Kassab ), Alona Kryshchenko ),

Kamila Larripa ), Deanna Needell (3, Shambhavi Suryanarayanan (),
and Karamatou Yacoubou Djima

1 Introduction

The extreme challenges of modern data analysis can be caused not just by the size
of data sets but also by the inherent complexity of this data. Often, this data is mul-
timodal, with modes representing measurements along different dimensions, e.g.,
spatial and temporal dimensions of video data or word and document dimensions of
text corpora data. Such data is naturally formatted as a fensor, a multidimensional
array, or, in other words, a higher-order generalization of a matrix. In a tensor, the
number of dimensions (or modes) is called the order of the tensor; the higher the
tensor order, the higher the complexity. Because the development of data analytic
methods for tensor data is far behind that for matrices, practitioners must frequently
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first transform their tensor data and apply inadequate matrix-based methods that
ignore the natural, unified structure of the data as tensor.

Many data analytic problems in the realm of tensors come with a unique set of
challenges not encountered for analogous tasks for matrix (lower-order tensor) data.
For example, the notion of tensor rank is not uniquely defined [33], unlike the rank
of matrices. Further, the various definitions of tensor rank are not computable in
polynomial time [27], as opposed to the case of matrices. The landscape is far more
complex for tensor data; computations with tensor data often remain challenging
even when their matrix counterparts can be taught in introductory linear algebra
courses.

Solving large-scale systems of linear equations or linear regressions is one of the
most commonly encountered problems across the data-rich sciences. This problem
arises in machine learning, as subroutines of several optimization methods [7], in
medical imaging [18, 26], in sensor networks [61], and in statistical analysis, to
name only a few. In the matrix-vector and matrix-matrix regime, this problem is
very well-understood with many highly efficient methods with provable guarantees
in the literature. For example, the Kaczmarz method and the Gauss-Seidel method
are popular and memory-efficient iterative methods that have been well-studied.
Iterative methods are algorithms that begin with an approximation to the solution
x© and then provide a series of improved approximations that converge to the
solution set. If a system of equations is large, iterative methods are advantageous
because they allow control of round-off error in contrast to elimination methods,
such as Gaussian elimination. Additionally, if one can make an accurate initial
guess (e.g., based on the physical context of the problem), this can lead to faster
convergence than seen in elimination methods.

Recently, iterative methods have been proposed for a variety of tensor linear
systems and regression problems [10, 39, 67]. Tensor regression problems arise
organically in settings in which the model inputs or outputs are naturally formulated
as a multidimensional tensor array, and the tensor product governs the dependence
structure between input and output tensors. Examples include weather and climate
forecasting, age estimation from medical imaging data or other biomarker informa-
tion, and many others; see [36] for more details and an excellent survey of tensor
regression models. In this paper, we will be concerned with tensor regression under
the tensor t-product. Iterative methods for tensor regression can be applied for a
variety of deblurring [31], denoising [43], and dictionary representation-learning

A. Kryshchenko
California State University Channel Islands, Camarillo, CA, USA

K. Larripa
Cal Poly Humboldt, Arcata, CA, USA

S. Suryanarayanan
Princeton University, Princeton, NJ, USA
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imaging application [50]; each of these can be formulated as a possibly regularized
tensor regression problem:

min [|8 — AX[% + d(X) (1
XeX

where A € R™*"*P is the measurement operator or dictionary, B € RmxIxp
represents the measurements or data, X € X C R"%I%P g the signal of interest,
AKX is the t-product between A, and X [32] defined in Sect. 2, and @ is a choice of
regularizer.

1.1 Contributions

Our main contributions in this paper are twofold. The first main contribution is to
provide a survey of the growing area of literature dedicated to iterative methods for
tensor regression and related problems. This survey is presented in Sect. 3. Our
second main contribution is to provide new generalizations of iterative methods
for matrix-vector regression problems to the tensor regime. We first generalize
the randomized Gauss-Seidel method [34] to tensor linear systems and explore its
application to consistent systems; see Sect. 4.1. We additionally consider the regime
in which the linear system is defined by an operator with a given factorization
and generalize the randomized Kaczmarz variant of [41] to the tensor linear
system regime; see Sect. 4.2. Finally, we consider tensor linear systems that may
be corrupted by adversarial perturbations and generalize the quantile randomized
Kaczmarz method of [22] to the tensor regime; see Sect. 4.3. These three new
directions are important to explore as the complexity of tensor linear systems
demands methods tailored to new settings, such as systems defined by “wide"
operators, systems defined by operators with known factorization, or systems with
measurements perturbed by corruption. Existing methods in the literature are not yet
amenable to such domains; our work provides initial methods that can tackle these
challenging tensor systems.

We note that our work, and much of the work dealing with iterative methods for
tensor linear regression, parallels and generalizes the literature dealing with iterative
methods for matrix-vector linear regression. To help illustrate the parallels in the
literature, we provide Table 1 and include citations to some relevant literature that
has motivated our work.

Table 1 Related literature summary

Factorized system Column-action Corruption-robust
Matrix-vector [41] [34] [22]
Tensor-tensor (t-product) This paper
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1.2 Organization

We begin with the necessary background, definitions, and notation in Sect. 2. In
Sect. 3, we present our first main contribution, a survey of iterative methods for
tensor regression and related problems. In Sect. 4, we present our second main
contribution, our proposed new iterative methods for tensor regression problems
in a variety of challenging settings. In Sect. 4.1, we generalize the randomized
Gauss-Seidel method to the tensor setting and present initial numerical experiments
illustrating the behavior of the method on systems of a variety of sizes. In Sect. 4.2,
we generalize the RK-RK method of [41] to tensor linear systems defined with
factorized operator and present initial numerical experiments illustrating the method
on a variety of factorized operators. In Sect. 4.3, we present the generalization
of the quantile randomized Kaczmarz method of [22] to the regime of tensor
linear systems possibly corrupted adversarily and experiment with this method on
synthetic corrupted systems. We end with some illustrative numerical experiments
applying these methods to a simple tensor linear system formulation of the video
deconvolution problem in Sect. 5. Finally, we present some conclusions and
discussion of future directions in Sect. 6.

2 Background and Notation

2.1 Notation

We use boldfaced lowercase Latin letters (e.g., x) to denote vectors, boldfaced
uppercase Latin letters (e.g., A) to denote matrices, and boldfaced uppercase
calligraphic Latin letters (e.g., A) to denote higher-order tensors. We use lightfaced
lowercase Latin and Roman letters (e.g., ¢ and B) to denote scalars. We let [m]
denote the set {1, 2, --- , m}. We utilize “MATLAB" notation; e.g., A;. is the ith
row of matrix A and A.;. is the jth column-slice of tensor A. We use A* to denote
the conjugate transpose of the tensor A € C™*"*P_ which is obtained by taking
the conjugate transpose of each of the frontal slices and then reversing the order of
transposed frontal slices 2 through p.

The notation ||v|| denotes the Euclidean norm of a vector v and || - ||f the
Frobenius norm of any tensor input. Throughout, we denote by oy (A) the smallest

singular values of the matrix A (i.e., the smallest eigenvalue of the matrix v ATA).
We use A ® B to denote the Kronecker product of matrices A and B.
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2.2 Background on Kaczmarz Methods

Before we begin our survey of iterative methods for tensor regression, we remind
the reader of one of the most popular and well-studied iterative methods for
matrix-vector and matrix-matrix regression: the Kaczmarz method. The Kaczmarz
algorithm aims to find a solution x of a system of equations Ax = b, where A
is an m X n matrix, x is a vector of unknowns, and b is a vector of constants.
The algorithm iteratively updates the approximation by selecting one equation at
a time and projecting the current approximation onto the hyperplane defined by
that equation. This process continues until convergence is reached or a maximum
number of iterations is reached. The update is defined by

bik - Aik:x(k_l)

k) — k=1
X =X
1Ay 112

Al )

where A;,. is the selected ixth row of A and b;, is the selected irth entry of b
at iteration k. The Kaczmarz method is particularly useful when the system of
equations is large and sparse, meaning that most entries in the matrix A are zero.
It allows for efficient computation by updating the solution one equation at a time,
making it suitable for problems with a large number of equations.

In [66], the authors introduced a randomized variant of the Kaczmarz method
where the probability that the ith row of A is sampled in the kth iteration
is ||A;.]1%/ ||A||%. The authors showed that for a consistent system with unique
solution x*, the randomized Kaczmarz (RK) method converges at least linearly in
expectation with the guarantee:

k
2
. (A
Bx®) — 2 < (1 - T} o e, 3)
N7
F

Many variants and extensions followed, including convergence analyses for incon-
sistent and random linear systems [9, 46], connections to other popular iterative
algorithms [13, 40, 47, 53, 54], block approaches [48, 55], acceleration and par-
allelization strategies [14, 35, 44, 45], and techniques for reducing noise and
corruption [21, 81]. Lastly, it is worth noting that there is a clear relationship
between row-action methods like randomized Kaczmarz and column-action meth-
ods like Gauss-Siedel. It is often the case, however, that when row-action methods
are more efficient (i.e., the system is over-determined), the methods do not guarantee
convergence to the least-squares solution without modification, and vice versa for
column-action methods, which do not converge to the least-norm solution in the
under-determined case. While not the focus of this paper, the interested reader can
refer to [25] for a thorough discussion of this relationship and trade-off.
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2.3 Background on Tensor t-Product Algebra

Before we may discuss the generalization of the Kaczmarz method, and other
iterative methods, to the tensor regression regime, we require some definitions and
will discuss the tensor t-product. The first definition is the block-circulant matrix of
a tensor 7, beirc(7). For 7 € R™*"* P we denote by bcirc(7)e R™P>*"P the matrix

To Tp1Tp—2---T1
) T1 To Tp-1---T2
beirc(7) = . .

Tp-1Tp—2Tp-3---To

We use 7 to denote the kth frontal slice of 7 (i.e., Tx := T-x is a m X n matrix).

Additionally, the t-product is defined in terms of tensor fiber transformation by
the discrete Fourier transform (DFT). The discrete Fourier transform (DFT) matrix
of size p x p is defined as

1 1 1 1
1 w w2 “en a)p_l
NI

1 wP~! 2= ... L=D-D

2mi
where w = e 7 is the principal p-th root of unity.
The tensor r-product [32] of tensors 7€ R™*"*P and 8§ € R"*/*? is the tensor
TS of dimension m x [ x p given by

(TS = (Fy ® Lisn)T(F p @ Lixn)Spa. )
where
Si
Spy = e Rwx!
Sp

is the unfolding of S along its second mode, and
T 1= (Fp @ Lnxm)beire(T)(F% & Lixn) = diag (T1.....Tp) (5)

is the circular discrete Fourier transform (DFT) of 7 with the p x p DFT matrix
F,.
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As with matrix-vector linear system iterative methods, the row space and range
of a given tensor are important concepts for defining and analyzing tensor linear
system iterative methods. The row space of A is defined as

R(A) = {ATY: Y e R"*kxp)

If p,k = 1, then R(A) coincides with the row space of the m x n matrix A. A
related space is the k-range space of tensor A, which is defined as

rangey(A) = {AY: Y € R™xkxpy

Finally, we note that the definition of the t-product implies that a tensor linear
system may be reformulated as an equivalent linear system.

Fact 1 The tensor linear system
AX =8
is equivalent to the matrix-matrix linear system
beirc(A) X2 = Blay;

that is, solutions to the tensor linear system, X, after unfolding, X|2), are solutions
to the matrix linear system and vice versa.

We will exploit this fact to compare iterative methods for tensor linear systems to
their counterpart iterative methods for matrix linear systems. We note that the data
in a single row slice of the tensor system AX = B is distributed among a block
of rows of the equivalent matricized system bcirc(A)X|2) = B2]. Row-slice-action
methods on the tensor system AX = $B are equivalent to carefully constructed
row-block-action methods on the matricized system bcirc(A)X[p) = Bppy. In the
matrix setting, there has been interest in understanding and solving structured linear
regression problems defined with block-circulant matrices [4]. It is also pertinent to
note that block circulant matrices naturally pop up in many applications including
computer vision, vibration analysis [51], and time series analysis [52].

3 Survey of Related Work for Tensor Regression

In this section, we survey existing literature on methods and models for tensor
regression. This survey is certainly not exhaustive and is focused on iterative
methods for tensor regression and related problems under the t-product. The t-
product was defined in the foundational work [32] as the product between two
three-order tensors. The authors subsequently derived formulations of the associated
tensor identity, inverse, pseudoinverse, and transpose and extended orthogonal



10 A. Castillo et al.

matrix factorizations such as the SVD and QR factorizations to tensors. The t-
product has gained significant traction and is now being applied in dictionary
learning [50, 64, 76], low-rank tensor completion [62, 77, 78, 80], low-rank tensor
recovery [10], facial recognition [23, 74], and neural networks [49, 71]. The t-
product-based decompositions have been shown to be more efficient than their
equivalent matrix formulations in many multimodal settings [38, 78].

3.1 Consistent Tensor Linear Systems

In [39], A. Ma and D. Molitor proposed the generalization of the randomized Kacz-
marz method for tensor linear systems defined under the t-product, called tensor
randomized Kaczmarz (TRK). This method begins with an initial approximation
X to the solution X* to the tensor linear system AX = B and iteratively samples
a row slice of the system defined by A;, .. and B, .. and projects the previous iterate
onto the space of solutions to this sampled subsystem. The pseudocode is provided
in Algorithm 1. The authors prove that this method converges at least linearly in
expectation to the unique solution X* of the system.

Algorithm 1 Tensor Randomized Kaczmarz (TRK) [39]

1: procedure TRK(A, B, K)
22 X0 =9

3 fork=1,...,K do

4 Sample iy € [m].

S5: X(k) = X(kil) - ﬂ?k;;(ﬂik::ﬂ;kk;;)71 (ﬁik::x(kil) - Bik::)
6: end for
7:

8:

return X5
end procedure

Further, the authors observed that, while the TRK method can equivalently be
viewed as a block Kaczmarz method applied to a matrix-matrix system for a specific
choice of blocks, a naive application of the block Kaczmarz method would give
us weaker theoretical guarantees than the one that TRK provides. This highlights
the advantage of exploiting the intrinsic structure of the data by using row-slice or
column-slice-action-based updates over their matrix counterparts.

In [3], W. Bao, F. Zhang, W. Li, Q. Wang, and Y. Gao compute the least
Frobenius-norm solution for consistent tensor linear systems of the form

AX = B, (6)
where A € R™"<P X e R™!*P and 8 € R™**P. The authors propose the

tensor randomized average Kaczmarz (TRAK) method, which is pseudoinverse- and
inverse-free and offers a speed-up over the TRK method for solving tensor linear
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systems (6); see Algorithm 2 for the pseudocode of the TRAK method. The authors
prove that the iterates X*) converge at least linearly in expectation to the unique
least Frobenius-norm solution X* = A'B.

Algorithm 2 Tensor Randomized Average Kaczmarz (TRAK) [3]
1: procedure TRAK(A, B, K, stepsize o > 0, partition {J;}}_, of [m])

i=

2: X0 ¢ rangel(ﬂT)

3: fork=1,...,K do

4: Sample i}, € [s] with probability II?IJ,.,(;:H%:/IIﬂII}.

5: X = x6=D — — & (A, )T (A XD = By,)
”ﬂlik::”p‘ 'k

6 end for return XX

7: end procedure

In [68], L. Tang, Y. Yu, Y. Zhang, and H. Li. consider the consistent tensor linear
equation:

AXB=C ()

for given third-order tensors A € R™*P B € RV>*"*P and C € R™*"*P,
They propose the tensor regular sketch-and-project method, TESP for short. In this
approach, one takes the point that is closest to the current iteration X*) and solves
a sketched version of the original tensor equation (7) as the next iteration X+
as described in Algorithm 3. It is shown that the iterates X*) converge linearly in
expectation to a solution X* of the system AX*B = C.

Algorithm 3 Tensor Regular Sketch-and-Project Algorithm (TESP) [68]

1: procedure TESP(A, B, C, K)

2 X(O) e RIXsxp

3 fork=1,...,K do

4: Sample independent copies S ~ Dg and V ~ Dy

5: Compute & = S(STAM AT S)TST and G = V( VT BT N~ BV)TyT
6

7

8:

X®O = x&=D Ml AT gAax* =8 — 0)g8" N~
end for return XX

end procedure

3.2 Inconsistent Tensor Linear Systems

In [31], M. Kilmer, K. Braman, N. Hao, and R. Hoover generalize a number
of linear algebraic algorithms to the t-product tensor algebra. They define the
conjugate gradient method for this regime and illustrate a number of applications
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for this method, including image deconvolution. The pseudocode for this method
is provided in Algorithm 4. This method can, of course, be applied to consistent
linear systems defined by positive definite operators and is additionally appropriate
for arbitrary (inconsistent) tensor systems by passing to the normal equations,
ATAX = A" B.

Algorithm 4 Tensor Conjugate Gradient (TCG) [31]
1: procedure TCG(A, B, K)

2: X9 =9 > A assumed positive definite
3: R=8

4: P=R

5: fork=1,...,K do

6: R =R

7: C=®PT"AP)'RTR
8: X® = x*=D 4 pc
9: R=R — APC

10: D=(R)TR)TIRTR
11: P=R+PD

12: end for

13: return X
14: end procedure

In [28], G.-X. Huang and S.-Y. Zhong propose an extended variant of TRK,
which they refer to as the tensor randomized extended Kaczmarz (TREK) method;
see Algorithm 5 for the method pseudocode. The authors prove that the iterates
converge at least linearly in expectation to the solution of the unperturbed tensor
system.

Algorithm 5 Tensor Randomized Extended Kaczmarz (TREK) [28]
1: procedure TREK(A, B, K)

22 X9=0

3 Z0=8

4 fork=1,...,K do

5: Sarl?ple jkke En] -
g: Z< ) = Z( b ‘ﬂifki(‘ﬂfjk:ﬂijki)lﬂj/kzz( -
8
9
0

1

Sample i € [m].
_ _ k
X0 = X*=D — 7 (A AL )T (A XD — B+ Z0)
end for
: return XK
: end procedure

—_—
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3.3 Convex Optimization over Linear System Constraints

In [10], X. Chen and J. Qin study how to recover X in the consistent and under-
determined system AX = B, where A € R™"*"*P X € R"*P and B € R"*!*P,
by solving the minimization:

argmin f(X), st AX =SB, (8)
XERnxlxp

where f is an oy-strongly convex function. To solve this linear constrained
minimization problem, they propose a general regularized Kaczmarz tensor algo-
rithm, which involves random projections onto the solution space of individual
equations, and a gradient calculation on the convex conjugate function of f, f*.
The pseudocode for their method is given in Algorithm 6. The authors prove
Algorithm 6 enjoys a linear convergence rate in expectation if the objective function
f 18 ay strongly convex and admissible. We note that the authors additionally
provide a deterministic algorithm, but we do not present this algorithm in detail.
They additionally consider a variety of problems and applications, including sparse
and low-rank recovery and image deconvolution or deblurring.

Algorithm 6 Tensor Randomized Regularized Kaczmarz (TRRK) [10]

1: procedure TRRK(A, B, K, tolerance tol, stepsize t)
Z© e RA)
X0 — Vf*(z(o))
fork=1,...,K do
Sample i (k) with probability ||5{(i(k))\|2F/Hﬂ||2F.

k) _ —~(k—1) -\ T Bl (R) = A (k) X*D
I8 =20+ 1AGR) IAG U1

If |X® — X*=D ) /1 X5 D) 5 < tol, return X&),
end for return X¢

3

4

5

6

7: X® = v frz*h)
8

9

0: end procedure

1

In [12], Kui Du and Xiao-Hui Sun assume that the linear system AX = B is
inconsistent and therefore considers the constrained minimization problem:

X = argmin f(X) st ATAX =A'B. )

XeR" xIxp

The authors propose the tensor randomized regularized extended Kaczmarz
(TRREK) method; see Algorithm 7 for the pseudocode. If f is a strongly admissible
and y-strongly convex function, then the TRREK algorithm converges linearly in
expectation to the solution X of the least-squares problem (9). Their method is an
extended generalization of that in [10], which allows it to pass below the usual
convergence horizon of a Kaczmarz-type method.



14 A. Castillo et al.

Algorithm 7 Tensor Randomized Regularized Extended Kaczmarz (TRREK) [12]

1: procedure TRREK(A, B, K, stepsizes ar, o, > 0)

2 Z9 =8,Y9 ¢ range/(AT), XO = vy O).

3 fork=1,...,K do

4 Sample ji € [n] with probability II?I;/',(;HZF/II\?III%
W — k=D _ _ac g q. 3T 7k-D

5 v =z e P (i)' Z

6: Sample iy € [m] with probability | Ay [|% /AN
k k—1 — k

7 y( ) = y( ) — Hﬁii”% (ﬂ:jk:)T(ﬂik::X(k D _Bik:: +Zl(/<))

8 X® = Vf*(y(k))

9 end for return XX

10: end procedure

3.4 Regression Under Other Tensor Products

While the focus of this paper is linear tensor regression under the t-product, there
has been work dealing with tensor regression under other tensor products. Broadly,
this work tends to be focused either on frameworks or models of tensor regression,
on algorithmic approaches for training or fitting a given tensor regression model, on
applications of these models, or combinations of these. In [37], the authors propose
a framework for the linear tensor regression problem under the contracted tensor
product. In [73], the authors introduce and analyze a subsampled tensor projected
gradient method for tensor regression. In [79], the authors propose a family of rank-
R generalized linear tensor regression models and suggest training this model with
an alternating block relaxation method. The survey [36] contains a good overview
of the broad class of tensor regression models, training methods, and application
of these techniques. More generally, many tensor decomposition training methods
utilize an alternating optimization scheme in which they solve subproblems holding
all but one factor fixed. These subproblems are special instances of tensor regression
problems that can occasionally be rewritten to ordinary least-squares problems; see,
e.g., [8, 24, 33].

4 Proposed Iterative Methods for Tensor Linear Systems

In this section, we provide new approaches for tensor linear systems in a variety of
scenarios. First, in Sect. 4.1, we propose randomized column-slice-action iterative
methods for tensor linear systems, which are especially important for systems
where the measurement tensor is smaller than the signal tensor. In Sect. 4.2, we
provide randomized iterative methods for tensor linear systems with a factorized
measurement operator. Finally, in Sect. 4.3, we propose randomized iterative
methods for tensor linear systems that are robust to sparse adversarial corruptions
in the measurement tensor.
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4.1 Column-Slice-Action Methods

While the row-oriented Kaczmarz-type methods are being actively explored in the
tensor regression setting, coordinate-wise or column-action methods have been
considered far less in the literature. The benefit of developing a column-action
method is clear in situations where row slices of the measurement tensor are
extremely large and cannot be stored in active memory, or the tensor data is naturally
stored in column-slice components (e.g., distributed across computational servers or
priority indexed by column). In this setting, accessing column-slices of the tensor
may be the only reliable form of data access available. We will generalize classical
column-action methods for matrix-vector systems, the Jacobi and Gauss-Seidel
methods. First, we will describe how the Jacobi and Gauss-Seidel methods solve
a linear system by operating on columns and show that randomized Gauss-Seidel
(RGS) can be viewed as a variant of these methods applied to the normal equations.
In [34], the authors prove that the residuals of randomized RGS converge linearly
in expectation, yielding an improvement over the convergence rate in the classical
settings.

Classical Gauss-Seidel Method The classical Jacobi and Gauss-Seidel methods are
iterative methods used to solve a system of linear equations Ax = b, where the
square matrix A and the vector b are known and the goal is to approximate x. The
Gauss-Seidel method was developed in the 1800s and is considered one of the first
iterative methods developed [60]. It is taught in undergraduate numerical method
courses and is similar to the Jacobi method, with the main difference being when
updates are applied.

When considering Ax = b, the matrix A is decomposed into the sum of a strictly
lower triangular matrix L, a diagonal matrix D, and a strictly upper triangular matrix
U,A =D+ L+ U. This allows the system of linear equations to be rewritten as
Dx+ Lx+Ux = b. The Jacobi method exploits this rewritten system and produces
a fixed-point iterative method on the fixed-point equation Dx = —(L + U)x + b of
the form

x® =—pNL+U)x* D + Db,
Entry-wise, this takes the form
1
(k) (k— 1) .
_ Z Aijx| oA —b;.
L

The Gauss-Seidel method, meanwhile, uses the fixed-point equation: (D + L)x =
—Ux + b to construct the fixed-point iterative method

x® = D+ L)y 'Ux*V +(D+L) b
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This is equivalent to x® = _p-lpx® _ p-lyx*®-D 4 D_lb, which takes the
following form entry-wise:

0 _ 1 (k) & 1
Y __TZA’Jx/ Z AijX j A..bf'
Hj=1 bj=itl

The convergence properties of the Jacobi and Gauss-Seidel method are dependent on
the properties of the matrix A, specifically upon the spectral radius of the matrices
involved in the Jacobi and Gauss-Seidel updates, — D! (L4+U)and —(D+L)"'U,
respectively.

Randomized Gauss-Seidel (RGS) Method In the recent literature, the method
referred to as randomized Gauss-Seidel is, in fact, a variant of randomized coor-
dinate descent applied to the least-squares objective. We note that this can be
viewed as a variant of either Jacobi’s method or Gauss-Seidel applied to the normal
equations AT Ax = ATb in which only a single coordinate is updated. This
method iterates by minimizing a subset of the residual error with respect to a single
coordinate; the kth iterate is

AL (Ax®=D —p)

*) — x®&=1)
X =X
A, 112

€ips s (10)

where A, is the ixth column of A. These methods have found success in
subroutines for multigrid methods [59, 69], high-performance computing [72], and
PDEs [16, 42]. Here, the probability that the jth column of A is sampled in the
kth iteration is [|A.; 12/ ||A||%; that is, the probability is proportional to the square
of the Euclidean norm of the column [34]. The algorithm has an expected linear
convergence rate [34] given by

k

2

oz. (A

Eflx® —x*)? < - Omin(4) 2@ — x*)2. (11)
A%

This method and variants have additionally been analyzed in [15, 40, 57].

Extension to Tensor Settings We now consider the consistent tensor linear system
AX = B, where B € C"*!*P A € C"*"*P and X € C"**P. We have formulated
the tensor version of the randomized Gauss-Seidel for this setting:

X0 = xk=b _ Ej (ﬂfj:ﬂ:j:)_lﬂfj:(ﬂx(k_l) —B) (12)

with X% and X*=D jp ¢nxixp, &jin C1xP g vertical slice tensor with the first
frontal slice being a standard basis vector e; with a 1 in the jzh coordinate and 0’s
elsewhere and the rest of the frontal slices are all vectors of zeros, ﬂf‘j: in Clxmxp,
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Aj. in CcmxIxp and Jj is a uniformly sampled column index from the set of indices
[n]. We give the pseudocode for this method in Algorithm 8.

Algorithm 8 Tensor Randomized Gauss-Seidel (TRGS)
procedure TRGS(A, B, K)
X0 =0,RO = Ax0 — 8
fork=1,2,...,K do
Sample ji € [n]
X(k) = X(k71> - ka (ﬂ?‘jk:"ﬂ:jk:)7l"ﬂ?‘jk:R(kil)
RO = AX® — B
end for return XX
end procedure

Comparing TRGS to Matrix Method and TRK The performance of our proposed
TRGS algorithm was studied empirically on synthetic data. In the first experiment,
we compared the performance of the TRGS to TRK method. In Fig. 1, we consider
tensor A € R39*20%30 generated with i.i.d. random Gaussian entries and tensor X*
the same as described above. It looks like TRGS and TRK perform in a very similar
manner.

In the second suite of experiments, tensors A € R"*20%30 apd X* e R20x10x30
were generated with i.i.d. random Gaussian entries. Different cases spanning the
under-determined and over-determined setting of the problem were considered by
varying m, the dimension of the first mode of tensor A as tabulated in Table 2. In
Figs. 2, 3, 4, 5, 6, we compare the performance of our TRGS algorithm with that
of matrix RGS on the equivalent system, bcirc(A)X[2] = By, defined in Fact 1.
Throughout these experiments, the matricized error is || (X ® _x 2l 11X ’[“2] |I; the
matricized least-norm error is ||[(X% — X M2/ X n)2)ll, where Xy n is the
least-norm solution; and the matricized residual error is ||bcirc(A)X g]) — Bl
In the under-determined setting (Cases 1-2), we see that TRGS performs better,
as evidenced by the rapid convergence of the residual error. This suggests that the
TRGS converges to a solution of the system, but the nature of this solution is unclear
and a potential direction of our future work. In the over-determined setting (Cases

Fig. 1 Relative error of L 7 —TRK relative oo |
solution, -~ TRGS relative error
IX® — X*|| /1 X* ||, over
all iterations of TRK and
TRGS for A € RI*20x30
where X®) are iterates and
X* is the exact solution

S
&

N
10710 A

12 — x| /11X ||

1078 O —

0 2000 4000 6000 8000 10000
Iterations
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Table 2 Cases of the numerical experiments of RGS algorithm on various sizes of tensor A. The
dimensions of the X were 20 x 10 x 30, the same for all the cases

Under-determined Over-determined
Case 1: Fig. 2 A e RI5*20x30 Case 3: Fig. 4 A e R40x20x30
Case 2: Fig. 3 A € R10x20x30 Case 4: Fig. 5 A e R30x20x30
Case 5: Fig. 6 A e R20x20x30
. —— 102 r )
N — [1X® — 2|17 —[lAX® B
095} —x® - 2N/ XNl E N Tt =aa - - matricized res err ||
Y - - matricized error || 40N\ 0 TTT==-=-- =
0.85 XY
5 08 S
£ DL
Wo7s N P
0.7 : sy Tmmeess
0.65 TR .
1 Tessaes e
0.6 R N ‘ ‘
0 2000 4000 6000 8000 10000 10 0 2000 4000 6000 8000 10000
Iterations Iterations

Fig. 2 Relative (left) and residual (right) solution error with iterations for TRGS and matrix RGS
(on beirc(A)X[2) = Bj2)) for tensor system from Case 1 from Table 2 (A € R15%20x30 ypder-

determined), where X' ®) are iterates, X™ is the exact solution, and X y is the least-norm solution

——— 10° -
1.16 —12® = x| /)17 —[[AX®) — B]|
—[]&® — xpn ||/ Al —— matricized res err
114 (9,' - - matricized error »
112 \ - - matricized In error 10°
N
af &
Bis A S o5
[Tl E‘ 5 m
1.06 “,\ 3
\ -
1.04 f— S T 10710
.\\
1020 el _____
1 . . . 10715 L L
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations

Fig. 3 Relative (left) and residual (right) solution error with iterations for TRGS and matrix RGS
(on beirc(A)X[2; = Bpp)) for tensor system from Case 2 from Table 2 (A € R10%20x30 ypder-
determined), where X' (®) are iterates, X* is the exact solution, and X y is the least-norm solution

3-5), TRGS exhibits faster convergence to the true solution over matrix RGS. In
fact, it was able to recover the exact solution (up to machine precision) in Case 3,
which corresponds to a highly over-determined system.
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4.2 Tensor Regression with Factorized Measurement Operator

We now turn our attention to problems in which the measurement operator is
given by the product of two tensor operators. This setting naturally occurs in some
applications, such as image deblurring with two known blurring operators [31], or
can be statistically motivated when the measurement matrix A has an intrinsic low
dimension. In that case, an SVD can be used to replace A by its lower-dimensional
representation. Reducing computational costs can also drive the use of a product
of the type (13) in lieu of A [17]. For example, algorithms for low-rank matrix
completion, such as alternating minimization, include a step where a low-rank A is
decomposed into two matrices U and V, ideally with » < min(m, n), and proceed
with working with the smaller matrices instead of the original measurement matrix.

Existing Approaches to Regression with Factorized Measurement Operator For
matrices, the problem can be formally stated as follows: solve the system Ax = b,
where A € R™ " comes in the product form A = UV, where U € R™*" and
V € R In [41], the authors consider the system Ax = b in the form

UVx =b, (13)
which they solve in multi-steps by tackling the associated subsystems
Uz =b, (14)
and
Vx =z 5)

using an algorithm that interlaces the steps of the Kaczmarz method applied to each
individual system.

The authors in [41] develop the two algorithms described below, RK-RK and
REK-RK, that find the optimal solution for (13) using the factors of A. Both
methods, which are variants of the randomized Kaczmarz method in [66], solve
the systems (14) and (15) by interlacing Kaczmarz steps. That is, instead of first
finding the solution of (14) iteratively and then using this solution to solve (15) in
a subsequent sequence of iterations, we compute updates for both systems in each
iteration of our algorithm such that the most recent update for z¥) is employed to
evaluate the next update x X, This leads to a more efficient algorithm [41].

The variant RK-RK focuses on a consistent system Ax = b, while REK-RK
deals with the case in which Ax = b is inconsistent. Note that the latter method
draws from REK, an extension of RK proposed by [81] to produce the optimal
solution for any system (with linear convergence for both inconsistent systems and
consistent systems) following the demonstration in [46] that RK may not yield the
optimal solution for the inconsistent system—it is only guaranteed to converge to
within a radius of convergence of this solution.
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Algorithm 9 Matrix RK-RK [41]

1: procedure RK-RK(U, V, b, K)

2 70 =9

3 x©® =0

4 fork=1,...,K do

5 Sample i; with probability |U;,.[13/1U 3.

: k) = gk—1) _ grx Wit —by)
6: z z Ulk, e
7 Sample ji with probability ||V j,. ||§)/|IVH%.
v, _x(kfl),z(_ )

®) — k=1 _ oy DT )

8 x" =x ij: A

9: end for return x(X)

10: end procedure

Algorithm 10 Matrix REK-RK [41]
1: procedure REK-RK(U, V, b, K)
2: 7@ =90
3: x© =9
4: w® =p

5: fork=1,...,K do

6

7

8

Sample i with probability ||U ;. ||%/||U||%,.
Sample ji with probability U, 13/ U

U* wk-D
® — k=D _ .. Zi
w =w .
Ik \lU:,kfk \]|§

o: 20 — g1 _ g U2 ’;YW

T U
10: Sample ji; with probability |V j,.12/[V |13
1L: xl) =D —vE IV 13 :
12 end for return x(X)

13: end procedure

Extension to Tensor Settings In this section, we study methods for consistent
tensor systems; hence, we will focus on generalizing RK-RK to the tensor setting.
Our generalization will build upon TRK (Algorithm 1) and the factorized RK
method (Algorithm 9) [41]. We propose the factorized tensor randomized Kaczmarz
(FacTRK) procedure for solving a factorized system:

UVX = B,

where U € RMXIXP ) ¢ RI>nxp X ¢ RIXIXP and B ¢ RM*I*P, by alternatively
applying tensor RK to the two systems UZ = B, and VX = Z. The pseudocode
for FacTRK is provided in Algorithm 11.

Comparing FacTRK to Matrix Method and TRK We begin with a comparison of
FacTRK (updates using U and V) to TRK (updates using A = UV) on a consistent
tensor linear system. Figure 7 compares the performance of our algorithm FacTRK,
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Algorithm 11 Factorized Tensor Randomized Kaczmarz (FacTRK)

1: procedure FACTRK(U, V, B, K)

2 Z9=0

3 X9 =0

4 fork=1,...,K do

5: Sample iy € [m].

6: Z(k) = Z(k_]) - 7/(?(k;:((L[ik::(l/(;‘kk;;)_l((ui/(::Z(k_l) - Z5.1';(::)
7.

8

9

0:

Sample ji € [r].
X(k) = X(k_l) - (ij::((vjkii(vj'k::)_l(rvfklix(k_l) - 'Zy;))
end for return XX

10: end procedure

Algorithm 11, with TRK, Algorithm 1, for solving the t-product linear system
AX = B, where A = UYV. Here, we generate tensors U € RIOx10x30 « ¢
R10%5%30 with ii.d. Gaussian normal entries and generate A € R*3x30 34
A = UYV. We construct X € R3*7*30 with i.i.d. Gaussian normal entries and
construct a consistent linear system by setting 8 = AX. We perform 2000 iterations
of each algorithm and measure the residual error || AX® — B||% in each iteration.
The numerical results suggest that FacTRK gains a computational advantage by
exploiting the factorization over naively applying TRK.

Next, we compare FacTRK to the matrix RK-RK algorithm applied to the equiv-
alent matrix system, bcirc(U)bcirc(V)X[2) = Bz, defined in Fact 1 for a suite of
examples. The following table describes different cases for numerical experiments
that compare FacTRK and matrix RK-RK (Algorithm 9) for solving t-linear system
UVX = B where U € R"*P Y ¢ RMP and A = UV € R™*"xP,
Throughout these experiments, the matricized error is [|(X®) — X Yl 11X E] || and

the matricized residual error is ||bcirc(U)bcirc(V)X g]) — B2ll. We notice that
in every case, FacTRK enjoys faster decreasing residual error than that of matrix
RK-RK. In every case, except those where U is under-determined and V is over-
determined, the residual error follows a generally decreasing trend and does not
approach a nonzero (numerically) horizon. We additionally note that in the cases in
which U and A are both under-determined, the relative errors of FacTRK appear
to be worse than those of matrix RK-RK for late iterations. We hypothesize that
tensor methods require fewer iterations and in fact the shapes of the error curves are
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Table 3 Cases of the numerical experiments of FacTRK and matrix RK-RK algorithms on various
sizes of tensors A, U, and V. The dimensions of the X were 20 x 10 x 30, the same for all the
cases. We indicate those cases that are impossible to form with “-”

U under- U over- U over- U under-
determined V | determined V | determined V' | determined V
under- over- under- over-
Cases determined determined determined determined
1. A € R15x20x30 r=17Fig.8 |- r=10Fig.8 |r =25Fig.8
under-determined (left) (center) (right)
2. A e RI0x20x30 r=15Fig.9 |- r=5Fig. 9 r =25 Fig. 9
under-determined (left) (center) (right)
3. A e RA0X20x30 - r=30 r=15 r =45
over-determined Fig. 10 (left) Fig. 10 Fig. 10 (right)
(center)
4. A € RIx20x30 - r=25 r=15 r=35
over-determined Fig. 11 (left) Fig. 11 Fig. 11 (right)
(center)
5. A € R20x20x30 - r=20 - -
over-determined Fig. 12

the same, and only matricized methods require more iterations to achieve the same
errors as the tensor method. This is due to the fact that matrix RK-RK accesses
significantly less of the problem defining data than FacTRK, since the matricization
spreads the data from a single row slice of the tensor system AX = B into a block of
rows in the equivalent matrix system bcirc(A)X|2) = By2;. Outside of the four cases
where U and A are both under-determined, the relative error of FacTRK decreases
at least as quickly as that of matrix RK-RK.

4.3 Tensor Regression with Adversarial Corruption

We now consider the challenging setting in which the tensor linear system has
arbitrary and even possibly adversarial corruptions and develop iterative methods
that are robust to such corruptions. This setting is relevant in most modern applica-
tions where measurements must be collected, stored, and repeatedly accessed. These
steps often introduce transmission or transcription corruption into the data; on any
one instance, this corruption is rare, but across a large-scale tensor, corruption is
likely and could be of arbitrary size. Because these corruptions could be quite large,
running a standard least-squares solver will likely not give a solution anywhere near
the desired solution.

Simple iterative methods like the Kaczmarz method are prime candidates for
corruption-robust methods [20-22]. The information calculated within an iteration
(e.g., residual entries) can often additionally provide information about the geom-
etry of the problem, the trustworthiness of data, and the nearness and existence
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of a solution. It has become common to aggregate information across multiple
iterations to attempt to mitigate the effect of benign noise [2, 44], but variants using
this information to avoid the devastating effects of adversarial corruption in the
problem-defining data are newer and less well-understood [11, 22, 63, 65]. Since
these problems arise in medical imaging, sensor networks, error correction, and
data science, the effects of adversarial corruptions in the data could be catastrophic
downstream. An ill-timed update using corrupted data can destroy the valuable
information learned by many updates produced with uncorrupted data, making
iterative methods challenging to employ on large-scale data.

Existing Statistical Approaches to Adversarial Corruption Since arbitrary corrup-
tions can be quite large, simply ignoring them and hoping for convergence is not
realistic. On the other hand, given that the corruptions can be large, iterative steps
that encounter such a corruption should be statistically different than non-affected
iterative steps. This notion is what lies behind current methods for the matrix
case that tolerate large corruptions [11, 22, 63, 65]. This approach, coined quantile
randomized Kaczmarz (QRK), utilizes the residual error, Ax® — b, where x®
is the current iterate, to detect outliers corresponding to corruptions. If a residual
entry has magnitude above a certain quantile of all residuals, that entry is deemed
unreliable, and its corresponding hyperplane will be rejected if selected in that
iteration. The QRK method shows reliable convergence to the true solution of the
uncorrupted system under mild assumptions on the number of corruptions both
empirically and theoretically.

Some QRK follow-up works considered the case when sparse corruptions are
mixed with small noise [29, 75], gave an alternative approach for the convergence
proof [65], and considered a variant of the algorithm in which the quantile is
computed from only a subsample of the residual [19]. Additionally, there has been
significant interest in methods for robust linear regression [5, 58, 70] due to the
ubiquity of linear problems with a small number of outlier measurements. Other
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works relevant to this problem include min-k loss SGD [63], robust SGD [11, 56],
and Byzantine approaches [1, 6].

Extension to Tensor Linear Systems While the QRK approach works well in the
matrix setting, the tensor setting provides some significant challenges. In the matrix
case, a corruption in b simply implies that (once identified) one can ignore that
entry and otherwise proceed as usual in the iterative process. In the tensor setting,
however, a single corruption in 8 affects an entire slice of the solution X. If there
are few corruptions, ignoring each slice during iteration is possible. However, with a
moderate number of corruptions, ignoring each corrupted slice is not feasible as this
would result in never updating the estimation and thus never converging. Therefore,
a different approach is necessary. Of course, one could matricize the system and
run QRK and be able to tolerate a moderate amount of corruptions. However, the
downside to doing this, as shown in [39], is that the contraction rate, and thus the
computational time, is much worse for the matrix version of RK than it is for TRK
(Algorithm 1). In the future work, we will investigate an approach that has the
benefit of a fast convergence rate like TRK with the ability to handle a moderate
number of corruptions like QRK.

Building on the work in the matrix case [22], we have developed a simple
quantile tensor RK (QTRK) method that utilizes the Frobenius norms of the
updates to decide whether an update is unreliable (i.e., is likely to correspond to
a corruption). We denote

Pi(X) := A (A AG) (ALK = B)). (16)
We write Q,(X, S) as the gth quantile of all X over the set S. We assume A €

R™*"XP and B8 € R™*!*P_ The pseudocode for our QTRK method is given in
Algorithm 12.

Algorithm 12 Quantile Tensor Randomized Kaczmarz (QTRK)

1: procedure QTRK(A, B, quantile level g, block size ¢, K)

2 X9 =0

3 fork=1,2,...,Kdo

4 sample i1, ...i; ~ Uniform(1, ..., m)

5: sample j ~ Uniform(l, ..., m)

6: if 1P, X)) F < Qg UIP, (XU D) Ip, {ir 21 € [1]) then
7: X® = xk=b _p,(xk=D) & See definition in (16)
8 else

9 X® = x*k=D

10 end if

11 end for

return X5

12: end procedure
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Fig. 13 Solution error versus iteration for TRK vs QTRK, for a simple example, where A €
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Three corruptions, g = 0.7; (Right) Five corruptions, ¢ = 0.5

Comparing QTRK to TRK We have found that, empirically, this method performs
well for a small number of corruptions of arbitrary size. Indeed, we compare the
classical TRK method to our proposed QTRK method in Fig. 13, where the error
is displayed between the true and QTRK and TRK approximated solution for
various levels of corruptions in the system. In this experiment, A e R!2X3%10,
B e RIZXTXI0 x o RS*TxI0 e generate A and X to have i.i.d. Gaussian
normal random entries and produce 8 by taking AX and corrupting the indicated
number of entries (one in the left plot, three in the center plot, and five in the right
plot of Fig. 13). The number of iterations is K = 1,000, and the block size is
t = 12, which aligns with the number of horizontal slices in tensor A. By randomly
corrupting varying numbers (1, 3, and 5) of entries in tensor (A, the performance
of both methods is assessed in terms of error between the true solution and the
approximated solution achieved by QTRK and TRK. Note that for a greater number
of corruptions, one has to be more conservative with the choice of quantile level
q. We see that, unsurprisingly, QTRK offers convergence to the solution of the
underlying uncorrupted system, whereas TRK has no hope of such convergence,
given that its projections are using corrupted data that pushes the iterate from the
true solution.

5 Image Deconvolution Experiments

Image deconvolution or deblurring is the process of removing blurring artifacts from
images and returning a sharp image from an image convolved with a known blurring
operator. Image blurring may be represented in terms of a convolution where each
pixel value is replaced with a weighted sum of nearby pixel values. This averaging
diminishes sharp contrasts in the image. This convolution can be represented by
multiplication by a given circulant matrix and thus is connected to the t-product.
The equivalency between 2D convolution and multiplication by a tensor operator
under the t-product has been established [30] and exploited [10].
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Fig. 14 Video frame deconvolution with TRGS method on consistent system AX = B. (Upper
left) residual error of TRGS iterates in three experiments varying initialization; (Upper center)
relative errors of TRGS iterates produced with zero X ©. (Bottom left) relative errors of TRGS
iterates produced with blurry measurement X©; (Bottom center) relative errors of TRGS iterates
produced with random X@; (Right) visualization of original frames (top row), blurry frames
(second row), TRGS recovered frames (third- fifth row), and least-norm solution frames (bottom
row)

We can consider the task of deblurring to be a tensor recovery optimization
problem subject to the constraint AX = B [10, 30]. In this notation, B is the
measurement tensor (containing the pixel information in the blurred image), A is
the known convolutional blurring operator, and our goal is to recover X, the sharp
image tensor. In the right columns of Fig. 14, we can see the original (sharp) images
in the top row and the degraded, blurry images after convolution with the known
blurring operator in the second row. The goal is to recover the resolution of the
original images, given only access to the blurry ones.

In this section, we illustrate the use of our proposed methods in image deconvo-
lution. We demonstrate the promise of these methods for variants of the deblurring
problem and discuss the interesting theoretical questions these experiments and the
image deconvolution application raise. The experiments presented in this section
were performed in MATLAB 2021b on a MacBook Pro 2019 with a 2.3 GHz 8-
Core Intel Core 19 and 16GB RAM.

In these experiments, we focus on deblurring an image sequence, or video,
B € R™/XP with [ frames. We assume that all frames are degraded by the same
known spatial blurring operator, represented in its tensor form A € R™*™*?_ In
all given experiments, we use the MRI video data set mri in MATLAB. This data
set contains 12 frames of size 128 x 128 from an MRI data scan of a human head.
In these experiments, the blurry frames are generated by convolving the ground
truth X* e RIZ8x12x128 oy (a) tensor(s) representing frame-wise 2D Gaussian
smoothing kernel(s). We note that AX* = B; however, we cannot hope to exactly
recover the original image from only these measurements, as the matrix operator
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and tensor operator representing the Gaussian smoothing kernel are not full-rank.
For this reason, we are interested in examining the recovered images and not just
measuring the relative error or residual error of the recovered images.

5.1 Deconvolution with TRGS Method

In our first experiment, we construct the degraded, blurry images by convolving the
mri tensor X described above with a tensor representing a Gaussian smoothing
kernel of size 5 x 5 with standard deviation two and replicating the edge pixels
twice on all edges (to construct a “tall” system). The blurring and replication may
be represented by t-product multiplication with a tensor operator A € RI32x128x132
We hope to recover X*, which is X* with the edge pixels on the left and right
edge of every frame replicated twice. Indeed, the blurry and replicated image
B e RI3ZX12x132 qatisfies AX* = B.

We apply the TRGS method to this consistent tensor linear system with various
initial iterates. In our first experiment, we begin with initial iterate X &
R128x12x132 with all entries zero. In our second experiment, we begin with initial
iterate X© = $5:130,1:12,1:132; that is, we trim the left and right replicated pixels
from every frame of the blurry video. In our third experiment, we begin with
initial iterate X© e R128X12x132 with each entry sampled i.i.d. from the unif[0, 1]
distribution. In each experiment, we run 100,000 iterations of the TRGS method.
For all iterations of each experiment, we measure the residual error ||AX ® _ B :
see the upper left plot of Fig. 14. We also measure the relative error to the original
frames, || X® — X*|| £/ X*|| F, and to the least-norm solution frames X;ny = A’ B,
| X® — XNl F/IIXLN | F; see the upper middle plot of Fig. 14 for the relative
errors of TRGS initialized with the zero tensor, the lower left plot of Fig. 14 for
the relative errors of TRGS initialized with the blurry tensor, and the lower middle
plot of Fig. 14 for the relative errors of TRGS initialized with the random tensor.

We compare the frames recovered from the TRGS method with these three
initializations (rows 3-5) to the original frames (top row), the degraded blurry
frames (second row), and the least-norm solution frames produced as A’ B (bottom
row) in the array of frames on the right of Fig. 14. As evidenced by the visualization
of the recovered frames, the residual error, and the final relative error to the least-
norm solution, TRGS initialized with the blurry frame tensor provides the strongest
recovery. We note that the current theory in the matrix regime does not account
for or explain the improved performance of TRGS initialized with the blurry frame
tensor. In the future work, we will investigate what property of the blurry frames
had made them a good initialization for the TRGS method.
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Fig. 15 Video frame deconvolution of doubly blurred frames with the FacTRK method on
consistent system UV X = B. (Upper left) residual error of FacTRK iterates in three experiments
varying initialization; (Upper center) relative errors of FacTRK iterates produced with zero X' ©,
(Bottom left) relative errors of FacTRK iterates produced with blurry measurement X@; (Bottom
center) relative errors of FacTRK iterates produced with random X ©, (Right) visualization of
original frames (top row), blurry frames (second row), FacTRK recovered frames (third—fifth row),
and least-norm solution frames (bottom row)

5.2 Deconvolution of Doubly Blurred Images with FacTRK
Method

In this experiment, we construct the degraded, blurry images by convolving the mri
tensor X~ described above with a tensor representing a Gaussian smoothing kernel
of size 5 x 5 with standard deviation two and convolving this result with a tensor
representing an averaging kernel of size 5 x 5 and replicating the edge pixels twice
on all edges (to construct a “tall” system). The dual blurring and replication may be
represented by t-product multiplication with a tensor operator, which can be written
as the product of two tensors, A = UV € RI132x128x132 e hope to recover X*,
which is X* with the edge pixels on the left and right edge of every frame replicated
twice. Indeed, the doubly blurry and replicated image 8 € R!32*12x132 qatisfies
AX* = UVX* = 8.

We apply the FacTRK method to this consistent tensor linear system with
various initial iterates. In our first experiment, we begin with initial iterate X© e
RI128x12x132 with all entries zero. In our second experiment, we begin with initial
iterate X© = $5:130,1:12,1:132; that is, we trim the left and right replicated pixels
from every frame of the blurry video. In our third experiment, we begin with
initial iterate X© e R128X12x132 with each entry sampled i.i.d. from the unif[0, 1]
distribution. In each experiment, we run 100, 000 iterations of the FacTRK method.
For all iterations of each experiment, we measure the residual error ||AX ® _ B :
see the upper left plot of Fig. 15. We also measure the relative error to the original
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frames, || X® — X*||¢/I|X*|| F, and to the least-norm solution frames X;ny = A’ B,
X% — X1l F/IlXLN] 73 see the upper middle plot of Fig. 15 for the relative errors
of FacTRK initialized with the zero tensor, the lower left plot of Fig. 15 for the
relative errors of FacTRK initialized with the blurry tensor, and the lower middle
plot of Fig. 15 for the relative errors of FacTRK initialized with the random tensor.

We compare the frames recovered from the FacTRK method with these three
initializations (rows 3-5) to the original frames (top row), the doubly degraded
blurry frames (second row), and the least-norm solution frames produced as At B
(bottom row) in the array of frames on the right of Fig. 15. We note again, as
evidenced by the visualization of the recovered frames and the residual error,
FacTRK initialized with the blurry frame tensor provides the strongest recovery
and that, again, the current theory in the matrix regime does not account for or
explain the improved performance of FacTRK initialized with the blurry frame
tensor. Additionally, in this problem, the least-norm solution (right bottom row of
Fig. 15) suffers from some artifacts due to an error in the numerical calculation
of A" and that FacTRK appears to better avoid these. Finally, we note that in each
experiment, the relative error to the original frames, || X*) —X*|| /|| X* || , increases
even as the residual error, |(AX® — B||r, decreases. In the future work, we will
investigate the description of the element of the solution space to which FacTRK is
converging.

5.3 Deconvolution of Blurred and Corrupted Images with
OTRK Method

In this experiment, we construct the corrupted and degraded, blurry images by
convolving the mri tensor X * described above with a tensor representing a Gaussian
smoothing kernel of size 5 x 5 with standard deviation two and replicating the edge
pixels twice on all edges (to construct a “tall” system) and introducing a corruption
into the blurry frame tensor by setting a randomly sampled entry in the first frame
slice to value 1000. The blurring and replication may be represented by t-product
multiplication with a tensor operator, which can be written as the product of two
tensors, A = UV € RI32x128x132 e hope to recover X*, which is X* with the
edge pixels on the left and right edge of every frame replicated twice. However,
in this case, the corrupted and blurry image 8 € R32*12X132 goes nor satisfy
AX* = UVX* = 8.

We apply the QTRK method with g = 0.99 to this corrupted tensor linear system
with various initial iterates. In our first experiment, we begin with initial iterate
X O ¢ RIZ8x12x132 with all entries zero. In our second experiment, we begin with
initial iterate X© = $2.130,1:12,1:132; that is, we trim the left and right replicated
pixels from every frame of the blurry video. In our third experiment, we begin with
initial iterate X© e R128X12x132 with each entry sampled i.i.d. from the unif[0, 1]
distribution. In each experiment, we run 100, 000 iterations of the QTRK method.
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Fig. 16 Video frame deconvolution of blurred and corrupted frames with the QTRK method on
the corrupted (inconsistent) system defined by A and B. (Upper left) residual error of QTRK
iterates in three experiments varying initialization; (Upper center) relative errors of QTRK iterates
produced with zero X©@; (Bottom left) relative errors of QTRK iterates produced with blurry
measurement X@; (Bottom center) relative errors of QTRK iterates produced with random X .
(Right) visualization of original frames (top row), blurry frames (second row), QTRK recovered
frames (third—fifth row), and least-norm solution frames (bottom row)

For all iterations of each experiment, we measure the residual error ||AX ® _ B :
see the upper left plot of Fig. 16. We also measure the relative error to the original
frames, || X® — X*||¢/l|X*|| r, and to the least-norm solution frames X;n = A’ B,
1X® — XinllF /IIXLN|F; see the upper middle plot of Fig. 16 for the relative
errors of QTRK initialized with the zero tensor, the lower left plot of Fig. 16 for
the relative errors of QTRK initialized with the blurry tensor, and the lower middle
plot of Fig. 16 for the relative errors of QTRK initialized with the random tensor.

We compare the frames recovered from the QTRK method with these three
initializations (rows 3-5) to the original frames (top row), the doubly degraded
blurry frames (second row), and the least-norm solution frames produced as A’ B
(bottom row) in the array of frames on the right of Fig. 16. We note again that,
as demonstrated by the visualization of the recovered frames, QTRK initialized
with the blurry frame tensor provides the strongest recovery and that, again, the
current theory in the matrix regime does not account for or explain the improved
performance of QTRK initialized with the blurry frame tensor, nor the meaningful
recovery of QTRK at all (as the underlying uncorrupted system is less than full
rank and nearly square). Additionally, in this problem, the least-norm solution (right
bottom row of Fig. 16) is entirely ruined by the presence of the corruption in the
blurry slice corresponding to the first frame, yet QTRK is able to approximately
solve the deconvolution problem. In the future work, we will investigate the
theoretical convergence of QTRK and the matrix method QRK on structured
systems that are under-determined.
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6 Conclusion

In this paper, we accomplish several things. First, we summarize the current
state of tensor regression in various settings, e.g., consistent or inconsistent linear
systems or convex optimization over linear system constraints. Then, we develop
new algorithms, which extend the Gauss-Seidel and Kaczmarz methods to new
settings, namely, tensors for the Gauss-Seidel method and, for the Kaczmarz
algorithms, tensor regression with factorized measurement operator and tensor
regression with adversarial corruption. We test the performance of these algorithms
in various critical scenarios, e.g., consistent or inconsistent cases and a deblurring
problem, by empirically comparing their convergence rate and/or accuracy to matrix
counterparts. Our results are promising; in all our experiments, our methods match
or (significantly) surpass the empirical convergence rate and accuracy of matrix
methods.

Furthermore, our numerical work prompts several follow-up questions; for
example, we see from Figs. 2, 3, 4, 5, 6 that TRGS converges to an element of the
solution space, but we have yet to establish the nature of this solution. Additionally,
several of our experiments suggest convergence of our iterative tensor regression
methods outside of the regime for which theoretical results for their matrix
counterparts guarantee convergence; for instance, consider the residual convergence
of TRGS and FacTRK on under-determined systems and the success of QTRK
on the under-determined image deconvolution system. We hope that our future
work proving convergence guarantees for these tensor system iterative methods
may offer, additionally, novel insights into the matrix system setting. Additionally,
in Figs. 8, 9, 10, 11, right panels, we see that when U is under-determined
and V is over-determined, convergence of the relative and residual solution error
differs significantly from the other cases. This suggests further theoretical work is
necessary to understand why this case is different. We hypothesize that when V
is over-determined, the solution to the inner system is overfitted, and this does not
allow enough freedom for the outer system to stabilize and converge. Additional
future work will consider the image deconvolution problem in more detail and
treat it more fully. In particular, we are interested in understanding what properties
of the image deconvolution problem may allow for useful recovery (by TRGS,
FacTRK, and QTRK) on systems for which existing convergence guarantees in
the matrix regime do not apply. Our ongoing efforts are focused on investigating
these interesting theoretical questions and providing a comprehensive theoretical
framework for convergence of TRGS, FacTRK, and QTRK.
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Matrix Exponentials: Lie-Trotter—Suzuki M)
Fractal Decomposition, Gauss ST
Runge—Kutta Polynomial Formulation,

and Compressible Features

Rachel E. Emrick, Emily H. Huang, Yidan Mei, Joaquin E. Drut,
Jingfang Huang, and Yifei Lou

1 Introduction

In classical linear algebra analysis, a matrix exponential ¢4’ can be intuitively
defined by its Taylor expansion:

1 1
eA’=1+Ar+5A2t2+§A3r3+---, (1)
where A is an n X n matrix, [ is the Identity matrix, and ¢ is a scalar variable to show
the connections between matrix exponentials and time-dependent problems. When
matrix A can be diagonalized using its eigensystems in the foom A = BDB™!,
where

A0 -0
0Ar--- 0

D=\ . .. . (2
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is a diagonal matrix containing all the eigenvalues X; on the diagonal and the column
vectors of B are the corresponding eigenvectors, then the matrix exponential is given
by

eAt — BeDtB_],

where
M0 .- 0
o 0 e ... 0 )
0 0 ...

The eigen-decomposition-based matrix exponential definition can be generalized to
Jordan forms when the matrix is not diagonalizable, and we skip the details.

This paper presents the work of three female undergraduate students (RE, EH,
and YM) at UNC-Chapel Hill. Each student focused on a particular research topic
and collaborated to generate interesting analysis and numerical results. The students
contributed equally to this work. The main contributions of their research include
the explorations of two techniques for efficient calculations of the matrix expo-
nentials using the operator splitting techniques, efficient numerical extractions of
different compressible features in a matrix, and a study of the interactions between
diagonal (or banded) structures with low-rank structures when time ¢ evolves in
a matrix exponential. In this paper, we focus on Hermitian matrices A that are
always diagonalizable. When the size of the matrix, denoted by n, is large, the well-
defined matrix exponential using the straightforward eigen-decomposition becomes
computationally intractable due to the O (n>) operations and O (n?) storage required
to find the eigensystem. Instead of general Hermitian matrices, this paper considers
special cases of the matrix exponentials when matrix A can be decomposed as
the sum of two (or more) simple structured matrices, i.e., A = T + V, where
matrices 7 and V can be diagonal or banded in the physical or frequency domains
or have low-rank structures. Note that compressible matrix structures commonly
exist in real-world applications, e.g., the Laplace operator is diagonal in the
Fourier/frequency domain; (nonlinear) reactions in physical or biological systems
are diagonal in the physical domain; discretized Laplace differential operator is
banded (tridiagonal) in 1D setting; a banded matrix is the sum of a diagonal
matrix and hierarchically low-rank off-diagonal matrix blocks; and the submatrix
blocks representing the “well-separated” far-field electrostatic, hydrodynamic, and
other types of interactions (also related to the inverse of the Laplacian and other
elliptic operators) are always low-rank. We present two examples with different
compressible features. The first example comes from quantum statistical mechanics.
As the wave function ¢ satisfies the Schrodinger’s equation,
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Using matrix A to represent the discretized Hamiltonian H that characterizes the
total energy of a quantum physical system, matrix A can be split into two matrices
as

A=T+V, &)

2
where T (representing discretized — h—Vz) is a diagonal matrix when expressed
in the momentum space, also known ?s Fourier space, and V (representing the
potential U from the environment in which the quantum system exists) often
contains low-rank structures when considered either in the physical or frequency
domain. In the second example, we consider a reaction—diffusion equation model
from biological or physical applications given by

ul(xv t) = AM(Xs t) + f(u(xv t))9

where u; is the time derivative, A is the spatial Laplace operator describing the
diffusion process, and f(u) is the reaction term. Note that the Laplace operator is
diagonal in the Fourier frequency domain and the reaction term is diagonal in the
physical domain. Therefore, the operator can be split into a diagonal operator and a
convolution operator that is diagonal in the frequency domain. For systems that can
be decomposed into the summation of simple structured blocks, “operator splitting”
is a commonly used technique to take advantage of simple structures and accelerate
numerical simulations. For example, a time-splitting spectral approximation scheme
[1] is applied to the general nonlinear Schrodinger equations (NLS) in the semi-
classical regimes, where the original operator is decomposed into the summation
of a diagonal operator in the frequency domain (Laplace operator) and a different
diagonal operator in the physical domain. Then, the frequency domain diagonal
system can be accurately and efficiently solved using a spectral method, and the
physical domain diagonal system can be solved separately using high-order ordinary
differential equation (ODE) initial value problem solvers for each decoupled single-
variable scalar differential equation.

In this paper, we focus on a class of applications when the original operator
(matrix A) is the sum of a diagonal operator (matrix 7') and a low-rank operator
(matrix V). We first study the efficient computation of the matrix exponential e’4 as
t evolves. We present two numerical approaches for one time step from 0 to At when
the time stepsize At is small. In the first approach that is widely used in the quantum
statistics community [2, 4, 11, 19, 20], the local fractal Lie-Trotter—Suzuki (LTS)
decompositions approximate 42! using the products of terms in the form e*74!
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and VA with scalar values oy, Bx. Examples of the LTS decompositions include

the Lie product formula [15], also widely called the Trotter decomposition [21]:
eAD — TAIVAL L 0(An)? = VDT L 0(AD?,
and the second-order Strang splitting [18]:
PADE oy T VAL TS o VS TAL VS
In the second approach, note that Y (r) = e4! satisfies the ordinary different
equations:
(6)

Yt)=A-Y(@)
Y(0) = Lixn.

As there generally exists no polynomial matrix with a bounded degree that exactly
satisfies the differential equation in one time marching step [0, At], one searches
for a degree p polynomial matrix that satisfies a pseudo-spectral (collocation)
formulation by requiring that the differential equation is exactly satisfied at p
collocation points {0 < t#,f,---,t, < At}. Following the terminology in
mathematical analysis, a spectral method is a technique where one studies the
function expansion coefficients (frequency domain) instead of the function values
(physical domain) where the basis can be any orthogonal eigensystems from the
Sturm-Liouville theory, e.g., the Fourier series or orthogonal polynomial basis
functions. A pseudo-spectral method refers to the case when one implicitly studies
the expansion using the function values at a special set of sample points that are
often related to the zeros of the eigenfunctions. When the Gaussian quadrature nodes
(zeros of the Legendre polynomials) are used, the resulting Gauss Runge—Kutta
(GRK) method (also called the Gauss collocation or pseudo-spectral formulations)
has order 2p and is A-stable, B-stable, symmetric, and symplectic [10]. To avoid the
numerically unstable differentiation operations, we consider the equivalent Picard
integral equation reformulation:

{ Y(x) =Y(0) + [y A-Y(r)dt o

Y (0) = Luxn,

and solve the resulting discretized GRK formulation efficiently using the spectral
deferred correction (SDC) or Krylov deferred correction (KDC) methods, where
a low-order method (e.g., a low-order LTS method) is applied as a preconditioner
and the preconditioned system is solved either by the geometric series expansion
(fixed-point iterations in SDC) [6] or by the least squares-based Krylov subspace
methods (in KDC) [12]. We show how both the LTS decompositions and SDC/KDC
accelerated GRK methods can compute the matrix exponentials efficiently when
the n x n matrix A = T + V, T is diagonal, and V is rank-k <« n. Note that
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the exponential of a diagonal matrix is diagonal and the exponential of a rank-k
matrix is the Identity matrix plus a rank-k matrix. Therefore, the required storage
and number of operations in a related matrix—vector multiplication are both O (n) for
T and e®T, and O (kn) for V and ¢#V . The matrix—matrix multiplications for 7', e®T ,
v, and e?V are either O (n) (diagonal times diagonal) or O (kn) (otherwise). When
solving a differential equation system with a given initial value vector, both the LTS
decompositions and the SDC/KDC-GRK algorithms can utilize the compressible
features in the split matrices 7 and V, reducing each matrix—vector multiplication
cost from the direct O (n?) to the asymptotically optimal O (kn). Therefore, the
storage and number of operations are bounded by O (kn) in each time marching
step.

For A = T + V where T is diagonal and V is low rank, we have theoretically
and numerically explored the interesting question on how the two special structures
in the matrix exponential e’ evolve as time ¢ increases. Is ¢4’ still the sum of a
diagonal matrix and a low-rank matrix? If so, how does the numerical rank of the
low-rank matrix change? Is the rank bounded? And are there any low-rank structures
in the submatrix blocks representing the far-field relations between different well-
separated subsystems? Understanding the hidden compressible features allows more
efficient computations of matrix exponentials. By combining randomized rank-
revealing and low-rank decomposition algorithms, we present some preliminary
results on the study of the “interactions” of the low-rank and diagonal structures
in the matrix exponential ¢4,

We organize this paper as follows. Section2 focuses on different Lie—Trotter—
Suzuki decompositions. In Sect.3, we discuss the polynomial expansion-based
Gauss Runge—Kutta formulation and how the discretized system can be solved
efficiently using the spectral or Krylov deferred correction methods. In Sect. 4,
we describe several compressible structures that can be utilized to accelerate the
involved algebraic computations, and discuss the interactions of low-rank and
diagonal structures in a matrix exponential. In Sect. 5, we present numerical results
to demonstrate the performance of various methods under different choices of algo-
rithmic parameters and how the low-rank structures change in matrix exponentials
as time ¢ evolves. Finally in Sect. 6, we summarize our results and discuss our future
work.

2 Lie-Trotter—-Suzuki Decompositions

The Lie-Trotter—Suzuki (LTS) decompositions are a class of varying order methods
commonly used in the study of quantum mechanical systems for numerically
approximating the matrix e using easier to compute factors of ¢! and eV, where
A =T + V. In this section, we present several decompositions we have studied.
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2.1 SI: Order 1 Trotter Decomposition

The simplest decomposition is the Trotter approximation, denoted as S1, given by
eAMTHY) = AT AV 1 0(Ar?) = S1(AL) + O(A). (8)
The order of S1 can be derived by the Taylor expansion of matrix exponentials

where the matrix—matrix multiplications are noncommutative. Following the work
in [11], we compare the following Taylor expansions of matrix exponentials:

A2
AT = [ 4 AU(T + V) + (T + V) + 0(Ar)

_1+At(T+v>+ <T2+Tv+vr+v2)+0(m) ©)

and

Ar?
oAIT A1V I+At(T+V)+—(T2+2TV+V )+0(At3) (10)

This analysis shows that the leading order in local truncation error is the second

order given by ( VT — TV); hence, the global error in a time marching scheme
is first-order O(At)

2.2 S2and P2: Symmetric Order 2 Decompositions

A famous second-order decomposition is the Strang splitting [18, 19], referred to as
S2 in this paper, given by the formulas

eAt(T+V) — eAtT/ZeAtVeAtT/Z + 0(Af3) = S2(A1) + O(At3), (11)
or equivalently,
ATV = QAVI2 AT QAVIZ 1 O (AL?) = S2(AL) + O(AL). (12)

The “symmetric structure” in the decomposition makes the Strang splitting a
globally second-order method when solving time-dependent differential equations.

When expanded in terms of nested commutators (Hall bases) and minimizing the
1-norm of the coefficients, the optimal second-order expansion, referred to as P2, is
given by the following formula:

eAt(T+V) ~ PZ(Af) — ealAtTeblAtveazAtTeblAfVealAtT’ (13)
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where a) = 6(3 -3 3),a) =1—2ay,and by = 2 are the parameters that optimize
the 1-norm of the coefficients [2, 19].

2.3 83, 03, and Q4: Higher-Order Decompositions

We also study higher-order LTS decompositions. By properly combining the
decomposition S2, a new decomposition S3 is given by the formula

A THY) ~ §3(Ar) = S2(sAt)S2((1 - 2s)At)SZ(sAt)

_ejAtT S‘AtV _SAtTe(l ZY)AI‘V _YAtT vAtV AtT

(14)

where s = Tf Because of the special choice of s, S3 is an order 4 method [19].

In addition to real-valued coefficients, complex coefficients can be used for
potentially improved accuracy and stability for special physical systems. We present
two recursively defined decompositions in this category [19]. The decomposition Q3
is given by

03(Ar) = S2(p3An)Sa(p3Ar), (15)

where p3 = %(3 + +/3i) and pj3 is the complex conjugate of p3. Using Q3, we can
define Q4 as

Q4(Ar) = Q3(psAt) Q3(paAr) (16)

where ps = (1 +eim/ 4)_1. For general complex differential equations or complex
matrix A = T + V, Q3 is the third order and Q4 is the fourth order. An interesting
feature of Q3 is that when it is applied to a system with all real numbers, as its
leading order local truncation error is purely imaginary, it effectively becomes a
fourth-order method, which will be numerically shown in Sect. 5.

We refer interested readers to [2, 7, 11, 19, 20] for detailed discussions of existing
LTS decompositions. In Sect.5, we present preliminary numerical experiments to
demonstrate the performance of the aforementioned decompositions.

3 Gauss Runge-Kutta Formulation and Its Accelerated
Solutions

In addition to the LTS decompositions, we rely on classical numerical analysis
for ODE initial value problems to handle the matrix exponential. As the matrix
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exponential Y (f) = e’ for an n x n matrix A satisfies the ODE

4 — .

{Y O=A-Y(@) (17)
Y(0) = Lixn,

we present a polynomial-based approach to approximate Y (1) = e?! =~ Py(2),

where P,(f) is a polynomial matrix of degree p, i.e., each entry of P,(z) is a

polynomial in # of degree no more than p.

3.1 Pseudo-spectral Differentiation Formulation

In general, there exists no polynomial matrix with a bounded degree that exactly sat-
isfies the differential equation; therefore, one can search for a degree p polynomial
matrix P that satisfies a pseudo-spectral (collocation) formulation by requiring that
the differential equation is exactly satisfied at p collocation points {z;}. We define
the pseudo-spectral differentiation formulation for the ODE initial value problem in
Eq. (17) as follows:

Definition 1 (Pseudo-spectral Differentiation Formulation) For a given set of
collocation points {t1, 2, - - - , f,}, the pseudo-spectral formulation finds a polyno-
mial matrix P, (t), which satisfies

P[/,(tj)ZA~Pp(lj) (18)
Pp(o) = Iyxn-

Comment on the Choice of {r;} Clearly, the choice of the nodes {¢;} has impacts

on the numerical properties of the spectral differentiation formulation. We briefly

discuss the following two important classes of node choices.

(i) Gauss-Legendre Nodes When the zeros of a Legendre polynomial are used, the
resulting pseudo-spectral formulation is often referred to as the Gauss collocation
or Gauss Runge—Kutta (GRK) formulation. The numerical algorithm for Eq. (18)
has the following nice properties:

Theorem 1 When p Gauss—Legendre nodes are used, the Gauss Runge—Kutta
formulation in Eq. (18) for approximating the solution of Eq. (17) is order 2p, A-
stable, B-stable, symmetric, and symplectic.

Interested readers are referred to [10] to understand why the Gauss collocation
formulation can be considered as a special case of the implicit Runge—Kutta
methods and numerical properties of the resulting GRK formulations.

(ii) Gauss—Chebyshev Nodes One can also use the zeros of the Chebyshev
polynomial to take advantage of the near-minimax properties of the Chebyshev
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polynomial approximation and the efficiency of the fast Fourier transform to
compute the Chebyshev expansion coefficients from the function values at all
the node points. We refer to the resulting formulation as the Gauss—Chebyshev
collocation formulation.

Note that the node choices have significant impacts on numerical integration
and differentiation operations. It is well documented in classical numerical analysis
literature that interpolations based on the zeros of orthogonal polynomials (Gauss-
type quadrature nodes) have improved accuracy and stability properties. In this
paper, we focus on the Gauss quadrature nodes. We have also considered evenly
spaced points when the desired order of the method is no more than 8, to better
“recycle” previous computations for improved algorithm efficiency (we skip the
details).

3.2 Spectral Integration and Picard Integral Equation
Reformulation

Given the unknown values P,(t;), where 0 < t; < At are the (scaled) Gauss
quadrature points in [0, At], to solve the pseudo-spectral differentiation formulation
in Eq. (18) in one time step [0, At], a spectral differentiation operator is needed.

Definition 2 ((Pseudo-)Spectral Differentiation Matrix) Given the function val-
ues f(t;) attp = 0 and scaled Gauss quadrature points {t1, f2, - - - , f,} in the interval
[0, At], one can construct an interpolating polynomial of degree p denoted by P (¢).
If one differentiates the polynomial and evaluates the derivative at the same set of
points, one can construct a linear mapping from the function values { f (¢;)} j=1,... p
to the derivative values { f'(¢ i)~ P'(t i)} j=1,...,p- The transformation matrix D is
defined as the spectral differentiation matrix and we have

f'(t) f(r)
f/() ft)
: = BlDpxp :
f(p) ftp)

Similarly, a spectral integration matrix can be defined as follows:

Definition 3 ((Pseudo-)Spectral Integration Matrix) Given the function values
f(tj) at tp = 0 and scaled Gauss quadrature points {t, 1, --- , ?,} in the interval
[0, Atz], one can construct an interpolating polynomial of degree p denoted by P (¢).
If one defines F(t;) = fé" f(r)dt, which can be approximated by evaluating the

—7 . . .
polynomial fOJ P (7)dt at the same set of points, one can construct a linear mapping
from the function values { f(¢;)}j=1,...,p to the integral values {F(¢;)}j=1,....p. The
transformation matrix S is defined as the spectral integration matrix and we have
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F(t) f)
F(t) f()
. = At pXp .
F(tp) f@p)

It is interesting to compare the spectral differentiation with spectral integration
matrix. It was shown in [9] that the spectral integration matrix is almost a tri-
diagonal matrix in the frequency domain (when one considers the relation between
expansion coefficients rather than the function values). One can use the fast
Fourier/Cosine transform (for Chebyshev nodes) or fast Legendre transform (for
Legendre nodes) to go back and forth efficiently between the physical domain
(function values) and frequency domain (expansion coefficients). Such algorithm
accelerations are particularly helpful when the number of nodes p is large. A more
important difference is the condition numbers of the spectral differentiation and
integration matrices. In [9], it was shown that the condition number of the spectral
differentiation matrix is approximately O (p?). The condition number of the spectral
integration matrix, on the other hand, is bounded by a constant (for the Chebyshev
polynomial, the constant is approximately 2.4; see Eq. (21) in [9]).

We numerically demonstrate the condition numbers of the spectral integration
and differentiation matrices for the Gauss quadrature nodes. For the function f(¢) =
sin(t), we compute its derivative and integral values using spectral differentiation
and integration matrices, respectively, and compare the numerical results with the
analytical derivatives and integrals. We present the numerical results in Fig. 1,
showing how errors decay when the number of Gauss nodes increases for each
matrix. The numerical results match the theoretical analysis, and spectral integration
is numerically more stable than spectral differentiation.

To avoid the numerical instability associated with the differential operator in
Eq. (17), we consider an equivalent Picard integral equation reformulation:
{no:nm+ﬁA-nmw (19)

Y(0) = Lixn ’

and search for a polynomial matrix P,(¢) that satisfies the discretized pseudo-
spectral integral equation formulation defined as follows:

Definition 4 (Pseudo-spectral Integral Equation Reformulation) For the equiv-
alent Picard integral equation reformulation of the ODE initial value problem
presented in Eq. (19) and a given set of scaled Gauss quadrature-type node points
{t1,t2,--- ,1p} in one marching step from [0, A¢], the pseudo-spectral integral
equation reformulation finds a polynomial matrix P, (¢) that satisfies

Pp(t)) = Pp(O) + [y A+ Pp(v)de (20)
PI’(O) = In><n-
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Fig. 1 A comparison of spectral integration versus spectral differentiation

The pseudo-spectral integral equation reformulation is capable of achieving
machine precision accuracy when it is solved accurately.

3.3 Spectral Deferred Correction Methods

To solve the pseudo-spectral integral equation reformulation in Eq. (20), we apply
the spectral deferred correction (SDC) method first introduced in [6] to improve the
efficiency of the algorithm. The SDC steps are listed next.

Step 1: Find a Low-Order Approximate Solution The first step of a deferred
correction method is to find an approximate matrix polynomial solution P(r) using
a low-order method. To demonstrate the idea, we simply apply the first-order Trotter
decomposition and compute P(r) as follows:

P(0) = Luxn,
i)(fj+1) = eT<f/+1—f./)eV(f./H—f./)ﬁ(,j),
Instead of a first-order approximation, one can apply higher-order approxima-

tions discussed in Sect.2. An interesting question is how different “low-order”
predictors impact algorithm efficiency, which will be studied in the future.
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Step 2: Compute the Residue Once the approximate solution P (1) is available,
we define P(t) = P(t) 4+ §(¢) and plug it into the Picard integral equation:

P(t)+8(t) =Y (0) + [y A- (P(x) +8(1))dr o
8(0) = 0y xn-
One can derive a new set of equations for the error (also called defect) §(¢):
{8(l) = 1A 8(r)dt + (Y(O) + [l A P(rydr — ﬁ(r)) o)
5(0) = Opxn-

Define the residue as
l ~ ~
e(t) =Y(0) +/ A-P(t)dt — P(1),
0

and then the error’s equation becomes a new (inhomogeneous) Picard integral

equation:

— 4 .

{S(I) = o A-8(x)dt +€(r) 23)
3(0) = Omxm-

Note that the approximate solution P(r) is known; therefore, the integral fé A -

P(t)dt can be accurately evaluated using a high-order (and stable) pseudo-spectral
integration matrix that integrates the interpolating polynomial of P (¢) exactly.

Step 3: Apply a Low-Order Method to the Error’s Equation The third step of
an SDC method is to apply a low-order method to get a low-order estimate §(¢) of
the analytical error 6(¢). There are many low-order approaches; among which we
demonstrate a second-order algorithm based on the trapezoidal rule.

We consider the differential equation form of the Picard integral equation:

(24)

{5’(:) —A-8(t)+€@)
5(0) = Onxn-

For given 4(z;), the analytical solution at #; is given by

Lj+1
8(tj41) =eA(’f+1—’f>5(t,-)+/ A= (1),

1j

Applying integration by parts, we have
. Lj+1
8(tj41) = eMMiT18(t)) + eA<’j+'—f>e(r)|’,f;;j + / Aet i+ 1D e(1)dt

lj
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where h 11 =tj41 — t;. Therefore, we obtain

T+l
8(tj41) = eMMH8(t)) + e(tj1) — eMite(t)) + f Attt e (v)dr.
]
Again, eA"i+1 can be efficiently applied using the Lie-Trotter—Suzuki operator
splitting-based low-order methods. We apply the second-order trapezoidal rule to
evaluate fti’ 1 AeA D¢ (1)dt; hence, the updating formula becomes

5(tj1) = I B(1)) — e(t) + e(tyen) + L (Ae“fﬂe(t,) + Ae(tj+1),
(25)
where § (t) is the low-order approximation of the exact error §(¢). We can define
Steps 2 and 3 as a function S(t) = F un(]s(t)) where the input is the given
approximate solution P(¢) and the output is the low-order approximation of the error
S(t). Each such (implicit) function evaluation is considered as one SDC correction.

Step 4: Repeat Steps 2-4, or Stop, or Reset and Restart If the low-order
estimate of the error §(¢) is within a prescribed error tolerance, then the approximate
solution is considered accurate enough and one can output it as the converged
solution. Otherwise, one can use the low-order estimate of the error to improve
the approximate solution simply by using

Puew = Polg + 6,

and then returning to Step 2 until the iterations are convergent or a maximum
number of iterations is reached. In the latter case when the method is not convergent,
one reduces the time stepsize and restarts SDC from Step 1. As the low-order
method becomes more accurate for smaller time stepsizes, the method is guaranteed
to converge when a sufficiently small stepsize is used.

Comment The SDC method is equivalent to a sequence of fixed-point (stationary)
iterations representing a particular Neumann series expansion for a low-order-
method-preconditioned formulation. As the spectral integration matrix is applied
in the final converged collocation formulation, the resulting algorithm is referred to
as the spectral deferred correction (SDC) method in existing literature [6]. Instead
of a naive Neumann series expansion, one can use the terms in the Neumann series
to construct a Krylov subspace and search for the optimal least squares solution in
the Krylov subspace to further accelerate the convergence. The resulting algorithm
is referred to as the Krylov deferred correction method (KDC) [12]. For general
nonlinear ODE initial value problems, the implementation of KDC is a simple
application of an existing Jacobian-free Newton—Krylov (JENK) solver [13, 14] to
find the zero of the low-order-method-preconditioned function §(r) = Fun(P).
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4 Compressible Matrix Structures and Accelerated
Calculations

By representing the original matrix A as the sum of two (or more) simple structured
matrices T and V, many of the involved algebraic operations can be accelerated.
In this section, we study the diagonal and low-rank compressible features, their
interactions in the matrix exponentials, and accelerated computation techniques.

First, using the Taylor expansion definition of a matrix exponential, it is
straightforward to show that the exponential of a diagonal matrix 7 is also diagonal.
The required storage for an n x n diagonal matrix is O (n). When a diagonal matrix is
applied to any vector, the amount of required operations is O (n). The multiplication
of two diagonal matrices requires asymptotically optimal O (n) operations.

Next, we consider a real symmetric low-rank (rank £ < n) matrix and consider
its “complete” eigen-decomposition V,x, = U,x,Znx nUnTX , Where U is an
orthogonal matrix containing all the orthonormal eigenvectors and ¥ is diagonal
with only the first k diagonal entries nonzero. As ¢V = Ue>UT and only the first
k diagonal entries of e> = 1, we find that " is the sum of the Identity matrix and
a low-rank matrix U (ez -1 ) UT with the same rank k. Assuming the “compact”
low-rank decomposition V,,x,, = Upxi ZixxU kan is already available, the storage
of this decomposed form is O(k - n). When V or e is applied to a given vector
using the decomposed form, the number of operations is only O (k -n). Furthermore,
it only requires O (k - n) operations to compute the product of a low-rank matrix
with a diagonal matrix, or a low-rank matrix with another low-rank matrix, or the
sum of a diagonal matrix and low-rank matrix with the sum of another diagonal
matrix and low-rank matrix. These products are basic building blocks in the LTS

decompositions.
When studying the solution of ODE initial value problem using e’4y, where the
vector y¢ contains the initial conditions and A = T + V with T and V either

diagonal or low-rank, both the LTS decompositions and SDC accelerated GRK
(SDC-GRK) methods are efficient for large-size matrices as the time marching
scheme only requires the storage of vectors, special structured matrices, and matrix—
vector multiplications of T, e”, V, and ¢ with given vectors. The required storage
and number of operations for each time marching step are both asymptotically
optimal O (k - n).

For applications where the matrix exponential ¢’4 is required, due to the
interactions of different compressible features in matrix A, the corresponding
compressible features in the matrix exponential /4 may become complicated when
t increases. This can be demonstrated using the following example: Assume D and
D> are two diagonal matrices and L and L, are two low-rank matrices with rank k.
Then, the matrix product (products of different terms in the LTS decompositions) is

(D1 + L1)(D2+ Ly) = DDy + (D1 Ly + L{(Dy + Lp)) = D3 + Ls.
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Although we conclude with another sum of a diagonal matrix D3 = DD, and
a low-rank matrix L3 = (D; + L1)Ly 4+ L1D;, the rank of L3 may become
larger than k and increase to as large as 2k. As such products appear many times
in the LTS decompositions and SDC-GRK algorithms, in the worst-case scenario,
both the storage and number of operations in a related matrix—matrix multiplication
increase as ¢ increases due to the change in the rank k of the low-rank matrix, and the
numerical computation may soon become impossible for large-size matrices. One
motivation for our research is to understand how the compressible features (e.g.,
diagonal, banded, and low-rank structures in the physical and frequency domains) of
matrix exponentials evolve as ¢ increases. Understanding and identifying the hidden
compressible features allow more efficient computations of matrix exponentials.

We have explored the interactions of the diagonal structure with the low-rank
structure in the matrix exponential ¢4 when A = T + V is the sum of a
diagonal matrix and a rank £k < n matrix. We have implemented two numerical
approaches to efficiently find the numerical rank of the matrix L3, its compressed
SVD representation, and the diagonal matrix D3 after each matrix—matrix product
(D1+4L1)(Da+L2) = D3+L3. Inthe first approach, as we know the rank of L3 is no
more than 2k and the matrices D1, D;, L1, and L, have compressed structures, the
matrix—vector multiplication L3v can be efficiently evaluated for any given vector
v. Therefore, we apply the randomized algorithm from [17] where 2k 4 g vectors
{vi},i =1,---,2k 4+ g are randomly generated and the compressed representation
of L3 is derived by analyzing the matrix—vector multiplications {L3v;}. We set
g = 8 and refer interested readers to [17] for how to choose g to minimize the
probability of large approximation errors and details of the randomized algorithm.
In the second approach, we combine ideas from the CUR matrix decompositions
[16] and randomized CUR decomposition algorithms presented in [5]. By studying
a properly sampled “skeleton” of the off-diagonal entries of (D1+L1)(D2+Lj), we
find the numerical rank of the off-diagonals of L3 (defined as the minimal rank of
L3 — D for all possible diagonal matrices D). Once the compressed representations
of the off-diagonals of L3 are available, we find the diagonal matrix D3 by simply
computing the differences between the diagonals of (D; + Li)(D2 + L») and
those from the compressed representations of the off-diagonals of L3. We skip the
algorithmic details and refer interested readers to [5]. Note that the first approach
finds the numerical rank r; of L3, while the second approach studies the rank r; of
the off-diagonals of L3. Clearly, r; > r». For most L3 matrices, we have observed
numerically that r| = r.

We have applied our randomized rank-revealing algorithms to decompose the
matrix exponential ¢’4 (derived using either the LTS decompositions or SDC
accelerated GRK techniques) as the sum of a diagonal matrix D3 and a low-rank
matrix L3. We present some of our theoretical findings. First, when A = Aol + V
where V is rank k, e'4 = A1 + Lz where the rank of L3 is no more than k for any
time 7. Next, when A is symmetric negative definite, as all the eigenvalues X are real
and negative, and e’ — 0 exponentially fast as ¢ — oo, the numerical rank of L3
eventually decays to zero as ¢+ — oo. For finite time 7, we can group the eigenvalues
of A into two groups, those less than a threshold — ¢ and those in the interval
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[—o, 0]. If o is a large positive number and ¢~ is less than the error tolerance, then
all the eigenvalues less than — o can be neglected when computing the numerical
rank of L3. For the other group, as the function ¢* can be approximated by a finite
degree polynomial for x € [—a, 0], the rank of L3 is bounded as there are only
a finite number of (D 4+ L1)(Dy + L) type matrix—matrix multiplications when
computing the matrix exponential ¢'4 using its polynomial approximation. For more
general matrix A, the rank of L3 depends on the eigenvalue distributions of matrix
A, which can be studied numerically in a time marching scheme. We present some
preliminary numerical results in Sect. 5.

We end this section by citing two relevant results along this research direction.
It was found in [8] that the eigenvector trajectory generated by smooth changes
(e.g., in time) of the Hamiltonian matrix can be well approximated by a low-
dimensional manifold; therefore, one can “learn” the eigenvector trajectory using
data where the eigenvectors are computable. In addition, the eigensystems of a
matrix X, after a low-rank perturbation are studied in [3]. It was shown that adding
some randomness to the eigenspaces permits further progress in analysis and a
phase transition phenomenon was discovered after exact answers (interpreted in a
probabilistic sense) are derived.

5 Preliminary Numerical Results

In this section, we present numerical results for selected matrix A examples. The
LTS decompositions and SDC-GRK formulations are applied to the same set of
problems to understand their accuracy and stability properties. As these approaches
are based on different mathematical ideas and a lot of algorithm parameters still
need fine-tuning, we find that a fair comparison is often hard and the method
of choice is highly dependent on the accuracy requirements, problem settings,
algorithm parameter selections, and compressible features of the split matrices and
their exponentials.

In the first example, we consider a simplified two-body interacting quantum

. . . p,25+p%+p?
system in three dimensions modeled by A = T + V where T; ; = —§; ; = —

representing the kinetic energy (or the noninteracting) part of A. It is a diagonal
matrix and its diagonal entries are determined by a vector p with three entries
(px, Py, Pz), each representing momentum in one of three dimensions. V; ; = —g
is the potential energy (or interacting) part of A; thus, V is a constant matrix where
g 1s a constant scalar representing the coupling strength of the two bodies. Such a
contact (zero-range) interaction is often used to describe ultracold atomic gases in
dilute regimes; it is also often used to model dilute neutron matter in the crust of
neutron stars (see, e.g., [22]).

We first demonstrate the “order” behaviors of the LTS decompositions for
Example 1. In Fig.2, we present the local truncation errors from different LTS
decompositions. For an n x n real matrix A and its numerical approximation A, we
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Lie-Suzuki-Trotter: How residue decays for different stepsizes
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Fig. 2 Example 1: Local truncation error analysis for LTS decompositions

measure the error (residue) using the scaled Frobenius norm (also called Euclidean

norm) defined as %\/Z” ((ai,j — @i j)?), where a; j and a; j are the entries in

matrices A and A, respectively. When the decomposition Q3 or Q4 is used, we
only consider the real part of the approximating matrix. Our numerical results show
that the local truncation errors of S1, S2, S3, P2, and Q4 decay to zero with the
expected order when the stepsize converges to zero. As discussed in Sect. 2, our
numerical results also confirmed that the real part of the local truncation error of the
method Q3 has order 5; therefore, its global order becomes the same as those of the
decompositions S3 and Q4.

The order analysis of the SDC-GRK algorithm becomes more complicated. It
depends on the type and number of node points used in the Picard integral equation
formulation and on the number of SDC corrections. In this paper, because of its
optimal numerical properties as shown in Theorem 1, we focus on the Gauss—
Legendre collocation nodes in the GRK formulation. We compare the algorithm
performance for different numbers of nodes and SDC corrections. In Fig. 3, we show
the convergence properties of the SDC accelerated GRK algorithms with p = 4
and p = 10 Gauss nodes for different stepsize choices after two, three, and four
SDC corrections. Instead of the scaled Frobenius norm, we use the element-wise
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o SDC-GRK: How error decays for different stepsizes
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Fig. 3 Example 1: Local truncation error analysis for SDC-GRK formulations

max norm defined as max; ; |a; j — d;, j| to measure the error. We first observe that
when the stepsize is too large (e.g., stepsize > 0.1), the SDC method becomes
divergent and the error increases as the number of corrections increases. The reason
is that the low-order method preconditioned system is not yet close to the Identity
matrix and has “bad” eigenvalues that cause the error in the fixed-point iterations
to grow exponentially as a function of the number of corrections. Second, when the
SDC method is convergent, the order of the method heavily depends on the number
of corrections, e.g., after two corrections, the slope of the algorithm with p = 4
is almost the same as that from p = 10. Similar results can be seen after three
and four corrections. We want to mention that after reaching the intrinsic order
2p of the GRK formulation, further SDC corrections can no longer improve the
order of the algorithm. Finally, when the stepsize is approximately 0.01 (10 Gauss
points are used in the interval [0, 0.01]), the numerical results from the SDC-GRK
method after four corrections provide better accuracy than all of the tested LTS
decompositions with stepsize 0.001.

In order to better compare the performance of the LTS decompositions with that
of the SDC-GRK formulations, we also show the achieved accuracy as a function
of the number of matrix—matrix multiplications (we assume matrix exponential
e’ is required). The results for the LTS decompositions are presented in Fig. 4.
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Fig. 4 Example 1: Achieved accuracy as a function of the number of matrix—matrix multiplica-
tions for LTS decompositions

For the same stepsize, Q4 provides better accuracy than Q3, but it requires more
matrix—matrix multiplications as each Q4 is the product of two Q3s. When the
performance is measured by the number of matrix—matrix multiplications for the
same prescribed accuracy requirement, Q3 becomes a clear winner. In Fig. 5, we
present the performance results for the SDC-GRK methods. The numerical results
show that lower-order SDC-GRK method may perform better for low-accuracy
requirements and higher-order SDC-GRK methods are preferred for high-accuracy
requirements. As the current SDC-GRK implementation uses a first- or second-
order time marching scheme as the preconditioner for the GRK formulation, the
resulting algorithm outperforms the low-order LTS decompositions (e.g., S1, S2,
and P2) for high-accuracy requirements. However, such first- or second-order time
marching scheme-based SDC-GRK algorithm cannot yet compete with Q3 for this
example. We find that using Q3 as the low-order method in Step 1 of the SDC
approach can significantly improve the performance; however, it is still unclear how
to use Q3 or other higher-order methods in the correction step (Step 3) of the SDC-
GRK algorithms. We are continuing our research along this direction and results
will be reported in the future.

In our second numerical example, we consider a 125 x 125 matrix T that
contains two differently scaled block Identity matrices of sizes 63 x 63 and 62 x 62,
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Fig. 5 Example 1: Achieved accuracy as a function of the number of matrix—matrix multiplica-
tions for SDC-GRK formulations

Table 1 Example 2: Four

. . . Case (¢ |2 Omax
different cases with different 1 5 1499 |5
c1, €2, and 0y,4, settings :
2 5 10.005 |0.005
3 5 14999 | 100
4 5 10.005 |5

respectively:

cl 0
-(4)
where ¢ and c¢; are different constant scalars. We choose V' to be a rank-5 negative
semi-definite matrix. The five nonzero singular values of V are randomly sampled
from a uniform distribution in the interval [—oy,4y, 0], and its singular vectors
are randomly generated. The two differently scaled Identity submatrices can be
considered as two different physical systems. For this example, we consider four
cases listed in Table 1, representing different interaction patterns of the two systems
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Fig. 6 Example 2: LTS decompositions for four different cases with ¢; = 5 and different ¢, and
Omax Values

(c1 and ¢) and potential energy roughly controlled by the environment parameter
Omax- In Fig. 6, we show how the accuracy depends on the number of matrix—matrix
multiplications for different LTS decompositions for Cases 1-4. From the numerical
results, we see that (i) a higher-order method is always preferred for high accuracy
requirements. For low-accuracy requirements, sometimes a low-order method may
perform better. (ii) For all four cases, method Q3 is a clear winner when compared
with the other higher-order methods. When the time stepsize is large, there are
convergence issues with the decomposition S3 (e.g., see Case 3). Similar issues
with S3 are also observed in Example 1; see Fig.4. (iii) After achieving the best
possible accuracy, using smaller time stepsizes and marching more steps (more
matrix—matrix multiplications) will increase the error, e.g., see Case 1, when the
number of matrix—matrix multiplications is > 200, the error from Q3 starts to
increase. It is therefore important to choose the optimal algorithm parameters (e.g.,
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Fig. 7 Example 2: SDC-GRK for four different cases with ¢; = 5 and different ¢ and oy,4
values

stepsize) in the LTS decompositions. (iv) The settings c1, ¢2, and 0,4, did change
the performance of the LTS decompositions. When method Q3 is used, it requires
approximately 200 matrix—matrix multiplications to achieve machine precision for
Case 1. The numbers become approximately 300, 700, and > 1000 for Cases 2, 3,
and 4, respectively.

Similar experiments are performed for the SDC-GRK algorithm and results are
presented in Fig.7. For Cases 1 and 2, the SDC-GRK algorithm with p = 10
and two SDC corrections outperforms other SDC-GRK methods. For Case 3,
the SDC-GRK algorithm with p = 4 and two SDC corrections is the winner
for lower-accuracy requirements, and the algorithm with p = 4 and three SDC
corrections becomes the method of choice for higher-accuracy requirements. For
Case 4 and higher accuracy requirements, the SDC-GRK algorithm with p = 10
and four SDC corrections becomes the winner. Finally, we note that unlike the LTS



Matrix Exponentials: Lie—Trotter—Suzuki vs Gauss Runge—Kutta 61

Lie-Trotter-Suzuki: Time Steppingtot =1

102
{
1074

10

108

Residue

107°

10712

1071

10-16 I L !
10° 10" 102 103 10*
Number of Matrix-Matrix Multiplications

Fig. 8 Example 3: LTS decompositions, residue versus number of matrix—matrix multiplications

decompositions, the errors from the SDC-GRK algorithms for this example remain
at approximately machine precision and don’t seem to increase as significantly when
using smaller time stepsizes (more matrix—matrix multiplications).

We have considered several additional examples including adding perturbations
to the Identity matrix and increasing the rank k£ of the low-rank V matrix. We
show the performance of different algorithms for a more general but representative
setting where T is a general diagonal matrix with diagonal entries randomly sampled
from the uniform probability density distribution U[—1,0] and V isarank k = 5
negative semi-definite matrix constructed using V = Qpxk Zkxk Q,{XH where Q
is derived from the singular value decomposition of a random matrix and the k
nonzero diagonals of X are randomly sampled from U[—06,,4, 0]. In Fig. 8, we set
omax = 1 and plot the achieved accuracy for different numbers of matrix—matrix
multiplications for different LTS decompositions. In Fig.9, we plot the achieved
accuracy as a function of the number of matrix—matrix multiplications for the SDC-
GRK methods. For this example, as the collocation formulation with 10 points
in the interval [0, 1] approximately resolves the solution to machine precision,
and the SDC iterations approximately converge to the collocation formulation in
four iterations, the SDC method with ten Gauss nodes and four iterations (high-
order) clearly outperforms the other SDC-GRK methods. We provide guidelines
for selecting an appropriate algorithm and parameters for a given problem. For
low-accuracy requirements, we find that the LTS-based Q3 outperforms most
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Fig. 9 Example 3: SDC-GRK methods, error vs number of matrix—matrix multiplications

of the other methods we have studied. In this regime, most current SDC-GRK
implementations outperform the low-order LTS decompositions S1, S2, and P2.
However, as introducing higher-order methods in the Correction Step (Step 3) of the
current SDC-GRK implementations remains a challenging research topic, existing
second-order preconditioner-based SDC-GRK schemes are not yet as competitive
as Q3 and Q4. For high-accuracy requirements, as the SDC-GRK technique
allows for much larger time stepsizes, it becomes the method of choice when
proper preconditioners and acceleration techniques are introduced. The “optimal”
implementations of the SDC-GRK and KDC-GRK are still actively being studied
by our research community.

This paper is motivated by the research efforts to understand how the com-
pressible features in matrix A interact with each other as ¢ evolves in the matrix
exponential ¢/4. We present some preliminary numerical results to demonstrate
how the low-rank and diagonal structures in A may impact the properties of the
matrix exponentials, e.g., the numerical rank of the off-diagonals of e¢’4 defined
as the minimal rank of ¢4 — D for all possible diagonal matrices D. The
existence and identification of the compressible features in the matrix exponentials
are important for understanding the physical systems and for accelerating the
numerical simulations for large-scale problems. We consider the settings in our
second example where 7 is given by Eq. (26). Note that when ¢ is small and
O(t?) along with higher-order terms can be neglected in Eq. (1), the numerical
rank of the off-diagonals of ¢4 is therefore determined by the numerical rank of
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Fig. 10 Numerical rank of off-diagonals of ¢'4, where A = T + V and T is given by Eq. (26)

the off-diagonals of matrix tA, which is approximately 5. This rank changes as
t increases. In the left of Fig. 10, we show how the numerical rank increases when
t € [0, 3e—35]. In the right of Fig. 10, we show that the solution (and rank) eventually
decreases to zero when ¢ approximately equals to 45. Therefore, the numerical rank
of the off-diagonals is bounded by a constant (approximately 10) for all # > 0. See
Sect. 4 for discussions of the off-diagonals’ low-rank feature extraction algorithm
and theoretical explanations of the changes in the low-rank properties in time.
Finally, to show the complexity of the relations between the compressible
features in the matrix exponential e’ A and those in the matrix A, we consider a
discretized convolution matrix where A; ; = m_]—le, i # j,and x;’s are ordered
and evenly spaced in the interval [0, 1]. To make the matrix negative definite, each
diagonal A;; is chosen to be the negative sum of the other matrix entries in the
same row (or column). Note that such a matrix is no longer the summation of
a diagonal matrix and a low-rank matrix. In many physical models, the spatially
“well-separated” interactions are often low-rank. When matrix A describes the
interactions of three physical systems, the first system is located in [0, %], the second
system is in (%, %], and the last system is in (%, 1]. Systems 1 and 3 are thus
spatially “well-separated” as they are at least “one box size” apart. The interactions
of systems 1 and 3 form an off-diagonal matrix block in both A and e’4. The
rank of the corresponding well-separated matrix block in A is always bounded by
approximately 10 using the SVD analysis, independent of the dimension of the
submatrix block and locations of x;. Our numerical results reveal that for fixed
matrix size, the rank of the well-separated submatrix block will be bounded as ¢
increases. However, when the dimension of the matrix increases, the maximum
rank (defined as the maximum rank for all ¢ values) of the corresponding well-
separated submatrix block of ¢/4 increases approximately linearly as a function of
the dimension of the well-separated submatrix block. This is clearly a challenge
for large-scale simulations. In Fig. 11, we show how the maximum ranks (in ?)
of well-separated submatrices increase when the number of evenly spaced points
increases. We assume the submatrix has dimension n x n. We are studying this “loss
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Fig. 11 Linear growth of the maximum numerical rank of well-separated submatrices of e’ as a
function of submatrix dimension n x n

of compressible features” phenomenon from both the modeling and linear algebra
perspectives, and results will be reported in the future.

6 Summary and Future Work

The efficient computation of matrix exponentials is a fundamental building block
in the numerical simulation of time-dependent science and engineering problems.
In this paper, assuming the matrix can be split into the sum of simple structured
matrices, including diagonal and low-rank matrices, we present two approaches
to accelerate the computation of matrix exponentials and related matrix—matrix
and matrix—vector multiplications. The first approach is based on the Lie—Trotter—
Suzuki decompositions where the matrix exponential is approximated by the
product of the exponentials of simple structured matrices. In the second approach,
a polynomial matrix is computed to approximate the solution of the differential
equation for the matrix exponentials. Compared with existing general-purpose
solvers, preliminary numerical experiments show that both methods can improve
simulation efficiency and provide satisfactory results in accuracy and stability.
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In order to further improve the efficiency of the presented algorithms, it is impor-
tant to understand and extract the compressible features in the matrix exponentials.
A particularly interesting question is how the eigenvalues, eigenvectors, and rank of
the off-diagonals and submatrix blocks change when the physical system evolves
in time. We have implemented randomized rank-revealing algorithms to extract
the low-rank structures and create compressed representations for the low-rank
structures. The algorithms have been applied to several systems to better understand
the complicated interactions of different compressible features. We are currently
working on the rigorous analysis of the preliminary numerical experiments and
results will be presented in the future.
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An Exploration of Graph Distances, ®)
Graph Curvature, and Applications to ST
Network Analysis

Kasia Jankiewicz, Manasa Kesapragada, Anna Konstorum,
Kathryn Leonard, Nazia Riasat, and Michelle Snider

1 Introduction

Various notions of curvature in geometry measure how much, and possibly in which
directions, the space differs from a flat Euclidean space, e.g., how much a curve
differs from a straight line and how much a surface differs from a flat plane. In
Riemannian geometry, the concepts of scalar curvature, which is an assignment of
a number to each point in a manifold, or Riemann or Ricci curvature tensors, which
assign a tensor to each point in a manifold, are considered as an intrinsic property
of a geometric object, i.e., they are independent to the embedding of the object in
an ambient space [17].

The classic examples of constant curvature are the surface of a sphere, which
has constant positive curvature; the Euclidean plane, whose curvature is zero
everywhere; and the hyperbolic plane, which has constant negative curvature. More
generally, the curvature at a given point is defined for more general Riemannian
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manifolds, and it may vary as the point varies, so there might be points of positive
curvature where the manifold locally resembles a sphere; points with zero curvature,
where the manifold locally looks flat; and points of negative curvature. There also
exist notions of curvature of higher-dimensional manifolds. The curvature captures
various geometric properties, e.g., the area of the disk of a fixed radius, or the
isoperimetry, i.e., the relation between the circumference of a closed curve and the
area enclosed by it.

There is a natural interest in defining a concept of curvature that captures some of
those aspects in discrete spaces, such as graphs, to help understand the connections
and structure therein. In this paper, we focus on the notions of curvature that
are defined for graphs, as opposed to continuous spaces classically considered in
differential geometry. We are also interested in intrinsic definitions of curvature.
Among the first studied graph curvature notions were the Ollivier-Ricci curvature
[23], defined in terms of optimal transport, and the Forman-Ricci curvature [10],
in terms of the discrete Laplacian. More recently, the concept of graph curvature,
defined in terms of shortest-path and resistance distance, has been proposed and
studied by Devriendt-Lambiotte [7] Steinerberger [24], and Devriendt-Ottolini-
Steinerberger [8].

Classically, nodes in graphs have often been analyzed in terms of their centrality,
according to various types of centrality measures, and how that is related to the
connections and structure of the graph. These measures can be thought of as how
“important” a node is to some defined information flow across a network [5]. Thus,
when considering the curvature of a graph, it is natural to ask how the curvature at
each node is related to the centrality or if they give us different or complementary
information.

In this work, we focus on studying associated properties of centrality and
curvature at the node level of a graph. Definitions for different kinds of curvature
and centrality depend heavily on the choice of distance metric on the graph. As
such, we consider curvatures and centralities using two different distances on
graphs: shortest-path distance and resistance distance. Unlike the standard shortest-
path distance, the resistance distance takes into account not only the shortest path
between two vertices but the lengths of all paths. As such, it provides much more
information about how information can flow across a graph.

A connection between the centrality measures and other notions of discrete
curvature has been recently investigated by other authors. In [19], variants of
Ricci curvature (Baker-Emery, Forman, and Ollivier) on graphs and their relations
to centrality measures are explored. In [18], a bound on the average shortest-
path distance in terms of the average vertex degree and the average Ollivier-Ricci
curvature “weighted” by the betweenness centrality is established.

In this paper, in Sect. 2, we cover the necessary definitions for the Laplacian, two
graph distances, centrality measures, and graph curvature. In Sect. 3, we discuss
mathematical interpretations of graph distance and curvature. We then investigate
the relationships between these metrics and the intuition behind them, in particular
between node-level curvature and node-centrality measures on a set of synthetic and
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real-world graphs. The studied graphs are described in Sect. 4, and our computations
are presented in Sect. 5. Further discussion is included in Sect. 6.

2 Background

Let G = (V, E, w) be an undirected, weighted graph with vertices v € V = [1, n],
edgese; j € E, fori, j € [1,n] between vertices i and j with edge weights in R>
given as a;; > 0. Define the adjacency matrix A = (g;;) and the diagonal degree
matrix D = ) ; Aij, where the i'" diagonal entry is the generalized degree of vertex
i.Letl=(1,...,1),the vector of all ones, with the length determined by context.

2.1 The Laplacian

Definition 1 For a graph G, we define the Laplacian matrix as
L:=D - A.

This matrix is symmetric positive semi-definite; therefore, all eigenvalues are
nonnegative. By definition, L1 = 0, so 0 is an eigenvalue with normalized
eigenvector 1/4/nl. Let us assume that G is a connected graph, in which case all
other eigenvalues will be positive. That is, 0 < A < Az ... < X, with eigenvectors

[\/Lzl, v2, ..., vy] . The singular value decomposition of L can then be written as
0
L= [TEI v Un] kz. [Tﬁl V2 Un]T
An
0
—v| * vT.
An

The Laplacian matrix is not invertible, but we describe two pseudo-inverses. The
Moore-Penrose, or generalized, inverse of the Laplacian is defined as

0

/22

LI =v vT. (1)

1/n
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This matrix is also symmetric, positive definite, and has zero row and column sums.
In fact,

L'L=LL" =1,

where I, = I — %IIT is the projector onto the subspace orthogonal to the kernel
of L, the space spanned by 1. From this, we can verify that

1 1
L'=w+-1H"'1--1u’
n n

as in Ghosh et al. [12]. That is, we add a perturbation to the Laplacian matrix to
make it invertible and then subtract the perturbation off after we have inverted it.
Second, we define the regularized Laplacian I' as

=L+ Byt
n
for some choice of 8 > 0. This matrix has the same eigenvectors as L, but the 0

eigenvalue is shifted so that I" is non-singular and as such we can find

=@+ é11T)—‘
n
1/p
—v| R v @
/1y
That is, for 8 = 1, we get the following relationship between the two pseudo-

inverses:
—1 T 1 7
rr'=L"+-11
n

A note on overloaded notation: we use D with no subscripts to indicate the degree
matrix and D, with subscripts to represent the two types of distance matrices we use
to compute other metrics.

2.2 Graph Distances

We define a path p; ; = {v;, vi+1, .., v;} as a sequence of vertices on G such that
for each vy € p; ;, 3 e; € E that connects {vg, vgr1}and k # 1V v, v € p; ;. We
consider two distance metrics: the shortest-path distance is the length of the shortest
path between two points, while the resistance distance depends on all parallel paths
between them, as detailed below.
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Definition 2 The shortest-path distance between nodes v;, v; € V is taken to be

j—1

Dg ;; = min Zw(ek) ,
P\ =

where {e;, e;41, ..., ¢j_1} correspond to edges of a path p; ; = {v;, vi41, ..., v}

The resistance distance on graphs, also known as the effective resistance, was
introduced by Klein and Randic [15] and inspired by electrical network theory.
Informally, all edges e¢; ; € E for a graph G = (V, E, w) are conceptualized as
resistors with the weight of the edge proportional to the conductance, and for nodes
v;,v; € E, the resistance distance is calculated by considering a unit of current
entering the network at v; and leaving at v, and calculating the potential difference
Dg ;; between the two using Kirchhoff’s circuit laws:

1. The sum of all currents at a node is O.
2. The sum of all voltages around a closed loop is 0.

Definition 3 The resistance distance D, ;; between nodes v;, v; € V is taken to be
Drij= T H;+ @Y —207hy, 3

where the inverse of the regularized Laplacian is as in Eq. 2, as defined in [6, 9].

Note that we could have equivalently defined this as

Dgij =L+ L}, —2L], 4)
by Definition 2, where LT is the Moore-Penrose pseudo-inverse of the Laplacian as
defined in Eq. 1. We note this since some authors [24] use Eq. 4, while others [8]
use Eq. 3.

The resistance distance is a useful metric for assessing the “connectedness” of
two nodes in a graph, in that it incorporates not just the single shortest path but
also the lengths of all the paths connecting those two nodes. As a simple example,
consider a graph G with just two nodes and a single edge of weight 1, versus a
graph G’ with two nodes but two edges of weight 1 each. The shortest-path distance
between the two nodes is 1 in both graphs, but the resistance distance in G is 1,
while in G/, it is % accounting for the two possible paths. This can be useful in
graphs that represent information flow, as it captures in some sense how easy it is
for information to get from one node to another.

Bozzo et al. [6] highlight that in an acyclic graph, the shortest-path and resistance
distances are equivalent, as there is only one path for current to flow from any
starting point to any ending point. As graphs become denser, there are more paths
between nodes, creating more paths for the current to split its flow, and, thus, the
resistance distance becomes smaller than the shortest-path distance.
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2.3 Centrality Measures

Network centrality refers to node properties capturing their “importance,” or
centrality to a network. The most basic measure is degree centrality, which is simply
the degree of a node scaled by the number of nodes in the graph, |V|.

Definition 4 Degree centrality Degcen;,; of a node i is the degree of the node
divided by (|V| — 1).

Several other centrality measures are parameterized by the distance on the nodes.
We look at two such measures, the closeness centrality and betweenness centrality,
which were first defined in [4] and [11], respectively, and can be considered with
respect to any distance on a graph. We provide details of their formulation using
both the shortest-path distance Dg (Definition 2) and resistance distance Dg (Eq. 4).

Closeness centrality of a node is defined as the mean distance between that node
and all other nodes in a network for a particular distance metric. The closeness
centrality represents a relative measure of how long it will take for information to
spread to and from each node. Betweenness centrality measures the proportion of
paths that a node lies in between all pairs of nodes and, as such, captures how often
random walks in the graph pass through a particular node. This can be thought of as
how important a node is for information flow across a network. The mathematical
definitions for these centrality metrics parametrized by the two different distances
are provided below.

Definition 5 Shortest-path closeness centrality, Cs ; of a node i is taken to be the
average of the shortest-path distance from that node to all the others:

n

CS,i = n—l)“’
2 =1 Ds.ij

where n = |V|.

We will refer to Cs ; as defined above to be the closeness centrality parameterized
by the shortest distance metric. Alternately, we will consider the closeness centrality
parameterized by the resistance distance as in [6], sometimes also called the current-
flow closeness centrality due to its interpretation of how current flows between
nodes.

Definition 6 Resistance closeness centrality Cg ; of anode i is defined as

n

CRi = = -
) n )
Zj:l,j;éi DR.ij

where the distance metric used is the resistance distance as in Eq. 3.

Definition 7 Shortest-path betweenness centrality, Bs ;, for a node i is the propor-
tion of shortest paths that node i lies in between all nodes:
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n(a,i,b)
Bsi =2 Sy
a#b na.

where n(a, i, b) is the number of shortest paths connecting vertices a and b that pass
through node i and n(a, b) is the total number of shortest paths between a and b.

Definition 8 Resistance betweenness centrality (or current-flow betweenness cen-
trality), Bp i, is calculated as the average of current flow through a node i when
a unit of current is injected in a source and removed from a target node across all
source-target pairs. It can be shown [6] that Bg ; can be calculated as the following
sum over source a and target b pairs:

1

(@,b)
Bpi=— Fb
RE=02nm —1) 2. F

(a,b),a<b

where n = |V| and F l.(”’b) is the current flow through node i from source a to target
b, defined as

b 1
Fi(a ) = 1 ZAijIDR,m — DR, ja + DR, jb — DRibl,
J

where A is the weighted adjacency matrix of G and Dpg » is the resistance distance
as calculated in Eq. 4.

Note that the ordering within the pair of source a and target b is irrelevant, as
Fi(”’b) = Fi(b’a). If we think of the graph as a network over which information
flows, betweenness centrality at a node gives us information about how much each
node has control over information flowing through it.

2.4 Graph Curvature

While the reader may have some intuition about the curvature of surfaces, this does
not directly translate to a notion of curvature on a graph. One can think of curvature
as a limiting factor on the size of a graph—just as a highly positively curved surface
is limited in size, so is a highly positively curved graph [8]. Another interpretation
of graph curvature is a measure of the average distance between two random walks
that start at a particular vertex and take independent random paths [7].

Definition 9 The curvature k; € R in the vertex v; € V is defined such that the
vector k = (k1, ..., k) € R” solves the linear system of equations:

Dik=n-1=(n,...,n)
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Fig. 1 (Left) The dodecahedron has constant positive resistance curvature (kg = 1.0949), just as
the sphere has positive curvature. (Right) A balanced tree with five branches per node and a depth
of 3 is an example of the following: every finite tree has positive resistance curvature at all leaf
nodes and negative resistance curvature at interior nodes
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as in [24], where it is noted that it is “exceedingly rare” that this system does not
have a solution. We denote curvature calculated with the shortest-path distance as
ks,; and curvature calculated with the resistance distance as kg ;.

To provide some intuition, in Fig. 1, we show examples of positive and negative
resistance curvature kg.

We note that the literature includes several slightly different definitions of graph
curvature. First, in their 2022 work, Devriendt and Lambiotte [7] define it as the
solution to

D71 )
K= —"-.
(1, Dy '1)

The denominator normalization factor has the effect that every graph with constant
curvature has curvature x; = 1/n.

Second, in their 2024 paper, Devriendt et al. [8] make a slight change to [24] and
define it as the solution to

Dik=1=(1,...,1). (©6)

The authors note that this change allows for the computation of useful bounds
relating to hitting and commute times [8].
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3 Mathematical Interpretations

To help motivate the intuition behind graph distances for newcomers to the field,
we provide mathematical interpretation in the language of linear algebra. One
interpretation of graph distances comes from matrix theory and the link between
symmetric positive definite matrices and Euclidean distance matrices, as in [14]
whose framing we now summarize. Let €2,, be the cone of symmetric positive semi-
definite matrices of order n, contained in S,, the subspace of symmetric matrices
of order n. Let A, be the cone of Euclidean distance matrices of order n. For o
representing the Hadamard product, and 1 representing the n-vector of ones, we
may define a mapping from Q,, — A,:

KA =AoDMT +117 (A0l)—24
= diag(A)17 + 1diag(A)T —2A.

We note that K(A);; = a;; + ajj — 2a;;. Since K is linear, a quick count of
dimensions shows that dim(ker(K)) = n. If we assume that Ax = 0 for some
x € R” satisfying x1 = 1, we can uniquely determine an A mapping to any
particular distance matrix for our choice of x. Given a graph distance matrix, we
may then search for A € 2, for our choice of x. Similarly, we may generate new
distance matrices by applying K to matrices A € 2.

In the specific case of the resistance distance, we have a matrix ' = D — A+ %1,
which is an element of €2, together with its inverse I'"!. The term %1 reflects the
choice of x determining ker(A). Applying the mapping K, we obtain a matrix R =
K (') with ijth element R;; = (I'"1);; + ('), — 2(T'"!);;. In other words,
the resistance distance matrix is the image of the inverse of the regularized graph
Laplacian matrix (with a particular choice of kernel) under the mapping K. This
provides a mathematical context for interpreting resistance distance in particular
graphs, as we do in some of the experiments that follow.

4 Methods

In this work, we are interested in the relationships between notions of centrality
(closeness, betweenness, and degree) and curvature. We will consider each measure
computed with both the standard shortest-path distance measure and the resistance
distance. We compare these measures on the vertices of a set of graphs, some
synthetic and some based on real-world data. For completeness, we list the seven
measures on a vertex v; here:

* Deg..ni;: degree centrality (Definition 4)
* Cgs,;: shortest-path closeness centrality (Definition 5)
» Cp,: resistance closeness centrality (Definition 6)
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* Bg ;: shortest-path betweenness centrality (Definition 7)
* Bp,: resistance betweenness centrality (Definition 8)

* ks,;: shortest-path curvature (Definition 9)

* kg, resistance curvature (Definition 9)

4.1 Graphs Tested

The graphs considered include a mixture of synthetic and real-world graphs, chosen
to investigate the relationships between the measures listed above.

4.1.1 Synthetic Graphs Under Perturbations

To develop our intuition about how these measurements interrelate, we begin with
experiments on small graphs. Looking at graphs with the same number of nodes
but different graph structures helps us to understand how graph distances change as
graph connectivity changes. The graphs we consider, each with eight nodes, are the
binomial tree, the Sedgewick maze graph, the lollipop graph, the ladder graph, and
the star graph (Fig. 7).

Another dimension of intuition comes from seeing how values of graph curvature
and centrality change for a fixed graph structure as distances grow. Given a distance
matrix D,, we may apply the techniques in Sect. 3 to increase the size of the
dominant eigenvalue of D. More precisely, given a distance matrix D, we compute
the corresponding A = K -1(D,), which is a real, symmetric matrix. We then
multiply the dominant eigenvalue of A by either 10 or 1000 to obtain a perturbed
A, for p = 10,1000 and then recover a perturbed D, = K(Ap). A short
calculation shows that the nondominant eigenvalues of D, are largely stable under
this perturbation. We then compute graph measures for D, D 10, and D, 1900 and
see how those graph measures vary.

4.1.2 Synthetic Graphs for Measure Comparison

For the centrality and curvature correlation experiments, we consider one con-
structed graph and two generated graphs: the Krackhardt kite graph, a lobster graph,
and a Barabdsi-Albert graph (Fig. 2). These graphs have been chosen because their
structures highlight differences in the metrics under consideration.

The Krackhardt kite graph [16] is a simple graph with ten nodes, designed
to distinguish different concepts of centrality computed with the shortest-path
distance: the vertex with maximum degree Deg ., ;, the vertex with maximum
betweenness centrality Bg ;, and the two vertices with maximum closeness cen-
trality Cs ; are all different.
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Fig. 2 Synthetic graphs and their properties: (Left column) Spring layout of the synthetic graph;
(middle column) Pearson correlations between centrality measures and curvatures of the tested
graphs. Axes from top-to-bottom and left-to-right are C, Bs, ks, Cr, Br, kg, and Deg .p; (right
columns) distribution of centrality metrics

The lobster graph is randomly generated, parameterized by the number of nodes
in the backbone n, the probability of adding an edge to the backbone pp, and the
probability of adding an edge one level beyond the backbone p;. In our example,
we used n = 8, p;1 = 0.8, p» = 0.7. This parameter selection creates a balance
between high-curvature leaf nodes and low-curvature backbone nodes.

The Barabasi-Albert graph was generated using the Barabési-Albert network
growth model [3]. It generates networks with scale-free properties and a power-law
distribution of node degrees. In this model, nodes are incrementally added one at
a time, and each newly added node forms connections with existing nodes chosen
based on their degrees. The Barabasi-Albert model in this study was configured with
100 nodes (n = 100), where each newly introduced node forms a single connection
(m = 1) with an existing node in the network. This parameter selection highlights
the basic preferential attachment mechanism, illustrating how hubs form as the
network grows, which is considered an essential feature of real-world networks [3].

4.1.3 Real-World Graphs for Measure Comparison
For more realistic centrality and curvature correlation experiments, we consider the

following three graphs based on real data: the Zachary karate club graph, the Davis
Southern women graph, and the co-authorship network (Fig. 3).
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Zachary’s karate club graph is a social network graph based on 34 members
of a karate club that split in two after a conflict [26]. The structure of the graph can
be used to predict which members (nodes) joined each of the two resulting groups.

The Davis Southern Women graph (DSW) is a bipartite graph generated from
data collected by Davis et al. in the 1930s representing observed attendance at 14
social events by 18 Southern women [1].

The co-authorship network is based on publication co-authorship among a
group of 1589 scientists working on the topic of networks in the early 2000s [20].
For this work, we only consider the largest connected component of this graph.

4.14 Metric Behavior on Sample Graph

In order to provide some intuition on the various metrics we consider in this paper,
we describe those metrics in a constructed example. The kite graph (Fig. 4) was
constructed such that the following vertices are all different under the shortest-
path distance: the vertex with maximum degree Deg,.,; (vertex 3), the vertex with
maximum Bg; (vertex 7), the two vertices with maximum Cg; (vertices 5 and
6), and the vertex with maximum kg (vertex 9). When we consider the resistance
distance, the vertices with the maximum Bg ;, Cr.;, and kg all match their shortest
distance counterparts. If we consider the vertices with the lowest values of each
metric, the closeness centrality is the lowest under both metrics in vertex 9. While
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Min: Kg;

Max: Degen; ’
Min: Kg; /(—)

Max: Bg, Bg;

Min: Degcent» Bs,» Brj» Cs,» Cri
Max: Kg, Kg

Fig. 4 Krackhardt kite graph with labeled vertices, highlighting the negative correlation between
degree and curvatures. Note that vertices 2, 4, and 9 are tied for the minimum Bg ;

the betweenness centralities Bs; and Bg ; are minimized at vertex 9 under both
metrics, vertices 2 and 4 also tie for the minimum under only the shortest-path
betweenness. For curvature, the minimum «g occurs at vertex 7, but the minimum
kg is at vertex 3 (where the degree centrality is highest).

5 Results

As expected, we note a positive correlation between all centrality metrics, irre-
spective of the graphs tested (Figs. 2 and 3). We also observe a strong negative
correlation between kg, and to a lesser extent kg, and all centrality measures across
all graphs.

5.1 Distribution of Metrics as a Function of Graph Structure

We observe that a portion of the graphs are heavy-tailed in their degree distribution:
the lobster and Barabdsi-Albert graphs from the synthetic graphs and the co-
authorship and, to a lesser degree, the karate club graph from the real-world
graphs. A heavy-tailed degree distribution indicates that the graphs have a “hub-
like” structure, with a few nodes that are highly connected relative to the others
[13]. Although similar with respect to their degree distribution, the two synthetic
graphs have a tree configuration, whereas the two real-world graphs have cycles. We
will show that these different structural properties give rise to different relationships
between the graphs’ respective node metrics.
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We start with a discussion of the behavior of the two different distance metrics
on tree structures. Recall that the resistance distance between two nodes depends
on all the possible paths between them. First, consider a pair of nodes connected
by a single edge: the shortest-path distance and resistance distance between them
are equal. This will extend to a pair of nodes that only allow a single path between
them, which is the case for two nodes on a single tree branch. For a tree graph with
no cycles, most of the nodes will have a low degree, as we observe in the degree
centrality distribution for the lobster and Barabdsi-Albert graphs (Fig. 2). All pairs
of nodes will have only one path between them, as noted earlier and in [6], meaning
that the resistance distance will be equal to the shortest-path distance for all node
pairs. We can observe this relationship in the metrics, which we compute using the
distance measures: in the lobster and Barabdsi-Albert graphs, Cs and Cg, Bg and
Bpg, and kg and kg, are all perfectly correlated, whereas in the real-world graphs,
which display cycles, there are less consistently high correlations across these pairs
of metrics.

When parameterizing both centralities and curvature with the resistance distance
(CRr, Bpr, and kg, respectively), we can refer back to Fig. 1 to gain additional
intuition on the behavior of both metrics vis-a-vis the graph structure. In a tree
graph, local resistance distances will be large, as current trying to flow through will
have limited paths. Thus, the resistance distance centrality measure will be high,
and we observe negative curvature at all nodes that aren’t leaves, and for the same
reason, a high Cg and Bg. Conversely, in a more dense graph that is not acyclic, a
node that has a neighborhood that has many cycles connected to it will have lower
local resistance distances, as the current flowing through will be able to split across
multiple paths. This means the Cr and Bg will be lower, and a lower kg will be
observed.

These relationships are well illustrated in the random lobster graph (Fig. 5,
top row). The inverse correlation of resistance betweenness (Bgr) and resistance
curvature (kg) is highlighted both in the leaf nodes (where both are close to 0) and
backbone nodes (where By is positive, and kg is negative). We see a very similar
structure for the Barabdsi-Albert graph (Fig. 2).

We now consider the degree distribution of the different graphs in Figs. 2 and 3.
We note that the degree distribution tends to be more heavy-tailed in the lobster and
Barabasi-Albert graphs (which are trees) and the karate and co-authorship graphs
(which have cycles). For intuition, note that the two nodes with the highest Degcen:
in the karate club graph correspond to the leaders of the two factions after the
original karate club split (Figs. 3 and 5). As discussed above, in the trees, the
shortest-path and resistance distance matrices will be identical; therefore, kg and
kg will be perfectly correlated and highly correlated with the degree centrality,
mirroring the observed heavy-tailed distribution (Fig. 2). Conversely, in the karate
club and co-authorship networks, the correlation between kg and kg is relatively
lower due to the differences in the shortest-path and resistance distances of the
nodes. Notably, kg maintains its high correlation to Deg..,;, Whereas s does not.
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Fig. 5 Comparing centrality and curvature in (top row) the random lobster graph and (bottom row)
the karate club graph. The graphs are colored by resistance betweenness (Bp) in the first column
and resistance curvature (kg ), negated and shifted, in the second column. For the lobster graph, the
red arrows point to a node that has differing relative Bg and «,

This is due to the fact that the resistance distance captures information related to all
paths between two nodes, which will be more closely correlated to the node degree
than the shortest-path distance. Therefore, the hub-like nature, which is evidenced
by the heavy-tailed degree distribution, is also reflected by kg, but not xs. Of note,
kg and Degc.,; are also more highly correlated in the DSW graph, which does
not have a heavy-tailed degree distribution but has cycles, indicating that the strong
correlation observed between kg and Deg.,; does not depend on the distribution
of Degcens-

5.2 Discrepancies Between Centrality, Curvature, and Degree

Since the resistance distance has been argued as a “natural” distance to parameterize
graph curvature [24], we focus on understanding potential similarities/differences
between the betweenness centrality as parameterized by the resistance distance (Bg)
and graph curvature as parameterized by the resistance distance (k). We visualize
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Br Degeont e

Fig. 6 The co-authorship network, with nodes colored by (left) resistance betweenness (Bg),
(middle) degree centrality (Deg..,:). and (left) resistance curvature (kg), negated and shifted. In
these plots, the node size is also proportional to each measure. The node labels N, B, H correspond
to authors M. Newman, A. Barabdsi, and P. Holme, respectively

the co-authorship network since it has the lowest correlation between B and «g
(Fig. 3). Plotting Bgr, Degc.n:, and (the negative of) kg, respectively, for the co-
authorship network shows that the highest-scoring nodes are not identical (Fig. 6).
Indeed, we observe some very interesting patterns emerge: author M. Newman has
the highest Bg and -k values, whereas author A. Barabdsi has the highest Deg ens
and second highest -kg. Author P. Holme has the second highest Br and does not
make the top five highest scores for either Deggen; Or -kg. We observe then that
A. Barabisi has the highest degree but relatively lower Bg, showing that he is not
positioned in a part of the network with high information flow. Nevertheless, he
still achieves the second highest -« g, indicating that the resistance curvature is able
to identify nodes with both high degree and information flow, which neither Bg
nor Degcen: can pick up individually. We observe a similar phenomenon in the
random lobster graph (Fig. 5), where the node indicated by the red arrow has a
relatively higher By than «}. In this case, we observe that nodes connecting two
highly connected regions of a graph, which themselves are not highly connected,
are more effectively resolved using the Bg metric.

We can see this phenomenon dynamically in the small graphs described in
Sect. 4.1.1 under perturbations of the dominant eigenvalue of the distance matrix
(Fig. 7), as discussed in Sect. 3. We recall the interpretation of resistance between-
ness as a measure of how many paths through the graph a particular node is on and
resistance curvature as a measure of how locally distant a particular node is (how
“flattenable” it is). We can see in Fig. 7 that, as distances from a node increase with
the increase of the dominant eigenvalue of the distance matrix, the nodes that have
low resistance curvature and high resistance betweenness are those nodes that are
distant from neighbors but are a bottleneck for paths through the graph. The ladder
graph relationships do not change since no node is a bottleneck. In the lollipop
graph, on the other hand, the nodes with growing distance lose their betweenness
while maintaining low curvature since paths can move through the other side of the
graph, where the nodes are increasing in-betweenness.
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6 Discussion

The relationship between a newly defined form of discrete curvature on graphs
parameterized by shortest-path or resistance distance (ks and kg, respectively)
offers a new approach to graph and network analysis. In this paper, we have explored
the relationship between graph curvature and established node-centrality metrics
such as closeness and betweenness parameterized by two distances and degree
centrality. We have observed a strong dependence of the metric relationships on
graph structure: graphs that are more tree-like will have a strong correlation between
kg and kg due to the similarity of the respective distance metrics and, conversely, a
lower correlation of kg and kg in a graph with larger interconnectedness. A strong
negative correlation exists between curvature and the centrality metrics across both
distance metrics for all graphs studied, but more strongly for resistance distance. In
general, local tree-like structures have higher centrality and low curvature, whereas
local areas with many cycles have lower centrality but high curvature, giving rise to
high correlations irrespective of structure.

Yet, we observed that this correlation is not 100%. In the co-authorship network,
we observed that kg can provide a balance between emphasizing a high-degree
node and a node with high information flow. Conversely, k is less capable than
Bpr to capture nodes that connect two highly connected regions of the graph.
Understanding what structural features xr is more and less likely to capture can
help researchers determine whether this metric is appropriate for their respective
applications. Another structural feature of networks where kg may find application
is in graph community detection and analysis. Indeed, Ni et al. used a discrete
version of the Ricci flow, which is an evolutionary metric that is curvature-
dependent, for network community detection [7, 22]. In more recent work, Tian
et al. considered several notions of graph curvature to implement the Ricci flow
for community detection [25]. In addition to flow-based community detection, we
could also consider using the resistance curvature to evaluate highly important nodes
within communities: while we would expect generally higher curvature for nodes
in communities due to their high interconnectivity, influential nodes (those with
especially high degree and information flow) would have relatively lower curvature
within communities and could thus be detected via the k.

Both the resistance betweenness centrality and resistance curvature can also
be interpreted in terms of random walks on the graphs. As shown in [21], the
betweenness centrality with resistance distance (Bg) at vertex v; is equivalent to
a measure of how often a random walk between source node a and target node
b passes through node v;, averaged across all source-target pairs. Devriendt et
al. show that the resistance curvature, based on their definition in Eq. 5, at a
vertex v; is related to the average distance between nodes in its neighborhood, or
equivalently to the average distance between two walkers who start at vertex v; and
take independent random paths, as defined by the diffusion equation (Appendix B.5.
in [7]). With this interpretation, we can see that nodes along this bridge structure
have relatively higher resistance betweenness since they are on a high probability
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path to get between the two clusters, given that there are very few other ways to get
between the clusters. However, they also have relatively high resistance curvature
values despite not being in clusters themselves, as two random walkers who start on
one of the bridge nodes can easily make it to one of the end clusters, at which point
their paths will quickly diverge. This phenomenon is observed in our experiments
in the lobster graph, as previously described.

It may also be possible to mathematically explain the relationship between
resistance betweenness and resistance curvature more closely. For inverting the
resistance distance matrix Dg, work has been done by [2]. For a vertex v; € V,
let adj (v;) denote the set of vertices adjacent to v;. Then, fori =1, ...,n, let T be
the column vector with components given by

a
jeadjw) Y

Then, one can derive an equation for the inverse of the resistance matrix (D ) Las

1 1
(Dp) '=——L4+ —17l. (7
2 tTDpt

Further work could analyze the formulas for Br (Definition 8) and «g (Definition 9
with Eq. 7) for insights.

In conclusion, we have performed an exploration of the relationship between a
new notion of graph curvature and established centrality metrics and found several
promising avenues for both application and future research on the utility of graph
curvature for network analysis.
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Appendix

Perturbation graphs as described in Sects. 4.1.1 and 5.2 (Fig. 7).
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Fig. 7 Resistance betweenness (Bg) and resistance curvature (kg), in graphs with eight nodes.

Left column: original graph. Middle column: graph with dominant distance eigenvalue increased
tenfold. Right column: graph with dominant distance eigenvalue increased thousandfold
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Time-Varying Graph Signal Recovery )
Using High-Order Smoothness and ST
Adaptive Low-Rankness

Weihong Guo, Yifei Lou, Jing Qin, and Ming Yan

1 Introduction

Many real-world datasets are represented in the form of graphs, such as sea surface
temperatures, Covid-19 cases at regional or global levels, and PM 2.5 levels in the
atmosphere. Graphs play a crucial role in data science, facilitating the mathematical
modeling of intricate relationships among data points. Typically composed of
vertices with either undirected or directed edges, graphs regard each data point
as a vertex and use edges to represent pairwise connections in terms of distances
or similarities. A graph signal is a collection of values defined on the vertex set.
The graph structure can be either provided by specific applications or learned from
partial or complete datasets.

As an extension of (discrete) signal processing, graph signal processing [29]
has become an emerging field in data science and attracted tremendous attention
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due to its capability of dealing with big data with irregular and complex graph
structures from various applications, such as natural language processing [21],
traffic prediction [31], climate change monitoring [28], and epidemic predic-
tion [10]. Graph signal recovery aims to recover a collection of signals with certain
smoothness assumptions defined on a graph from partial and/or noisy observations.
Unlike signals defined in traditional Euclidean spaces, the intricate geometry of the
underlying graph domain must be considered when processing and recovering graph
signals. Graph signals typically exhibit smoothness either locally or globally over
the graph.

There are some challenges in graph signal recovery when exploiting the under-
lying graph structure to improve signal reconstruction accuracy. First, the topology
of a graph desires a comprehensive representation involving many graph compo-
nents, such as structural properties, connectivity patterns, vertex/edge density, and
distribution. Second, it may be insufficient to describe the smoothness of graph
signals by simply restricting the similarity of signal values locally. Moreover,
the growth of graph size leads to a significant computational burden. To address
them, various techniques have been developed, including graph-based regularization
methods [4, 5, 17, 18], spectral graph theory [6, 24, 32, 35], and optimization
algorithms [1, 15].

1.1 Time-Varying Graph Signal Recovery

A time-varying or spatial-temporal graph signal can be considered as a sequence
of signals arranged chronologically, where each signal at a specific time instance is
defined on a static or dynamically changing spatial graph.

Consider an undirected unweighted graph G = (V, E), where V is a set of n
vertices and E is a set of edges. We assume a collection of time-varying graph
signals {X;};=1,...m with X, € R" are defined on V with a time index ¢. Let
X = [X1,...,Xu] € R be the dataset represented in matrix. The pairwise
connections on the graph G can be modeled by an adjacency matrix A, where the
(i, j)-th entry of A is one if there is an edge between vertices i and j and zero
otherwise. This binary adjacency matrix can be extended to the non-binary case for
a weighted graph, where each entry indicates the similarity between two vertices.
Throughout the paper, we use a standard K nearest neighbor (KNN) approach
with an integer K, based on the Euclidean distance of data points to construct the
adjacency matrix.

Given an adjacency matrix A, we further define the graph Laplacian matrix,
L =M-A € R" where M is a diagonal matrix with its diagonal element
M =) j Aij- The graph Laplacian serves as a matrix representation of the graph
structure and can be used to describe some important characteristics of a graph,
such as node connectivity and similarity. For example, geographic locations in the
form of coordinates, i.e., longitude and latitude, are typically used to calculate the
pairwise distance and, thereby, the graph Laplacian for geospatial data. For some
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datasets without obvious graph domains, a preprocessing step of graph learning can
be implemented; see [33] for a comprehensive review of graph learning techniques.
Time-varying graph signal recovery aims to recover an underlying matrix
from its partially observed entries that are possibly polluted by additive noise.
Mathematically, a forward model is ¥ = J o X + N, where Y is the observed
data, J € {0, 1} is a sampling matrix, and N is a random noise. In this work,
we focus on recovering time-varying signals, represented by the matrix X, from
incomplete noisy data Y defined on static spatial graphs in the sense that the vertex
set and the edges do not change over time. In addition, we adopt a symmetrically
normalized graph Laplacian that is pre-computed based on geographic locations.

1.2 Related Works

The recovery of graph signals from partial observations is an ill-posed problem due
to missing information. Graph regularization plays a crucial role in developing a
recovery model for time-varying signals by enforcing temporal correlation and/or
describing the underlying graph topology. An intuitive approach for recovering
time-varying graph signals is to apply interpolation methods to fill in the missing
entries, such as natural neighborhood interpolation (NNI) [30]. Numerous recovery
models with diverse smoothness terms have been proposed to further preserve the
underlying geometry. For example, graph smoothing (GS) [22] characterizes the
smoothness of the signal using the graph Laplacian of X. Alternatively, temporal
smoothness is incorporated in time-varying graph signal recovery (TGSR) [27]
by formulating the graph Laplacian of DX, where D is a first-order temporal
difference operator. The combination of the graph Laplacian of X and the Tikhonov
regularity of DX was considered in [25]. In contrast, the graph Laplacian of
DX with an additional low-rank regularity of X was formulated as low-rank
differential smoothness (LRDS) [20]. In the Tikhonov regularization, ||X D|% =
tr(X DDT XT) implies that D D7 is treated as the temporal graph Laplacian. In [11],
the graph Laplacian matrix L is replaced by (L + €l)”, where [ is the identity
matrix and r > 1 for a high-order Sobolev spatial-temporal smoothness. Its
main advantage lies in faster convergence, as this approach does not necessitate
extensive eigenvalue decomposition or matrix inversion. Recently, another low-rank
and graph-time smoothness (LRGTS) method has been proposed in [19], where the
sum of the nuclear norm and the Tikhonov regularizer on the second-order temporal
smoothness are adopted to promote the low-rankness and the temporal smoothness,
respectively.

All the aforementioned models can be unified into one minimization framework:

1
m}}n 3 1Y —J o X5 + %tr(DeTXTLSXDg) + BR(X) + %tr(XL,XT), (1)

where Dy is a 6-th order temporal difference operator; L and L, are the spatial and
temporal graph Laplacian matrices, respectively; R(X) is the regularization term
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Table 1 Comparison of related works and proposed methods

Method Optimization model

GS [22] miny 3 |¥ —JoX|%+ $tu(XTLX) 0 =B =y =0)

Tikhonov [25] miny ¥ — J o X% + % t(XTLX) + % | XDy 113
0=p=0,L, =D DT)

TGSR [27] miny 1 |Y —Jo X[|3 + $ (DI XTLXD) (6 =1, =y =0)

LRDS [20] miny 3 [|¥ —J o X|% + (DI XTLXDy) + BIX|ls (0 =1,y =0)

Sobolev [11] miny % Y —Jo XH% + %tr(DlTXT(L +€l)"XDy)
@=1,Ly=L,B=y=0)

LRGTS [19] miny 5 |Y = J o X7 + $ (X" LX) + B IIXIl. + % IX D2l
(0=0,L, =D,DI)

Proposed L2 miny 3[1Y — J o X|1% + & tr(DI XT (L + €I)" X Dg) + B | Xlext (¥ = 0)
where || X || is an ERF-weighted nuclear norm

Proposed L1 miny [|Y = J o X||; + $ r(DF XT(L 4+ €)" X Dg) + B | Xllezt (¥ = 0)

where || X || is an ERF-weighted nuclear norm

applied to X describing its characteristics; and ¢ > 0, 8 > 0, y > 0 are three
parameters. Two common choices of 6 are (1) & = 0 that corresponds to Dy = [
and (2) & = 1 used in TGSR. Additionally, L, can be a transformed version of the
classical graph Laplacian L, e.g., Ly = (L + €I)" as used in the Sobolev method
[11], where € is positive and r > 1 can be non-integer. The temporal graph Laplacian
can be constructed by using the t-th order temporal difference operator, i.e., L; =
D, DTT , for which case the temporal Laplacian can be expressed via the Frobenius
norm tr(X D DI XT) = || X D.||%, e.g., Tikhonov with r = 1 and LRGTS with t =
2. The regularization R(X) can be chosen as the nuclear norm of X if the underlying
time-varying graph signal X is of low rank. Various models utilize different choices
of Dy, Ly, L; and the regularization R.

Following the general framework (Eq. 1), we propose a novel low-rank regular-
ization R(X) based on the error function (ERF) [14] for sparse signal recovery (see
Sect. 2.3). In addition, to handle the non-Gaussian type of noise such as Laplace
noise, we propose a variant model in which the Frobenius norm-based data fidelity
term is replaced with the £1-norm data fidelity (see Sect. 2.4). In Table 1, we provide
a summary of the proposed models and relevant works pertaining to the general
framework outlined in Eq. (1).

Leveraging the recent growth in deep learning, some time-varying graph sig-
nal recovery methods include unrolling technique [16], graph neural network
(GNN) [3], and joint sampling and reconstruction of time-varying graph signals
[34]. In this work, we are dedicated to developing unsupervised time-varying graph
signal recovery algorithms that do not involve or rely on data training.



Smooth and Low-Rank Time-Varying Graph Signal Recovery 95
1.3 Contributions

The major contributions of this work are described as follows.

1. We develop a generalized time-varying graph signal recovery framework encom-
passing several state-of-the-art works as special cases. We also develop two new
models with an ERF-based regularization.

2. The proposed models combine high-order temporal smoothness and graph
structures with the temporal correlation exploited by iteratively reweighted
nuclear norm regularization.

3. We propose efficient algorithms for solving the proposed models. Convergence
analysis is provided to show that the proposed Algorithm 1 (¢, case) generates a
sequence that converges to a stationary point of the problem.

4. We conduct various numerical experiments, utilizing both synthetic and real-
world datasets (specifically PM2.5 and sea surface temperature data), to validate
the effectiveness of the proposed algorithm.

1.4 Organization

The subsequent sections of this paper are structured as follows. In Sect. 2,
we introduce a pioneering framework for recovering time-varying graph signals,
leveraging Sobolev smoothness and ERF regularization. Additionally, we put forth
an efficient algorithm based on the alternating direction method of multipliers
(ADMM) and iterative reweighting scheme. A comprehensive convergence analysis
of the proposed Algorithm 1 is provided. In Sect. 3, we present numerical experi-
ments conducted on synthetic and real-world datasets sourced from environmental
and epidemic contexts. Finally, Sect. 4 encapsulates our conclusions and outlines
potential avenues for future research.

2 Proposed Method

2.1 Error-Function-Weighted Nuclear Norm Regularization

To enhance the low-rankness of a matrix, weighted nuclear norm minimization
(WNNM) has been developed with promising performance in image denoising [13].
Specifically, the weighted nuclear norm (WNN) is defined as

Ll =D wioi(L), )
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where o; (L) is the i-th singular value of L in the decreasing order and the weight
vector w = (w;) is in the nondecreasing order with w; > 0 being the i-th
entry. Choosing the weights is challenging in sparse and low-rank signal recovery
problems. Iteratively reweighted L1 (IRL1) [2] was proposed for the sparse recovery
problem, where the weight w is updated based on the previous estimate. IRL1 can
solve many problems with complicated sparse regularizations, exhibiting improved
sparsity and convergence speed.

In this work, we introduce a novel ERF-weighted nuclear norm based on the ERF
regularizer [14] and use linearization to obtain WNN. For any real matrix X with n
singular values o1(X) > ... > 0, (X), the ERF-weighted nuclear norm is

a0,

”X“erf = E / e 7 dt, 3
: 0
i=1

. . Xlert
where o serves as a filtering parameter. In particular, when 0 — 07T, ”Uﬂ —

JT

5-rank(X) and hence it can enforce the low-rankness. To solve the ERF-nuclear
norm regularized minimization problem, we use iterative reweighting (linearization)
to get WNN with adaptive weights.

2.2 Fractional-Order Derivative

Inspired by the Griinwald-Letnikov fractional derivative [26], we introduce the total
0-th order temporal forward difference matrix with a zero boundary condition, as
shown below:

C(0)
Dy = C(.k) . C(0) e R™™, 4)

Ck) --- C(0)

Here, the coefficients {C (i)}i.‘zo are defined as

Ciy= 0D g<ick,
rG+nre+1-i

where I'(x) is the Gamma function. Notice that if 6 is a positive integer, k can be
deterministic. For example, if 6 = 1, then k = 1, and we have C(0) = 1 and
C(1) = —1, which is reduced to the first-order finite difference case. If 6 = 2, then
it reduces to the temporal Laplacian operator. Generally, if 8 = n, then only the first
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n + 1 coefficients {C(i)};_, are nonzero and thereby k = n + 1. For any fractional
value 6, we have to choose the parameter k. In our experiments, for instance,
we choose k = 3 for § = 1.8. Compared to integer-order derivatives that only
consider local properties, fractional-order derivatives can more accurately describe
complex systems such as those with long-range temporal or spatial dependence.
The difference matrix (Eq. 4) is built upon the zero boundary condition, while other
types of boundary conditions, e.g., Newmann and periodic boundary conditions, can
also be used. Alternatively, we can use low-order difference schemes for boundary
conditions, e.g., the first-order forward difference based on the first m — 1 time points
and the zeroth order for the last time point.

2.3 Proposed Algorithm 1

We propose the following ERF regularized time-varying graph signal recovery
model:

min 2 1Y — J o XI% + L w(DIXT (L + eI XDy) + B IX] (5)
X 2 F 2 0 9 erf'

Here, we use the Frobenius norm to define the data fidelity term for Gaussian
noise, the Sobolev smoothness of time-varying graph signals [11] as the graph
regularization, and the ERF-based regularization defined in Eq. (3) for temporal
low-rank correlation.

We apply ADMM with linearization to solve the problem (Eq. 5). First, we
introduce an auxiliary variable Z to rewrite the problem (Eq. 5) into an equivalent
constrained problem:

1
min = 1Y —J o X[} + %tr(DgXT(L L €D XDg) + Bl Zllus, st. X = Z.

Since the proximal operator of || - ||¢f is difficult to compute, we apply linearization
on the ERF term to obtain a WNN when solving the subproblem for Z. The ADMM
iterates as follows:

w; <—exp(—ai2(X)/02), fori=1,....,m

Z < agmin f11Zly...+ g |x-z+Z|>

. 2 ¢ T T r p 212
X<—argm1n§||JoX—Y||F+Etr(D9X (L +¢€l) XD9)+§||X—Z+Z||F
X

Z <7+ (X-2),
(6)
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where p > 0 is a stepsize that affects the convergence. Refer to Theorem 1 for
more details. We derive closed-form solutions for both Z- and X-subproblems in
Eq. (6). Specifically for the Z-subproblem, it can be updated via the singular value
thresholding operator, i.e.,

Z = SVT(X + Z) = U shrink(Z, diag(Bw/p)) V', (7)

where UZ VT is the singular value decomposition of X + Z and diag(-) is a
diagonalization operator turning a vector into a diagonal matrix with entries of the
vector sitting on the diagonal. Here, the shrink operator shrink(x, £) = sign(x) *
max(|x| — &, 0) is implemented entrywise, where sign(x) returns the sign of x if
x # 0 and zero otherwise.

In the X-subproblem, we can rewrite the second term of the objective function as

T~T 2 2
(DI XT (L + eI)" X Dg) = H (L +el)/>XDy HF
2
= H(Dg ® (L + e1)"?) vee(X) H2 = | A vec(X)|2,

where ® is the Kronecker product. Thus, the X-subproblem has the closed-form
solution as

X =mat[(T +aATA + o)L (TTY + pvec(Z — 2))), (8)

where J = diag(vec(J)). Note that JTY = Y since J is a diagonal matrix with
binary entries in the diagonal, whose nonzero entries correspond to the sampled
spatial points. Furthermore, considering that the matrix T+aAT A+pl is symmetric
and positive definite, we perform its Cholesky factorization as T+aATA + pl =
LLT . Subsequently, we leverage forward/backward substitution as a substitute for
matrix inversion, thereby reducing computational time. The pseudo-code of the
proposed approach for minimizing the model (Eq. 5) is given in Algorithm 1.

Algorithm 1 Robust time-varying graph signal recovery with high-order smooth-
ness and adaptive low-rankness

Input: graph Laplacian L, parameters «, B, p, spatial Laplacian parameters € and r, ERF
parameter o, Fractional-order derivative parameters 6 > 0 and integer k > 1.
Output: X
Initialize: X, Z
while The stopping criteria is satisfied do
compute the weights w;s
update Z via Eq. (7)
gpdateAX via Eq. (8)
Z<—Z+X-2)
end while
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2.4 Proposed Algorithm 2

In real-world applications, the type of noise could be unknown, and it is possible to
encounter a mixture of different types of noise. To enhance the robustness against
noise, we propose the second model:

. o
min Y —JoX|l; + 5 tr(DY XT (L 4 €1)" XDg) + B 11X lext 9)

Compared with Eq. (5), this new model utilizes the £;-norm data fidelity to
accommodate various types of noise. Because of the £; term, we need to introduce
an additional variable V to make the subproblems easy to solve. The constrained
formulation equivalent to Eq. (9) is

o
i 1% — (DI XT(L +eD)’ XD Zlless -
;. nin_ VI + 5 t(Dy X* (L +€1) XDg) + B Zllext

Therefore, the ADMM with linearization [7, 9, 12, 23] on the ERF term has the
following subproblems:

V —argmin [Vl + 2 |[Jo X =Y =V + P[
\%4

Z < argmin | Zly. + 5 [ X - 2+ 2|
3 (10)
o —~
X < argmin = tr(Df X" (L + 1) X Dy) + % [JoX—Y—V+ V|2
X

02 =112
+5 X -z+Z];

For the V-subproblem, we get the closed-form solution expressed via the shrinkage
operator:

V = shrink(JT (Y +V = V), 1/p1). an

Similar to Algorithm 1, the solution of the Z-subproblem is given by Eq. (7) with p
replaced by p;. For the X-subproblem, we get the closed-form solution:

X =mat[(p1 ] + AT A+ D) (p1JT (Y +V = V) + pavec(Z—2))].  (12)

The entire algorithm is described in Algorithm 2.
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Algorithm 2 Robust time-varying graph signal recovery with high-order smooth-
ness and adaptive low-rankness

Input: graph Laplacian L, parameters «, 8, p1, p2, spatial Laplacian parameters € and r, ERF
parameter o, Fractional-order derivative parameters 6 > 0 and integer k > 1.
Output: X
Initialize: X, V, Z
while The stopping criteria is satisfied do

compute the weights ws

update V via Eq. (11)

update Z via Eq. (7)

g\pdate}\X via Eq. (12)

VeV+UoX-Y-V)

7« 7Z+X-2
end while

2.5 Convergence Analysis of Algorithm 1
For simplicity, we define
f(X) = % 1Y —J o X3 + %tr(DeTXT(L +€l)” X Dyg)
and hence the augmented Lagrangian function is given by
LX,Z,2) = f(X) + Bl Zllet + p(Z, X — Z) + gux A

The function f is convex and continuously differentiable. In addition, V f is
Lipschitz continuous with a constant L f.

Theorem 1 Let p > Ly and {(Xk, zk, 2")} be a sequence generated from
Algorithm 1; then, the sequence is bounded, and any limit point of the sequence
is a stationary point of the problem (Eq. 5).

Proof Consider one iteration of Algorithm 1; the update of Z¥*! gives
.[:(Xk, ZkJrl’ 2k) _ .[:(Xk, Zk, 2/{)
= BIZH et + S1XE = 284+ 21 = BIZ¥ et — S0XE = 28+ 241}
< BIZM ity = BIZE s o+ SIXE 4+ 28 = 207 = DXt 4+ 25 - 2495

0
< - 5||Zk+1 VAL (13)
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The first inequality holds because the error function is concave for positive values.
The second inequality is valid because Z**! is the optimal solution of the Z-
subproblem.

Then, we consider the updates of X¥*! and Z¥*+!, which together give

L(XRH ZREL ZRELY _ pxk Zhl 2k
N P
0

~ 5 P
+ I 25 = ZEE = S = XA,

where the last equality uses the update Z¥*! = Z¥ 4+ xk+1 — zK+1 Since f
is smooth, the updates of X**! and Z**! show that pZ**t! + V f(X 1) = 0.
The convexity and smoothness of f give f(XFt1) + (Vf (XK1, xk — xk+1y 4
[V £ (XKD — v (X512 < £(X5). Therefore, we have

2Lf|
.E(Xk+l Zk+1 2k+l)_£(xk Zk+l 2]()
1 1
< (max (— ———0) L2 = 2) uxt - XK (14)
p 2Ly - 2
If,o>Lf,thenmax(%—m O)Lf —<0

Combing Egs. (13) and (14), we see that L(Xk, zk, 2k) is decreasing. Further-
more, if p > L7, we have

FXE) 4 BUZH Nt + p(ZF, X5 — ZF) + & ||Xk ZH 1%
=f (X5 + BUZ lers — (VF(X5), X* — ZF) + Enxk — ZM%
p—L
> F(Z*) + BIZ lext + Tfnxk - ZM% >0, (15)

where the last inequality comes from the Lipschitz continuity of Vf. So,
..C(Xk, zk, Zk) is bounded from below. Therefore, £(X k 7k, Zk) converges and

lim (X*' — x5 =0, lim ZF'-Zz5=0. (16)
k—00 k—o00

Since V f is Lipschitz continuous, we can get
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lim Z¥t' - Zk = xk — zk = 0. (17)

k— 00

Next, we show that (X*, Z*, 2") is bounded. We have shown in Eq. (15) that
~ p—1L
LR 279 2f (29 + BI 2 e + =L 1XE = 21

Therefore, when p > L ¢, the boundedness of L(X*, k 7k, Zk ) gives the boundedness
of f(Z%) + ,3||Zk||erf and | X* — Zk||2 Thus, sequences {X*} and {Z*} are also
bounded. Because pZ =-Vf (X ky, the sequence {Zk } is also bounded.

Since the sequence { (Xk zk, Zk)} is bounded there exists a convergent subse-
quence, that is, (X%, Z%i Zk) — (X*, Z* Z*) The limits (Eqs. 16 and 17) show
that (xki+!, zki+1 Zki +1) — (X*, Z*, Z*). Then, we have that X* = Z* and
BONZ* |lert— ,02* = 0. Thus, X* is a stationary point of the original problem (Eq. 5).
Since it holds for any convergent subsequence, any limit point of the sequence is a
stationary point of Eq. (5). O

3 Numerical Experiments

In this section, we conduct various numerical experiments on synthetic and real data
to demonstrate the performance of our proposed methods. In particular, we compare
our methods—Algorithm 1 and Algorithm 2—with other related states of the art,
including natural NNI [30], GS [22], Tikhonov [25], TGSR [27], LRDS [20], and
Sobolev [11]. To evaluate the reconstruction quality, we adopt the root mean square
error (RMSE) as a comparison metric, defined as follows:

IX — XlF

/nm ’

where X is the approximation of the ground truth graph signal X € R**™ defined
on a spatial-temporal graph with n nodes and m time instances. All the numerical
experiments are implemented on MATLAB R2021a in a desktop computer with
Intel CPU i9-9960X RAM 64GB and GPU Dual Nvidia Quadro RTX5000 with
Windows 10 Pro.

RMSE = (18)

3.1 Synthetic Data

Following the work of [27], we generate N = 100 nodes randomly from the uniform
distribution in a 100 x 100 square area. The graph weight is determined using
K -nearest neighbors. Specifically, the weight between any two nodes is inversely
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Fig. 1 The graph is
constructed by KNN with

K = 5. The weight between
any two nodes is inversely
proportional to the square of
their Euclidean distance

proportional to the square of their Euclidean distance. We consider K = 5 and
visualize the corresponding graph in Fig. 1.

Denote the weight matrix by W, its degree matrix M, and the graph Laplacian
L has eigen-decomposition L = UAUT, where A = diag(0, A2, --- , Ay). We
further define L~'/2 = UA~Y2UT where A™/? = diag(0, AZ_I/Z, e ,)»;,1/2).
Starting from x1, we generate the time-varying graph signal

xp=x_1 +L7V2f, fort=2,--- T, (19)

where f; is an i.i.d. Gaussian signal rescaled to | fi|lo = &k and k corre-
sponds to a temporal smoothness of the signal. Stacking {x;} as a column vec-
tor, we obtain a data matrix X = [x1,x2,---,x7]. We generate a low-rank
data matrix obtained by starting with an empty matrix X and repeating X <«
[X, x1,---,X10, X10, X9, - - - , x1] 10 times, thus also getting a 100x 200 data matrix.
The measurement noise at each node is i.i.d. Gaussian noise N(0, n?), where 7 is
the standard deviation.

Parameter Tuning For the proposed Algorithm 1, we fix the following parameters:
k = 3 and & = 1.8 in the definition of fractional-order derivative (Eq. 4);
o = 10° in the definition of the ERF regularization (Eq. 3); € = 0.1 and r = 3
in the Sobolev graph Laplacian; and the step size p = 107° in the ADMM
iterations (Eq. 6). In each set of experiments, we carefully tune two parameters
(e, B) that determine the weights for the spatial-temporal smoothness and the
low-rankness, respectively, in the proposed model (Eq. 5). We choose the best
combination of (&, 8) among « € {0,107>,107%,1073,1072,10~!, 1, 10} and
B € {0,10°%,1077,107°,1073, 104, 1073, 1072, 10", 1, 10}. As demonstrated
in Table 1, some competing methods are special cases of the proposed models, and
hence, we only tune the parameters o, § for these methods while keeping other
parameters fixed.
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Fig. 2 RMSE versus 10! : :
sampling rates. Averaged . ==+==-NNI
over 50 trials [Tt e +--GS
Tikhonov
e, —=—TGRS
T —o- LRDS
. Sobolev
“|——Alg.1
.

; A \A 2
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
sampling rate

Reconstruction Errors with Respect to Sampling Rates We begin by evaluating the
performance of competing methods under different sampling rates. The smoothness
level is set as k = 1, while the standard deviation of the Gaussian noise is n =
0.1. The reconstruction performance is evaluated via RMSE, defined in Eq. (18),
showing that the recovery errors of all the methods decrease with the increase of
the sampling rates. The comparison results are visualized in Fig.2. The proposed
method achieves significant improvements over the competing methods. Surpris-
ingly, LRDS, equipped with the nuclear norm, does not yield stable reconstruction
performance in the low-rank case.

Reconstruction Errors with Respect to Noise Levels We then investigate the
recovery performance under different noise levels by setting the noise variance
n2 = {0.01,0.1,0.2,0.4,0.6,0.8, 1}. In this set of experiments, we fix the
sampling rate as 40% and smoothing level x = 1. The noise level affects the
magnitude of the least-squares fit, and as a result, we adjust the search window
of @ € {0,1073,1072,107!, 1, 10, 10>, 103, 10*. The parameter 8 remains the
same: B € {0, 1078,1077,107°, 1073, 107*, 1073, 1072, 10", 1, 10}. The results
are presented in Fig.3, demonstrating the superior performance of the proposed
Algorithm 1 under various noise levels.

3.2 Real Data

In the real data experiments, we first test the daily mean particulate matter (PM)
2.5 concentration dataset from California provided by the US Environmental
Protection Agency https://www.epa.gov/outdoor-air-quality-data. We used the data
captured daily from 93 sensors in California for the first 200 days in 2015.
The constructed graph is depicted in Fig.4. In Fig.5, we compare the average


https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
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Fig. 3 RMSE versus noise 10' R
level: n? = .
{0.01,0.1,0.2,0.4,0.6,0.8, 1}. \
Averaged over 50 trials ekt R W e PR
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=
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107! Tikhonov |4
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Sobolev
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Noise level
Fig. 4 Graph with the places
in California for the PM 2.5
concentration data. The graph
was constructed with KNN 400°N
for K =5
37.5°N
350°N
325°N

1250°W  1225°W 1200°W 117.5°W 1150 W

recovery accuracy of all the comparing methods over 50 trials when the sampling
rates are 0.1, 0.15, 0.2, 0.25,0.3,0.35, 0.4, 0.45. In Table 2, we also compare the
performance of Algorithm 1 and Algorithm 2, which shows Algorithm 2 can
improve the accuracy of Algorithm 1 under some sampling rates with longer time
in general.

Next, we test the sea surface temperature dataset, which was captured monthly
by the NOAA Physical Sciences Laboratory (PSL). The dataset can be downloaded
from the PSL website https://psl.noaa.gov/. We use a subset of 200 time points
on the Pacific Ocean within 400 months. The constructed graph is illustrated in
Fig. 6. We see from Fig. 7 that the proposed algorithm outperforms other methods
significantly and consistently across all sampling rates. In Table 3, we also compare


https://psl.noaa.gov/
https://psl.noaa.gov/
https://psl.noaa.gov/
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Fig. 5 Average recovery
accuracy comparison on the .
PM2.5 data S

L 5.
n
=
o ....|....GS
45 Tikhonov
—=—TGRS
.L|~° LRDS
Sobolev
—o—Alg.1
35 : : 0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
sampling rate
Table2t Perffoznllangih | Alg.1 Alg.2
comparison of Algorithm . - -
and Algorithm 2 for the Sampling rate | RMSE | Time (s) | RMSE | Time (s)
PM2.5 data. The running time 0.10 5.7321 | 22.95 5.6915 | 46.49
for Algorithm 1 is about 0.15 54770 |22.63 6.4992 |45.39
22 ~23 seconds, while 0.20 5.0427 2383 59730  48.50
Algorithm 2 uses about 025 6.0358 (2337 | 5.6976 |47.44
46 ~ 48 seconds
0.30 5.6065 | 23.70 5.3809 | 47.86
0.35 5.1920 | 23.55 5.1535 | 47.72
0.40 5.2398 |23.56 47758 | 47.59
0.45 5.2283 |23.80 5.0913 |48.17

the performance of Algorithm 1 and Algorithm 2, which indicates Algorithm 2 can
improve the accuracy of Algorithm 1 under certain sampling rates but with more
computational time in general.

3.3 Discussions

Using the sea surface temperature data, we conduct an ablation study of the
proposed model (Eq. 5) without the smoothing regularization by setting « = 0
or without the low-rank ERF term by setting 8 = 0. We plot the RMSE curves with
respect to the sampling rates and the noise levels in Fig. 8, showing that the ERF
regularization has a larger influence on the performance compared to the Sobolev-
base graph Laplacian regularization.

Using the same sea surface temperature data, we investigate whether the
proposed model (Eq. 5) is sensitive to the parameters (7, €) in defining the Sobolev-
graph Laplacian and o2 in defining the ERF regularization. Figure 9 shows that the



Smooth and Low-Rank Time-Varying Graph Signal Recovery 107

30°N
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60°S

180" W 150" W 120" W 90" W 60" W

Fig. 6 Graph with the places in the sea for the sea surface temperature data. The graph was
constructed with KNN for K = 10

Fig. 7 Average recovery
accuracy comparison on the
sea surface temperature data

—-#-=NNI o -
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—a—TGRS

- © -LRDS
Sobolev

—o—Alg.1

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

sampling rate

RMSE

o
b

proposed approach is not sensitive to various degrees of smoothness controlled by
r and €. Although the ERF regularization plays an important role in the recovery
performance, as illustrated in the ablation study, the proposed model is not sensitive
to the choice o' as long as it is larger than 10,000.

In addition, we compare the proposed Algorithm 1 and Algorithm 2 using the
sea surface temperature data and show the results in Tables 2 and 3. One can see
that the two algorithms lead to similar RMSE, but Algorithm 2 is slower overall.
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Table 3 Performance
comparison of Algorithm 1
and Algorithm 2 for the sea

W. Guo et al.

Algorithm 1 Algorithm 2

Sampling rate | RMSE | Time (s) | RMSE | Time (s)

surface temperature data. The 0.10 0.3148 |3.97 0.3163 |22.99
running time for Algorithm 1 0.15 0.2497 | 3.37 0.2483 | 17.13
is about 2 ~4 seconds, while 0.20 0.2110 |3.08 0.2109 |13.52
Algorithm 2 uses about 0.25 0.1832 |2.87 | 0.1857 | 11.27
6 ~ 23 seconds
0.30 0.1617 |2.74 0.1666 9.62
0.35 0.1438 |2.63 0.1450 5.77
0.40 0.1294 | 2.54 0.1291 5.66
0.45 0.1166 |2.46 0.1153 5.57
o, T T T T ] 126 T T T =T
10 N —w--without smoothing term e e -
“, —+—-without ERF 09 e - ;
N with both 08F s =
B S 0.7F L
107 ~\~“~.\ ~\~\‘~ - B 06¢ _/"/
w ~ T*ao W osf ,/"
» e T e, %) -
02k \\\.{ 03l 7
. x* , :
S L/ —#+=-without smoothing term
N0« —+=-without ERF
T e with both
s ‘ ‘ ‘ ‘ ‘ ‘ ‘ e ‘ ‘ ‘ ‘
%01 02 0.3 0.4 05 0.6 0.7 0.8 0.9 0 02 0.4 0.6 0.8 1
sampling rate noise level

Fig. 8 Ablation study sampling rates (left) and noise levels (right) on the sea surface temperature

data
™ —amer=1 =0 i’\;\ —+=-1000
107! —s=-r=1 ¢=0.1 10 \;; —+--10000
Sy r=2 ¢=0.1 100000
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Fig. 9 Sensitivity analysis with respect to varying the graph Laplacian (left) and o2 in ERF (right)

on the sea surface temperature data

We therefore prefer to use Algorithm 1 unless the data is heavily polluted by the
non-Gaussian type of noise, such as Laplace noise.
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4 Conclusions and Future Work

In this paper, we exploit high-order smoothness across the temporal domain and
adaptive low-rankness for time-varying graph signal recovery. In particular, we
propose a novel graph signal recovery model based on a hybrid graph regularization
involving a general order temporal difference, together with an error-function-
weighted nuclear norm. We also derive an effective optimization algorithm with
guaranteed convergence by adopting a reweighting scheme and the ADMM frame-
work. Numerical experiments have demonstrated their efficiency and performance
in terms of accuracy. However, the graph Laplacian is a computational bottleneck
in our workflow, especially when the graph contains a large number of nodes. The
acceleration of the weight calculation via sparse or low-rank approximations [8]
will be left in future work. In addition, we will explore using high-order difference
schemes to create a temporal Laplacian and low-rankness for recovering graph
signals with dynamic graph topology.
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Arjuna Flenner (» and Cristina Garcia-Cardona

1 Introduction

One goal of analyzing large collections of text documents is to build representations
that facilitate the interpretation and recovery of information. This in turn requires
the extraction of relevant features, which should encode interesting aspects of the
observed data. This feature extraction characterization and quantification is difficult
to accomplish in practice. The seminal work by Blei et al. in [5] introduced topic
modeling using the Dirichlet process. This model used the Dirichlet process as a
sparsity inducing prior while treating the words as simple Poisson count data [43].
Fundamental to topic modeling is the assumption that the data, or its expected
value, can be represented as a linear combination of basis vectors if no other prior
information is available. In the multivariate statistical arena, this is a subset of
factor analysis. In this work, we integrate the idea of feature extraction using topic
modeling with undirected graphs.

As shown in [43], a basic structure of topic modeling is a Poisson factor analysis
model that effectively models count data. Consider a collection of N documents
where each document is composed of a collection of words. Let d,, € Z represent
a vector of word counts with a dictionary of size L. The Poisson factor analysis
model assumes
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Eld,] =Y ¥ibu. ()
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where the observed data d,, is represented in terms of £1 normalized basis vectors, or
topics, ¥, (factors) and the coefficients by describe the weights of the combination
(factor loading). In other words, the basis vectors capture patterns present in the data
set, i.e., a good set of features, and the learning representation task is to compute
them, together with the associated weights. In general, the number of components
in the combination, denoted by K, characterizes the complexity of the model, and
a key insight in [5] was the use of the Dirichlet process to automatically determine
the value of K.

Many different extensions to the basic topic modeling approach have been
proposed [4, 12, 16-20, 23, 28, 31, 38, 39]. We add to this body of work by
introducing a general model to include graphs in topic models and deriving an
efficient Gibbs sampling method for posterior inference. Our approach is similar
in nature to the graph-based clustering approaches in computational linguistics
[1, 10, 35]; however, instead of segmenting the graph, we explore the utilization
of a graph structure as a regularizer, with the hope of driving the learning procedure
such that entities that are connected in the graph structure end up having similar
representations. The advantages of using a graph are twofold. First, the graph
enables the integration of information from different sources into our learning
algorithms to influence the model priors. Second, the graph allows to take into
account information encoded via relationships between the data that do not come
from a metric or distance function. Thus, information such as interactions or
common group memberships, explicitly encoded by networks of connections, or
social networks, can also be incorporated as part of the learning procedure.

Note that in contrast with [24], we are not trying to integrate topic modeling
and dictionary learning. Instead, we are trying to integrate graph information into
representation learning models. In the topic modeling case, we show how the graph-
directed model yields topics that are more descriptive and whose distribution is more
balanced through the corpus of documents. This type of directed learning proves to
be effective also for the case of dictionary learning, where we show that using the
graph structure to encode a priori relations between observations allows for more
distinctive basis vectors and, at the same time, lower average reconstruction errors.

To make the representation learning tractable, we build stochastic models and
embed them in a Bayesian framework such that the model parameters are learned
by maximizing the posterior distribution given the data observations and the
assumed priors. The computations are carried out using a Hamiltonian Monte
Carlo (HMC) sampling method, whose energy-based formulation facilitates the
information integration, in particular the graph encoded priors.

The document is structured as follows. Section2 summarizes the previous
work. The representation learning problem and the graph model are introduced in
Sect. 3, while Sect. 4 describes the computation procedure. Section 5 illustrates the
applications to topic modeling and dictionary learning and compares performance
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with other methods. Finally, Sect. 6 includes the conclusion and perspectives for
future work.

2 Previous Work

A simple model as the linear combination of basis vectors described by expression
(1) is expressive and flexible enough, but the problem of finding the unknown
basis, weights, and number of components is not well-defined. Most of the time,
the learning task tries to build more structure into the problem by exploiting the
inherent range of the data at hand, as in nonnegative matrix factorization [11], or
assuming some conditions over the basis vectors. These different assumptions are
the essential characteristics of the different methods. In the factor analysis field,
different assumptions are used to decompose the data into a few factors and estimate
associated weights. The basic procedure is to try to establish a stochastic generative
model to describe the data set and provide a framework for learning the parameters
of the model.

However, many applications of factor analysis neglect the discrete nature of count
data [40]. A case in point is the description of a corpus of text documents. In general,
the corpus is given in terms of the times a word from the (corpus) vocabulary
appears per document, and the learning task is expressed as the construction of
topic models [4, 5, 17, 23, 38]. In the language of topic modeling literature, the set
of basis vectors correspond to fopics, and each topic is assimilated to a probability
distribution of the words in the corpus vocabulary. Thus, more probable distributions
are the ones that are compatible with the observed count of words. In [5], each
document is a mixture of topics, and the topics a distribution of words. The priors
in both cases are symmetric Dirichlet distributions, leading to the well-known
latent Dirichlet allocation or LDA model. Several posterior works have studied
variants of the LDA model. These include correlated topic models [23], where the
basis elements are assumed correlated, while the words per topic are still assumed
independent and dynamic topic models [4] where the topics are allowed to slowly
change over time. The work of Wallace et al. [38] studies the influence that handling
of stop words, number of topics selected, and Dirichlet priors have in the resulting
LDA topic model and shows how the performance is improved when an asymmetric
Dirichlet prior is used for the document-topic distributions.

Computationally, there are two main approaches: variational and Markov chain
Monte Carlo (MCMC) methods. The variational approach finds the parameters
of a family of functions that approximate the posterior distribution given the
observed topics [5]. Variational Bayesian methods are efficient if the resulting
optimization is easy to compute as is the case of the conjugate priors used in the
original work of Blei. Markov Chain Monte Carlo methods obtain samples from the
posterior distribution [6], but complex models often mix slowly. Again, conjugate
priors are often exploited in a Gibbs sampling scheme to simplify computations.
Stick-breaking techniques have been employed [30] to generate efficient MCMC
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strategies. Stick breaking has also been used to extend the models as in the spatial
modeling with stick breaking in [29, 30, 36] where a kind of spatial dependence
of the basis vector component is assumed by using a similarity kernel and a stick-
breaking construction.

Two non-Bayesian approaches that are similar in spirit to topic modeling are
the nonnegative matrix and tensor factorization [11, 22] and nonnegative sparse
representations [9, 41, 42]. The matrix and tensor factorization methods are most
effective when combined with a word weighting [33] and thus do not represent
the documents as pure count data. To obtain a more compact representation, the
nonnegative sparse matrix or tensor factorization includes a €y or £; sparsity
promoting regularization [33]. We do not consider these approaches in this work.

‘We note that the Gaussian Markov random fields (GMRF) approach by Rue [32]
has been used by Mimno et al. [26] to regularize the topic weights. Their model
resembles the model in this work, but instead of creating a graph between the topic
weighs they define a mean for the Gaussian process.

3 Background

We are learning representations of the data by integrating Poisson factor analysis
and graphical methods. In this section, we give a brief overview of Poisson factor
analysis and graphical models appropriate for this work.

3.1 Poisson Factor Analysis

In the case that the information available corresponds to count data, as, for example,
in text documents where each document is represented as a count of the number of
times a specific word appears in the document, Poisson factor analysis (PFA) is a
natural model. For clarity, define the following notation. Given a corpus of D text
document,

e de{l,..., D}indexes each of the documents in the corpus.
e N, stands for the number of words in document d.
* w e {l,..., W}indexes each of the distinct words in the corpus vocabulary.

e hgy € Z7 is the observed number of times that word w is present in document
d.
* h, represents the observed histogram of words for document d.

Poisson factor analysis assumes that the set of integer observations kg, € ZT
comes from a Poisson distribution:



Graph-Directed Topic Models of Text Documents 117

K
haw ~ Poisson (Z Viw bdk) , )

k
K
Elhaw] =) Yiw bax. 3)
k
Viw =20, Y Yrw=1,  ba=0.
w

Due to the additive property of the Poisson distribution [21], this model implicitly
assumes the existence of a decomposition of the form kg, = Z,le hawk, Where
hgwi ~ Poisson(V¥iybarx). This suggests the following stochastic generative model
for each of the documents x4 in the corpus:

Nq
Xd ™~ HP(Zl’”d) P(wilz, ¥y, ..., ¥g)
=1

z; ~ Multinomial(w ),

wl}zl ~ Multinomial(y,),

ii.d .
hawi ~ Poisson(Yyy bax),

bak

21 bai

Tok = Y hawk.  Tak =
w

where w4 represents the topic distribution in document d (consequently, the com-
ponent g is the probability of topic k in document d); ¥, the word distribution
in topic k; z; is an indicator variable for the topic assignment of the /-th word; wy,
the /-th word drawn; hgy, the count of words of type w appearing in topic k in
document d; and 7y, the count of words of topic k appearing in document d. Note
that the last equalities are necessary to keep the consistency between the generative
model and the PFA formulation. Hence, the learning task corresponds to estimating
the model parameters ¥, and bgi. Note that to complete the specification of the
model, it is necessary to define priors for these parameters, as well as setting the
maximum number of topics K.

3.2 Graphical Models

Graphical models are often used to describe joint probability distributions of
multiple variables [8]. A generic graph, denoted by G(V, E), can be regarded as
a node (vertex) set V and a collection of edges E that connect the nodes. The
nodes in the graph are in one-to-one correspondence to random variables in the
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model, while edges in the graph encode dependency relationships between the nodes
(random variables) they connect. The graph can be undirected, in which case the
edges denote dependence between the corresponding nodes, or directed, in which
case the conditional dependence is restricted to incoming edges.

This kind of models allows for inference and estimation of local marginal
distributions, likelihood of a particular random variable, or the most probable
configuration of the model, among other summary statistics, in the case of directed
acyclic graphs and random variables living in a discrete probability space [8].
However, there is no guarantee of convergence for cases of arbitrary graph configu-
rations or for random variables drawn from continuous probability space. Hence,
approximate inference methods, such as loopy belief propagation, Monte Carlo
Markov chain (MCMC) sampling, or variational Bayes, are commonly used [8].

However, an alternative take on the variable dependence representation with
graphs can be constructed. Instead of correspondence between nodes and random
variables, a correspondence between nodes and observations can be established.
Specifically, each element in the node set V = {v,,}r]:’=1 is associated with a data
sample x,, and an edge E;; between the i-th and j-th nodes exists if sample i is
related to sample j and does not exist otherwise. Note that this allows to encode
known interactions between data samples. In this work, we only consider simple
connections as interactions. It is easy to extend this work to the case where a
quantitative dependency such as metric information given in terms of a similarity
measurement is used. For example, one can consider the following:

1 if x; is related to x ;
Wi = { ! I @

0 otherwise

3.2.1 Graph Laplacian and Graph Energy

Let’s define the degree of node i as
di =" Wi. ©)

Thus, by definition of W;;, d; measures how strong is the relation between sample
x; and the rest of the samples in the data set.

If W is the matrix of edge weights W;;, and D, a N x N diagonal matrix with
diagonal elements D;; = d;, the graph Laplacian can be written as the matrix

L=D-W. (6)
A state vector ¢ = (@j1,-.-,9; K)T can be associated with each of the j €

{1,..., N} nodes in the graph. The graph Laplacian allows to define the energy of
the graph using the quadratic form:
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N N
1
(@ L&) =23 > Wil — 9, (7
i=1j=1
| K NN
=3 DD Wi — o)’
k=1i=1 j=1
with matrix ® = (¢, ..., ¢,), where each column corresponds to the state of a

node in the graph. Note that this form of energy penalizes the differences in state
for nodes that are closely related (edge with a large weight W;;). Then, a state
of minimal energy is characterized by a homogeneous state of strongly connected
nodes. This does not exclude the trivial case where all the nodes have the same state.
Other energy functions, based on p-Laplacian, can be used [7]. They are similar to
the quadratic form but use an exponent p, with 1 < p < 2.

As will be shown in the next section, previous information about the relationships
of data points, encoded in terms of a weighted or unweighted graph, can be included
in the computations of the model parameters by incorporating a graph energy term,
expressed as a function of the graph Laplacian. A more detailed discussion of graph
energies and Laplacians can be found in [2, 3, 13-15, 25].

4 Model Computations: Hamiltonian Monte Carlo

Gibbs sampling and variational methods are the dominating computational tech-
niques for probabilistic topic models. We adapt a Gibbs or block Gibbs sampling
method where each of the variables is updated in blocks. The addition of graphs
imposes an additional computational difficulty since it is not part of a conjugate
family in our model. Furthermore, we found a Metropolis-Hastings algorithm to
mix slowly. For these reasons, we adapted a Hamiltonian Monte Carlo sampling
technique. The clearest strategy to deriving the Hamiltonian Monte Carlo method
is to define potential energy functions for our distributions. This section briefly
discusses Hamiltonian Monte Carlo computations and derives the potential energy
of our topic models given the documents.

Our goal is to compute the topics ¥, and topic weights by for the given corpus.
Recall Bayes’ rule:

P(DI|0) P(0)

P@O|D) = D)

x P(D|0) P(®), (®)

where 6 represents the parameters, 9 the observations, P(Z)‘é’) the likelihood,
and P (@) the parameters’ prior distribution. The main computational difficulty
in finding the posterior probability distribution is the normalization P (D). The
Hamiltonian Monte Carlo computational technique allows us to sample from a
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posterior distribution by establishing a correspondence between such a distribution
and the energy function of the probability distribution. Thus, sampling from the
distribution becomes sampling from the canonical distribution of the system [6, 27].
The probability density for the state ¢ under the canonical distribution is defined by

P(q) xcexp(=U(q)), 9

where U (q) is the potential energy function.

The probability P(q) for the state g corresponds, in turn, to the posterior
probability function we want to sample from (P (0 ]Z))). Consequently, the state g
of the physical system is equivalent to the set of parameters # we are sampling, and
computing any dynamical evolution over ¢ immediately translates into computing a
dynamical evolution for 6. At the same time, this dynamical evolution corresponds
to a sampling over the parameter space. The longer the dynamical evolution
simulated, the less correlated the states and, therefore, the better sampling over the
parameter space.

To allow the use of dynamical methods, a momentum variable p is intro-
duced [27]. This momentum variable has as many components as components in
the state ¢. The canonical distribution over the joint space of ¢ and p is defined as

P(q, p) xexp(—H(q, p)), (10

where H(q, p) = U(q) + K (p) is the Hamiltonian function giving the total energy
and K (p) the kinetic energy. Typically,

ri

K(p)=) 7 (11)

(Here, the masses are not considered explicitly; instead, they become part of the step
size in the dynamical updates).

4.1 Dynamical Updates

The system evolution is simulated by means of the Hamiltonian dynamics:

dgi oH
Uty
dpi oH oU
dr T oq oqi

This dynamics is approximated by a leapfrog discretization using finite time steps.
A leapfrog step can be expressed as
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€ € U
pi(1+3) =P =5 5@

Gi(t+€) = g0+ e pi (1 +5)

€ e AU
P+ =pi(1+3) =5 5@+,

with € representing the stepsize. This leapfrog update is applied for a specified
number of steps L to simulate the evolution of the system for a time Ar = €L.
Since the leapfrog procedure only approximates the evolution of the Hamiltonian
dynamics, a systematic error is introduced in the system update. This error is
eliminated by adding a step corresponding to the Metropolis algorithm [27]. Thus,
the states obtained after the Metropolis algorithm constitute the samplings over the
parameter space.

Note that in order to compute the dynamical updates, it is necessary to compute
the partial derivatives of U with respect to g;.

4.2 Defining Potential Energy Functions

When the models are written in terms of probability densities, it is often easy to
describe the computations in terms of energy. According to Eq. (9), the potential
energy can be defined in terms of the probability density P (@), by

U@) = —log(P(0)). (12)

Thus, all the previously defined generative models can be written in terms of an
energy functional as described next.

4.3 Topic Modeling

The generative model for the topic modeling problem can be expressed in terms of
a potential energy given by

U (Vkw, bak|haw)

—log P (Ykw. bak|haw)
—log P (haw|¥iw, bak)
—log P (Yrew|bar)

=33 hawk log(Wew)
d w k

=33 Talog(rar)
d k
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Tk = ) hauk
w

bak
Tdk = —=——

> bai
such that vy, > 0, Zlﬂkw =1,
w

bar >0, mar >0,

Zn'dk =1.
k

The model can be completed by assuming a specific form for the prior distri-
butions. Here, we assume two different model priors leading to two different topic
models.

4.3.1 Latent Dirichlet Allocation (LDA)

When the priors for the topic distribution over the documents and the word dis-
tribution over topics are assumed as Dirichlet distributions, the model corresponds
to the latent Dirichlet allocation (LDA) model [5]. The Dirichlet distribution is a
probability distribution over the simplex and has energy

—log P(x) = — Z(ak — Dlog(xk) + f (o), (13)
k

with oy the hyperparameters of the Dirichlet distribution. For a symmetric distribu-
tion, o = o > 0.

If the energies of the Dirichlet priors for the word distribution over topic k, ¥; =
Wty - -+, ka)T for k € {1, ..., K}, and for the topic distribution over document
d, g = (m41,..., ndK)T ford € {1, ..., D}, are included in the PFA formulation,
the energy for the complete model can be expressed by

U (Ykw, bai) = — Zdj > ; haw 10g(Wkw)
- Xd: Xk: Tax log(mar)
-3 ;«x — 1) log(Yew)
- ; ;w — 1) log(mar),

with restrictions Yy > 0, gk > 0, Y p wax = 1,and Y_, Yiw = 1.
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The advantage of using Dirichlet priors is that due to the Dirichlet-multinomial
conjugacy, ¥ and m can be marginalized, which simplifies the computations.

4.3.2 Graph-Directed Topic Modeling

Analogously to the LDA model, we assume a Dirichlet distribution as a prior for the
word distribution over topics, ¥. This allows to exploit the Dirichlet-multinomial
conjugacy for ¢.

In contrast, for the case of the prior of topic distribution over documents m,
we replace the Dirichlet prior by a graphical model encoding prior information
about the documents. In particular, we want that documents with strong connections
end up having similar topic distributions. This bias over m can be enforced by
introducing a term that measures how close are the topic distributions of strongly
related documents. As described before, such term can be written via the graph
Laplacian. We use the state ¢; = (dag1, ..., Pa x)T for the state of node d in the
topic modeling problem and associated matrix ® = (¢, ..., ¢ ). In order for these
states to represent valid topic distributions, we use an approach similar to Mimno et
al. [26]. With the help of the logistic function, we map the state ¢; of node d to the
multinomial parameter 74, that describes the probability of topic k being included
in document d:

_ bak _ exp(Par)
Yubar Y exp(gar)

Tk (14)

Therefore, the potential energy with Dirichlet prior for word distribution over topics
and graph-energy term for topic distribution over documents can be written as

U Whows bar) ==Y Y > hawk 10g(Ykw)
d w k
=3 Talog(ar)
d k
=YY (@ = D log(Yw)
w k

+(®,L ®). (15)

For the graph-based energy term, we exploit the quadratic form (Eq. 8) to define
a probability density over ® by P(®|L) = exp(—(®, L®) — log Z(W)). Note that
since we know the weight matrix W, we are not interested in learning it and we do
not need to know the partition function Z(W) explicitly.

The final computations use block Gibbs sampling for the variables z; and ¥ as
in [5] and Hamiltonian Monte Carlo sampling for the variables & using the leapfrog
technique in Sect. 4 with the energy function in Eq. (15).
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5 Results

To demonstrate the utility of the graph-directed topic modeling, we apply the
formulation to two data sets as described next. In both cases, we compare the results
obtained with the LDA model [5].

5.1 Toy Example

A simple data set is constructed following Griffiths and Steyvers work [17]. A set
of ten topics ¥y, k = 1, ..., 10 corresponding to horizontal and vertical bars in a
5 x 5 grid is defined (Fig. 1). Random combinations of these topics are constructed
generating different documents. Each pixel in the image corresponds to a unique
word. A sample of documents can be found in Fig. 2.

Recovered topics for LDA model and the graph-directed topic model can be seen
in Figs. 3 and 4, respectively. A comparison of the topic mixture per document can
be found in Fig. 5. In this case, an unweighted graph is constructed arbitrary such
that documents 1-50 and documents 51-100 are connected.

Fig. 1 Graphical representation of ten topics, each containing 25 pixels in a 5 x 5 grid. Each pixel
in the image corresponds to a unique “word”

Fig. 2 Documents: 25 words represented as 5 x 5 pixel images. These correspond to random
weighted combinations of the topics in the previous figure. White, high count of word; black, 0
count of word
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Fig. 3 Topics calculated with the LDA model. The original topics are essentially recovered by the
LDA model

Fig. 4 Topics calculated with the graph-directed topic model. The original topics, or linear
combinations, are recovered by the graph-directed topic model

O 0 p—
0.8 — 0.7
20 0.7 20 = 0.6
g 0.6 g — 05
@ 40 0.5 @ 40 —] 04
g 0.4 g )
O 60 03 O 60 03
o . o
a 02 a 0.2
80 o1 80 01

4 6 8
Topics

(b) LDA + Graph

Fig. 5 Toy example: topic mixture per document. Colors indicate weight of topic in the document.
(a) LDA model. (b) Graph-directed topic model. The graph-directed topic model recovers the same
topics for documents 1-50 and documents 51-100, as expected. The LDA model recovers more
noisy distributions for the 1-50 and 51-100 subgroups. The graph-directed topic model does not
make use of topic 10, the least expressive of the topics found (see Fig. 4)
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5.2 Enron Data

A subset of Enron data set is used for the topic model task. We note that stemming
can influence the discovered topic models [34] and stemming was not used in this
work. In this case, an unweighted graph is constructed such that documents that
share the same folder are connected. A number of topics K = 30, roughly the
double of available folders, are specified (Fig. 6).

As noted in [38], one of the problems of topic models is that most frequent words
tend to dominate all topics. However, the graph-directed representation is able to
construct representations that are more descriptive and more robust to frequent
words. Likewise, the topic distribution is more balanced through the corpus of
documents (Fig. 7). Lists of words for the two most important topics in LDA and
graph-directed models are displayed in Fig. 8. The lists include the probability of
the word in the topic.
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Fig. 6 Enron data: topic mixture per document. Colors indicate weight of topic in the document.
(a) LDA model. (b) Graph-directed topic model. The graph-directed topic model tends to recover
more unique mixtures of topics per document, i.e., mixtures that include less topics, with relatively
more weight per topic. The LDA model recovers more noisy topic distributions per document
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Fig. 7 Enron data: average weight of topic in the corpus. (a) LDA model. (b) Graph-directed
topic model. All the topics have similar influence in the corpus when using the graph-directed
topic model. In contrast, few topics dominate the corpus when using the LDA model
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LDA LDA + Graph LDA LDA + Graph
Word Word Probability| Word Word Probability Word ~ Word Probability| Word Word Probability
please 0.0332594  [enron 0.0828999 will 0.0287065  |ceo 0.0320795
louise 0.0263467  |dynegy 0.0347854 get 0.0172239  |president ~ 0.0303183
will 0.0260858  |said 0.0331599 louise 0.016661 chairman  0.0179897
thanks  0.0208687  |company  0.0315345 message  0.0137341 new 0.0174865
pm 0.0203469 stock 0.0156047 week 0.0136215 year 0.0142156
(a) Most probable topic (b) Second most probable topic
LDA LDA + Graph LDA LDA + Graph
Word ~ Word Probability| Word  Word Probability Word ~ Word Probability| Word Word Probability
will 0.0187032  |don 0.0376162 message  0.0275497  |energy 0.0343342
also 0.0092416 tax 0.0365836 original 0.0262532 will 0.029487
may 0.00902156 |use 0.030388 please 0.0178263  |power 0.0281406
risk 0.0074813  |may 0.0259625 will 0.0178263  |gas 0.0195234
meeting  0.0073346  |reserve  0.0215371 louise 0.01707 california ~ 0.0164266
(c¢) Third most probable topic (d) Fourth most probable topic

Fig. 8 Enron data: word probabilities for the most important topics. LDA topics use more generic
words. Graph-directed topics give more probability to specialized words, hence yielding more
insightful representations

6 Conclusion

Graph-directed representations for the unsupervised learning methods of topic
modeling and dictionary learning problems have been implemented. A common
approach to topic modeling and dictionary learning is to include a sparsity inducing
prior into the model, such as the Dirichlet prior in a Bayesian setting or a £y
or ¢; regularization term in an optimization approach. Without any other prior
information, the sparsity prior can yield insightful representations.

Our results illustrate how a graph enforces known binary relationships in
the data set, such that strongly connected data samples yield more informative
representations. For example, by including the information that emails are sorted
into folders by subjects, a more informative topic representation can be obtained.
As Fig. 7 illustrates, even though we are using a Bayesian sparsity inducing prior,
the graph learns a less sparse model. However, as Fig. 8 shows, this model is more
representative of the information content.

In this work, we used a quadratic energy function in Eq. (8) in order to integrate
the graphical model with our topic models. A possible extension of this work is to
use other graph £, energy functions by replacing the square of the difference with
the p'"* power of the difference. The computational complexity remains the same for
1 <= p < oo; however, it is well known that graph segmentation is often improved
when p = 1 [3].

A further extension of this work is the integration of graphical models with
attention [37]. Note that Eq. (14) is the commonly used softmax function, which
is often used to define attention. Using Eq. (15), it is straightforward to include a
graphical model with attention.
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Linear Independent Component Analysis M)
in Wasserstein Space e

Shiying Li, Caroline Moosmiiller, and Chuxiangbo Wang

1 Introduction

Independent component analysis (ICA) is a computational and statistical technique
used to uncover independent components from multivariate data, also known as
blind source separation [8, 18, 19]. It was first introduced in [1] and has gained much
interest since then; see, e.g., [2, 13, 17]. Specifically, [7] highlighted the potential of
ICA in mathematics and statistics. ICA has since become an essential tool in various
fields, including signal separation of biological data [10, 28], MRI data [26], and
audio and image noise reduction [16, 24].

The classical linear ICA problem assumes n independent random variables,
which have been “mixed” by the application of an orthogonal matrix, and one
only has access to N observations of this mixing process. From these observations,
the aim is to identify the independent components and the matrix. This problem
is usually formulated in Euclidean space, i.e., the independent components and
the observations are elements of some RX. In this paper, we study a version of
linear ICA in the Wasserstein space, which is the space of probability measures;
see [33]. In particular, we assume that the observed data consists of probability
measures or point-clouds, which have been obtained by a linear mixing through
Euclidean independent components. This setup is motivated by applications in
which an instance of data is not naturally interpreted as a vector in some R¥, but
rather as a probability measure or point-cloud. Examples include imaging data [29],
text documents [36], gene expression data [5, 22], and flow cytometry [3, 37].
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Fig. 1 Setup for linear ICA in Wasserstein space. Bottom panel (“classical” linear setting in
RK): Independent components are drawn from U(=~/3,/3) x NQ©, 1) (left plot). An unknown
orthogonal transformation A is applied (right plot). The eigenvectors of the Laplacian built from
the observed data (right plot) are used to uncover the independent components [31]. Top panel
(proposed setting in P,(R")): An almost isometric map & : RF > P p(R") is assumed; in this
example, the map is E&(w) = MN(w, cl) for ¢ > 0 fixed. An unknown push-forward operator
Ay based on orthogonal transformation A is applied to obtain the observable data in Wasserstein
space (right plot). The eigenvectors of the Laplacian built from the observed data (right plot) with
Wasserstein distances are used to uncover the independent components (bottom left); see Sect. 3.
Note: The plots in the top panel are sketches for visualization purposes, i.e., we sampled a uniform
grid with only a small number of points so that the Gaussians are visible. The blue-red coloring
scheme is for visualization purposes only. For the actual numerical experiments, we sampled the
means of the Gaussian from the bottom left plot; see Sect. 4 for details

While there exists a large body of literature on linear ICA (in the Euclidean
setting), we follow the ideas of [31], which uses the eigenvectors of a graph
Laplacian built from the observed data to identify the independent components and
the mixing matrix. This method naturally adapts to our setting, as we only need
to reinterpret the graph Laplacian for point-cloud data. Essentially, we replace the
Euclidean distance by the Wasserstein distance when building the graph Laplacian,
which has shown success in other methods as well [5, 21-23, 35].

The contributions of this paper are twofold. We first describe a natural setting for
linear ICA in Wasserstein space, where the observed data consists of probability
measures. This idea mimics the classical linear ICA in Euclidean space and is
outlined in Fig. 1. We then show that our method is successful in identifying the
independent components as long as the observed point-cloud data is “close to”
(almost isometric to) Euclidean data by using results on eigenvector perturbations.
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Here, we use a version of the classical Davis-Kahan theorem to derive eigenvector
perturbation results [9, 34]. Improved bounds are possible for data with more
structures; see, e.g., [11]. We present toy examples where the observed data are
rotated Gaussians, and the independent components are their means.

The paper is organized as follows. Section 2 presents the preliminaries on
spectral linear ICA as introduced by [31] and gives a basic introduction to optimal
transport and the Wasserstein distance. In Section 3 we show a natural setting for
linear ICA in the Wasserstein space and provide the main result on recovery of
the independent components in the almost isometric setting. Section 4 contains
numerical toy examples to showcase our proposed method.

2 Preliminaries

2.1 Linear ICA via the Graph Laplacian

For the linear ICA problem, we follow the setup and results from [31]. Here, we
briefly summarize the main results needed.

The linear ICA problem is formulated as follows. Let S = (S, S2,..., Sp)
be n unknown independent components (random variables) with zero mean and
unit variance. Let A € R™*" be an unknown orthogonal mixing matrix. Consider
observations of these random variables, denoted as §,~ € RN. The observed data
under the mixing matrix A is given by

X =AST. D

To recover the independent components S from X, [31] interprets the observed
data points x1, ..., xy (column vectors of X) as the nodes of a graph. The weights
of this graph are defined by

—llx; —x;11?
Wij=e 2 ()
where || - || denotes the Euclidean distance between x; and x; and 4 is the width

parameter of the kernel. From this weight matrix, the normalized graph Laplacian,
L=1-D"'w, 3)

is constructed, where D is the diagonal degree matrix defined by D =
diag (Z;\;l Wi’j).

It is proved in [31] that the eigenvectors of the graph Laplacian approximate
the independent components S;. The main argument concerns the convergence of
the graph Laplacian L to the backward Fokker-Planck operator as the number of
samples N — oo and the fact that the Fokker-Planck operator separates into n
one-dimensional operators when S; are independent; see [31].
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2.2 Optimal Transport and Wasserstein Space

In this paper, we focus on recovering the underlying independent components when
probability measures or point-clouds undergo a linear mixing transformation. The
optimal transport (OT) theory [20, 25] provides a natural framework for comparing
probability measures. We introduce the necessary background here and refer the
readers to [30, 33] for a thorough treatment of the subject. For an overview of the
computational aspects of OT, see [27].

Let P(R") be a set of Borel probability measures on R". Consider the space of
probability measures with bounded p (p > 1) moments, denoted by #,(R") where

PpR") = {M € PR : /Rn lx1” du(x) < +OO} : “4)

For two probability measures o, 8 € ,(R"), the 2-Wasserstein distance is defined
as

1
Wp(a, p) = min (/ llx —y||pd7T(X,Y))] ; )
R xR"

rell(a,B)

where I1(«, B) denotes the set of transport plans (couplings) between « and g, i.e.,
7 € Tl(a, B) is a probability measure on R” x R" with first marginal o and second
marginal 8. Here, we refer to the metric space (,(R"), W,) as the Wasserstein
space.

In the case when « is absolutely continuous, the minimizer 7 * of Eq. (5) is unique
and of the form (id, 7*)zc, where T* is called the optimal transport map between
o and B (see, e.g., [32, Theorem 2.12]). Here, § denotes push-forward operation
between probability measures. Specifically, given g : R" — R™, gsa, often referred
to as the push-forward measure of « by g, is a measure in P(R™) defined via

g:@(B) := a(g~'(B)), ¥ Borel sets B C R"™. (6)

3 Linear ICA in Wasserstein Space

We now describe a natural setup for linear ICA in the Wasserstein space. This
is similar to ideas related to manifold learning in the Wasserstein space; see,
e.g., [6, 14, 15]. As introduced in Sect. 2.1, the linear ICA problem for Euclidean
data can be solved by analyzing the spectral properties of the normalized graph
Laplacian L (Eq. (3)). In the context of Wasserstein space, this process involves
analyzing a Wasserstein-based graph Laplacian by leveraging the optimal transport
(OT) framework and, more specifically, using the 2-Wasserstein distance to compare
probability measures.
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Consider & : @ — P,[R") where & C R" represents a set of governing
parameters and the map & describes a nonlinear process of generating probability
measures from the parameters. Assume {w; }}V:1 are the underlying parameters
sampled from n independent components S = (S, ..., S,) from 2 and consider
observed data of the form B; := A;&(w;),j = 1,..., N. The probability
measures f8; are obtained via the push-forward of &(w;) by a mixing orthogonal
transformation A. Throughout this paper, we abuse notation by letting A represent
both the orthogonal matrix and the linear transformation it induces. As the Euclidean
distance is invariant under orthogonal transformations, the W), distance is invariant
under the push-forward via orthogonal transformations. See the Appendix for the
proof of the following:

Lemmal Let p > 1. Let o, B € Pp(R") and A be a n x n orthogonal matrix.
Then, Wy (a,0) = W,(Ara, Ago) for any a, 0 € P,(R").

As in the linear setting (Sect.2.1), the task is to uncover the independent
components Sy, ..., S, from the observed data {8; }?]: . See Fig. 1 for an overview
of this construction. We will focus on the following settings:

(i) (Almost isometric &): there exists some 7 > 0 such that
Wi (@), &) — o — k|| <1, Yo,k € Q

(ii) (Special case: isometric &): Wy (E(w), E(k)) = o — k||, Y v,k € Q.

Example 1 To illustrate the Wasserstein ICA setup, we give a basic example,
which is discussed in more detail in Sect.4 and is visualized in Fig. 1. Denote
by N(m, ¥) the Gaussian in R” with mean m and covariance X. A possible
map & is ® — N(w,cl), where ¢ > 0 is fixed. This is a simple way of
generating probability measures from parameters. The observed data would then
be A:N(w,cl) = N(Aw,cl), i.e., pushing these Gaussians by an orthogonal
transformation is equivalent to applying A to their means. Moreover, in this case,
(82, || - I is isometric to (E(£2), W3), where 2 C R”.

Remark 1 We assume that @ € R" and that support space for the probability
measures is R". It is not necessary for those spaces to have the same dimension 7;
this is mostly for convenience of presentation. The results that follow still hold if
the dimensions differ.

To recover the independent components Sy, ..., Sy, the idea is to utilize the
graph Laplacian with Wasserstein distances between the observed probability
measures {8 }?’zl rather than the Euclidean distance used in Eq. (3). This is natural
since we are dealing with objects in the metric space (P, (R"), W},). In particular,
we construct the normalized graph Laplacian:

Lw =1—D"'W, (7

p
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where

—Wp(B;.8)°

=e (8)

N

and D is the degree matrix associated with w.

Our goal is to understand to which extent the eigenvectors of Ly, approximate
the independent components under the assumption that the parameter space (€2, ||-1|)
is “almost” isometric to (E(£2), W)). The recovery result follows from combining
eigenvector perturbation results with results from [31]. The main theorem of this
paper concerns the eigenvector perturbation under an almost isometry assumption.

Theorem 1 (Almost isometric &) Let p > 1. Let S1,..., S, be (real-valued)
independent random variables and let A denote an n x n orthogonal mixing matrix
or the orthogonal transformation it induces. Assume that @ C R" such that S € Q,'
where § = (S1, ..., 5,). Let & : Q — P,(R"). Assume that there exists n > 0 such
that

Wi (E®),8k) — o —«l*| <1, Vo, k € Q. )

Let {a)j}?]:1 be N instances of S and B; = A3E(w)). Let L and Lw, be the

normalized graph Laplacian associated with {Aw }N | (see Eq. (3)) and associated

with {ﬂJ}N | (see Eq. (7)), respectively. Let Ay < ... < Ay and )»1 <...< AN
be the elgenvaluev of L and Lw,, respectively. Fix 1 < j < N, and assume that
§j == min{A; — Aj_1,Aj41 — A;} > 0. Then, for the eigenvectors ¢; and qb,
satisfying L¢j = Ajpj and L, qb, =% ¢j, the following holds:

1/2

cos Z(¢j, 5/) >1- ngaer (b _|_23/2(Sj_1 ( mmrD —{—bVnglln/z —{-br})/Z))z .
n n (10)
Here, epiy = e 2 and epgy = e2i, a = max{|ena — 1|, |€min — 11}, b =
max{|8m,%2 — 1], |8;i1n/2 — 1]}, and rp = g’”‘_‘x With Dipgx = max D;;, Dyin =
\min ;

min D;;. Here, D is the degree matrix associated with {w j}j'v:y
14

Proof We start by comparing the distances used in the kernel in the Wasserstein and
Euclidean settings (see Eqgs. (8) and (2)). The former uses the Wasserstein distance
of the observed measures, i.e., WI%(,B,-, B;j), while the latter uses the Euclidean
distances between the mixed parameters, i.e., ||[Aw; — Aa)j||2. Since A is an
orthogonal matrix, by Lemma 1, we have

Wp(Bis Bj) = Wp(AzE(w)), AgE(w))) = W, (E(w;), E(w))).

I Here, we abuse notation and do not differentiate the measurable function S from its function
value. S € ©2 means that the function values of S are in the set 2.
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Since ||Aw; — Aw; || = |lw; — /]|, it follows from Eq. (9) that
2 2 .o
W2 (Bi. Bj) — |Awi — Awj| ‘gn, Vi,j=1,...,N. (11)

Denoting by W, W the weight matrices associated with Lw, and L, respectively,
we have that

VT/‘
e N/2h < iy < e/2h (12)
The relationship between the corresponding eigenvectors of Ly, and L then follows
from an eigenvector perturbation result, which we summarize in the Appendix; see
Proposition 1. O

Remark 2 Theorem 1 also holds when W), in (9) is replaced by any nonnegative
function D : P,(R") x P,(R") — RT satisfying D(Aza, Ayo) = D(a, o) for
any orthogonal transformation A : R* — R". One example for another distance
satisfying this property is the total variation distance D (e, 0) = supgeggn) |l (B)—
o (B)|, where B(R™) denotes the Borel sets of R"”. Similarly, the Kullback-Leibler
(KL) divergence also satisfies this property, as it is nonnegative and invariant under
orthogonal transformations.

Remark 3 When & defines an isometry, i.e., n = 0 in Eq.(9), we have that
€min = €max = 1, which implies that ¢ = b = 0 and hence Z(¢j,$j) = 0.
Therefore, as expected in the isometric case, there is no difference between the
Wasserstein and the Euclidean settings; hence, the angle between the eigenvectors
is 0 (see Corollary 1).

Remark 4 In general, the lower bound of cos Z(¢;, 5 ;) given by the RHS of
Eq. (10) depends on an interplay between the constants &min, Emax, 6;, and rp.
In particular, when & is an almost isometry, i.e., the perturbation n between the
distances is “small” such that &min, émax ~ 1, one can expect that cos Z(¢;, i@ J) ~ 1
(or equivalently, Z(¢;, ¢ J) ~ 0), as long as §; is reasonably large and rp is
reasonably small. However, the numerical experiments seem to be more robust
than what this lower bound can predict. Remark 7 shows that the independent
components can be recovered, even when the RHS in Eq. (10) is below — 1, in
which case this bound is not useful in predicting the recovery performance. We
leave the improvement of this lower bound for future work.

Remark 5 When 0 < W2 (E(w), E(k)) — llo — «||> < 1, we have that the constant
Emax < 1, and hence a < 1.

Corollary 1 (Special Case: Isometric &) Letr S, A, 2, & and {w j}i'vzl be as
defined in Theorem 1. Assume that

Wy(E(w), EK)) = llo—«ll, Yo,k € Q. (13)

Then, Lw, = L in Theorem 1.
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Proof In this case, Wi i = W;j, which implies LWp = L. O

Remark 6 (Recovery of independent components) From [31, Section 4.1], we
know that in the Euclidean setting, the eigenvectors of the graph Laplacian L
approximate the independent components Sy, ..., S, up to errors coming from the
sampling process (in the limit N — o0). Our Theorem | now states that in the
almost-isometric setting, the eigenvectors of the Wasserstein-based Laplacian Ly,
approximate the eigenvectors of L up to the error (Eq. (10)). Putting this together,
in the almost-isometric setting, the Wasserstein ICA recovers the independent
components Sp, ..., S, up to these two approximation errors combined.

4 Examples and Numerical Experiments

In the following two numerical experiments, we use point-clouds drawn from
Gaussian distributions that use independent sources as means, with fixed (isometric
case; see Example 3) and varying (almost isometric case; see Example 4) covariance
matrices (Figs.2a, 3a). These Gaussians then undergo an unknown orthogonal
transformation (Figs. 2b, 3b). The Wasserstein-based ICA method is then applied
to the observed “linearly mixed” point-clouds, and the recovery of the independent
components (the means) is presented.

Figures 2 and 3 are illustrations of the two settings we consider (isometric and
almost-isometric). We note that as with Fig. 1, these are sketches for visualization
purposes and do not represent the actual data used to carry out the numerical
experiments. The reason for using sketches only is to make sure individual

Fig. 2 An illustration of the isometric case (Sect.4.1). This is a sketch for illustration purposes;
the actual numerical setup is described in Sect.4.1. (a) Independent components (the Gaussian
means) are sampled on a square, and Gaussians with these means and the same covariance (are
multiple of /) are considered. (b) Gaussians from (a) are transformed with an orthogonal matrix A
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Fig. 3 An illustration of the almost-isometric case (Sect.4.2). This is a sketch for illustration
purposes; the actual numerical setup is described in Sect.4.2. (a) Independent components (the
Gaussian means) are sampled on a square, and Gaussians with these means and the covariances of
varying sizes are considered. (b) Gaussians from (a) are transformed with an orthogonal matrix A

Gaussians are visible (when means are densely and nonuniformly sampled, different
Gaussians easily overlap making it hard to identify individual instances of data).

4.1 Isometric Case

We first look at the case when & defines an isometry from the parameter space (€2, ||-
) to the space of probability measures (P, (R"), W) for p = 2, i.e., when n = 0
in Theorem 1. In this case, the Wasserstein ICA problem reduces to the Euclidean
linear ICA problem, as the graph Laplacian using the Wasserstein distances of
observed measures coincides with the graph Laplacian in the parameter space. The
same approximation and recovery results for the independent components hence
follow from [31]; see Corollary 1 and Remark 6.

One way of generating measures for which isometry (e.g., Eq. (13)) holds can be
obtained by the translation of a base measure.

Example 2 (Isometric &) Let «g € P> (R") and 2 € R". Define & : Q — Pr(R")
by E(w) = Typa0, where T, (x) = x — w is a translation. It follows that & is an
isometry since W2 (E(w), E(k)) = Wa (T, Tieyap) = lo — k||

We now consider a related example that is built from an example in [31].

Example 3 Consider n = 2, and generate parameters in Q2 by S = (51, S2) with the
independent components Sy, S> given by

S1 ~U—3,3), S~ N(O,1), (14)
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where ‘Ll(—\/g, \/§) denotes uniform distribution on [—\/§, \/5] and N(0, 1) is the
standard normal distribution. In all the numerical experiments performed, we have
applied a filter on samples from § to remove the isolated outliers, similar to [31].

Let {w ]} = , be N instances of S and generate point-clouds ,3 ; sampled from
AsN(wj, cl), ] =1,..., N. Here, we choose ¢ = 0.003 and

A — [cos(r/4) —sin(r/4) (15)
~ |sin(w/4) cos(m/4) |’

which describes the orthogonal mixing matrix. The number of point-clouds is N =
600, each of which contains 30 points.

The eigenvalues 0 = A1 < Ay < ... < Ay of the normalized graph Laplacian

Ly, are computed from {//3\]- }N=1 using the kernel (Eq. (2)) based on the W;-distance,

—Wy(B;.B)?

i.e. Wl i = e% where the Wasserstein distances Wz(,Bl , /3 ;) are computed
using the Python Optimal Transport (POT) package [12] and £ is set to 0.2. Here, D
is the degree matrix associated with the weight matrix W. We use the eigenvectors
¢2 and ¢3, which correspond to the first two nontrivial eigenvalues to recover the
independent components. In Fig.4c and d, we plot ¢2 and ¢3 and color them by
the original independent components S; (Fig. 4c) and S (Fig. 4d), respectively. We
observe that the independent components are recovered since the eigenvectors are
in one-to-one correspondence with the independent components (Fig. 4a, b), as is
expected from Corollary 1.

The term “one-to-one correspondence” means that ¢2 Is an increasing function
of S; and that ¢3 is an increasing function of $>. In particular, ¢2 is independent
of S and similarly, ¢3 is independent of S;. Visually, this is demonstrated by the
coloring in Fig. 4.

4.2 Almost-Isometric Case

A more interesting case is when 7 in Theorem 1 is small, i.e., the almost-isometric
case. One way of generating measures such that Eq.(9) holds is by varying an
isotropic Gaussian by its mean and variance.

Example4 Let @ C R". Letc :  — [c1,c2] where 0 < ¢; < ¢p. Define
E:Q — PR by E(w) = N(w, c(w)1). Using the Wasserstein distance formula
for Gaussians (see Lemma 3), we have

2
WE@), E6) — llo = kII? = n(Ve() = V) (16)
= n(y/er = Jer? (17)

n(cy — c1)?

= mln{n(C2 - C1)7 4c
1

b (18)
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Fig. 4 Illustration of the one-to-one correspondence between the eigenvectors of the graph
Laplacian and the independent components described in Example 3 (isometric example). (a) The
independent components S = (57, S») are colored by the first nontrivial eigenvector &>. (b) The
independent components S = (Sj, S2) are colored by the second nontrivial eigenvector $3. (¢)
The eigenvectors (@2, $3) are colored by the first independent component S;. (d) The eigenvectors
(¢2, ¢3) are colored by the second independent component S>

where the last inequality follows from the simple facts that ,/c; — \/c1 < /2 — ¢1

and \/c; — \Jcr < ‘22\;6111 . Similar to Eq. (12), we get

~

ez < Wiy (19)

where n = min{n(cy —cy), %} can be made small by choosing ¢; — ¢y small.
By Proposition 1, the relationship between the eigenvectors of Ly, and L is given
by Eq. (10) with constants a = |1 — e 12h < land b = |1 — "%,

In our numerical experiments, we again choose empirical measures corresponding
to point-clouds B\j sampled from the observed Gaussians Az N (a) i c(wj)] ), where
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w; are instances of parameters sampled from the independent component vector
S= (51,8, 5)7

We follow a similar numerical setup as in Example 3. The dimension is n = 2, the
parameters {® j}é\':1 are generated from S = (S ,ASz) specified in Eq. (14), N = 600,
Aisin Eq. (15), and & = 0.2. Each point-cloud §; contains 30 points sampled from
AﬁN(wj, c(a)j)I), where c(w;) is chosen uniformly in [0.998, 1.002].

As in Example 3, the eigenvectors #> and ¢3 of L, corresponding to the first
two nontrivial eigenvalues are used for the independent component recovery.

In Fig.5, we plot #> and ¢3 colored by the original independent components
S1 (Fig.5c) and S (Fig.5d), respectively. In Fig.5a, b, the original parameters
S = (81,5,) are colored by ¢~>2 (Fig.5a) and ¢~>3 (Fig. 5b), respectively. We
observe that the eigenvectors are in one-to-one correspondence with the independent
components, as expected from Remark 6.

To obtain the theoretical bound in Eq. (10) from Theorem 1, we estimate &p;p,
emax by Eq.(16) and hence use the min and max of (v/c(w;) — 1/c(a)j))z. We
observe that emin, émax = 1 for the chosen parameter interval. The remaining
constants rp,8;, j = 2,3 are computed directly using W and L (see Eq.(3))
associated with {Aw j};v: |- Taking the average of multiple numerical outputs, we
obtain

cos / (¢, o) > 0.993,  cos L(¢3, ¢3) > 0.989, (20)

with standard deviation 0.006 and 0.012. The two angles are around 6.8° and
8.5°, respectively. Based on the chosen example, small angles were expected; see
Remark 4.

The preceding example shows that when the covariance of the Gaussians varies
by small constants, i.e., when % ~ 1, then the independent components S; and
S» are well approximated by the eigenvectors of the graph Laplacian and the error
established in Theorem 1 (Eq. (10)) can be explicitly computed; compare Eq. (20).
Even when the error bound (Eq. (10)) is not meaningful (e.g., when the lower bound
is negative), the Wasserstein ICA method may still be successful in recovering the

independent components. We now discuss one such case.

Remark 7 Following the exact same setup as Example 4, we choose ¢(w;) uni-
formly from [0.00003, 0.3] such that 2@ ~ 104 which indicates a significant

min ¢(w)
size difference in {//3} }7:1 . The error established in Eq. (10) is computed but exceeds
the range of cosine function due to small epj, defined in Theorem 1 and is thus not
insightful. However, the first two nontrivial eigenvectors #> and $3 computed from
Lw, (Eq. (7)) are nevertheless in one-to-one correspondence with the independent
components S and S, as illustrated by Fig. 6 in the Appendix.

2 Note here &E(wj) is the empirical measure of a point-cloud sampled from N(w;, c(w;)I).
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Fig. 5 Illustration of the one-to-one correspondence between the eigenvectors of the graph
Laplacian and the independent components described in Example 4 (almost-isometric example).
(a) Independent components S = (S;, Sy) colored by the first nontrivial eigenvector 52, (b)
independent components § = (5], S2) colored by the second nontrivial eigenvector %3, (©
eigenvectors (¢, ¢3) colored by the first independent component S;, and (d) eigenvectors (¢2, ¢3)
colored by the second independent component S

5 Discussion

We have presented a framework for applying linear independent component analysis
when the observed data consists of probability measures or point-clouds. Our
method mimics the classical Euclidean setting and shows that when the observed
point-cloud data is almost isometric to Euclidean data, comparable recovery results
can be achieved. We consider this paper a first step toward the development of
a complete theory for ICA in the Wasserstein space. Topics of future interest
concern going beyond the almost-isometry assumption and studying nonlinear ICA
problems.
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Fig. 6 Illustration of the one-to-one correspondence between the eigenvectors of the graph
Laplacmn and the independent components described in Remark 7. (a) Independent components

= (81, $2) colored by the first nontrivial eigenvector ¢>2, (b) independent components § =
(S], S>) colored by the second nontrivial eigenvector ¢2, (c) eigenvectors (¢2 ¢3) colored by the
first independent component Sy, and (d) eigenvectors (452, ¢3) colored by the second independent
component S
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Appendix

Proposition 1 Ler W, W be NxN wezght matrices built from Egs. (2) and (8).
Lt L =1—-D'Wand L = I — D™'W be the corresponding normalized
graph Laplacians, with D and D being the associated degree matrices, respectively.
Assume that Wi = &;jWjj such that

0<3min§5ij§8mam l,]=1,,N (21)



Linear Independent Component Analysis in Wasserstein Space 145

Suppose Ay < ... < Ay and M < ... < y are the eigenvalues of L and L,
respecllvely Fix j € {1,..., N}, and assume that §j := min{A; — A;_1,Aj4] —
Aj} > 0. Then, for ezgenvectors ¢; and ¢>j satisfying qu] =XAj¢; and qu] = Adj,

12
cos L(¢j, ¢j) = 1 — Smaer (b + 23/28;1 ( mlnrD +erSm;1/2 +br1/2
(22)
where a = max{|emax — 1], |emin — 1|}, b = max{|emat” — 1], ler;iln/z — 1|}, and

rp = g’”’fx with Dpax = max Djj, Dy = min D;;. Here, D is the degree matrix
min l' l'

associated with W.

Proof Let M = D™'W and M = D~'W. Since L and M (similarly, L and ]l~4)
have the same eigenvectors, it is equivalent to analyze the eigenvectors for M and
M. We first look at eigenvectors for the symmetric matrices S = D'/2MD~!/2
and S = DY2MD~'/2 1t is not hard to verify that if V is an orthogonal matrix
whose columns are eigenvectors of S, then the columns of D~ V2V are ei genvectors
of M corresponding to the same eigenvalue. Without loss of generality, assume that
¢j = D~y and; = D1/, where v; and U; are unit eigenvectors of S and S,
corresponding to eigenvalues A ; and i j» respectively. We will first bound 1V —vjll
using Corollary 2. Observe that S=D"12WD 12 and § = D-12WD~1/2 .Bya
direct computation, we have the followmg bounds:

-1/2

ID~Y2) < D", (23)

ID~12 < e l? D2, (24)

IWI < IDIID™'WI < Diax. (25)

W = Wil < IW = WIIT = Wlhoo = I = Wiy < aDipas, (26)
where a = max{|emax — 1|, |émin — 1|}. Here, || - || denotes the matrix 2-norm, and

we have used the fact that || D~ W|| Y 1 in Eq. (24) (since DW!is nonnegative
and row stochastic) and the fact that W — W is symmetric in Eq. (26). Similarly,
since

—-1/2
min

(emat” — D(Di) ™2 < (DY) — (D7) < (6> — )(Din ™12,

we obtain

—1/2

ID~Y2 — D7V2| < bD_/%, 7)
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—1/2

where b = max{|8ml,{2 — 11, lein - — 11}. By the triangle inequality,

IS— S| < |ID~'2WD~'/2 — p~12wD~172|
+ | D-V2wD~V2 — p-l2w p-l/2. (28)

For the first term in Eq. (28), we have

D12 D12 — p=12w B-12) < | BV — 2w D12
< (KB~ — B2w| -+ 1512w — D' 2wl 152

< ID7YV2P|W — Wl + IDV2 — D712 w1 D72

—1/2
min °

mmD Dmax + brpe

min

where the last inequality follows from Eqs.(24)—(27). For the second term in
Eq. (28), we have

|D72wDY2 — D= 2w < D7V 1D — D7)
- -1/2
< ID'2 11D~ W BD )

min

< bR
Hence,

IS = SIl < aezlrp + brpe > +bry”, (29)
where rp = %.

Without loss of generality, assume that 5J.T v; > 0 (otherwise reverse the direction
of one of the vectors). Then, by Corollary 2, we have

VRIS -S|,
3/20—1
—3 = 2778 (

Ly 4 brpe- /% brll)/z) . @30)
j

”vj - Uj” = €min min

Here, we have used the fact S has the same “eigenvalue gaps” (§;’s) as L (in the
reversed order) since {1 — X } _; are eigenvalues of S. It follows that

l; — il = |ID7V?T; — D12y,
=< ”5_1/2’171 — D™ 1/2"" ” + ”D 1/2'17j _ D_1/2vj”
< ”5_1/2 — D_1/2” + ||D—1/2””f5] _ l)]”
<p_ 17 (b+23/25 l(ag ro 4 brpe=? 4 br 1/2))' o

min min
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Moreover, it is not hard to show that |[D~V2y| > Dr;;,{2||v|| for any v € RV,
which implies that [|¢; | = | D~"/2v;]| = Dygt” as [lv;]| = 1. Similarly, ;]| >
(emaxDmaX)"/ 2 Leto ; be the angle between ¢; and ¢ ;. Then,

a2
cosf; > 1 — M
2]ipjllNejl
172
Enl 3201 (. —1 —1/2 172\ 2
>1-— > rplb+2 5/’ ae . rp +brpe "+ bry .

O

Proof of Lemma 1 Let o, 0 € P,(R"). It suffices to show that W,(a,0) >
Wy (Aga, Ago) for any orthogonal matrix A, which implies the reversed inequality
by starting with W,(Aza, Azo) and applying A~!. Let y be an optimal transport
plan between « and o. It is not hard to see that (A, A);y is a transport plan
between Aja and Apo, where (A, A) : R" x R" — R" x R" is defined by
(A, A)(x,y) = (Ax, Ay). Indeed, let 71, mp : R” x R* — R” be the projection
functions mapping (x, y) to its first and second coordinates, respectively. Since
m1o(A, A) = Aoy, itfollows that 14 ((A, A); ¥) = As(1:y) = Asa. Similarly,
bio% ((A, A)y y) = Ajo. By the change of variable formula, we have

WP (Asa, Aro) < /R L IF=F17d((A, A)20) G
nx n

=/ [Ax — Ay[Pdy (x, y)
R" xR"

:/ It — ylPdy (x. y)
R* xR"

= W,I:(oe, o).
O

Lemma 2 ([34, Corollary 3]) Let X, 3 € R pe symmetric, with eigenvalues
Al > oo > Apand il > > ip, respectively. Fix j € {1, ..., n}, and assume
that min(Aj_1—X;, Aj—XAj11) > 0, where Ao := 0o and A,41 := —oo. Ifv, v € R"
satisfy Xv = Ajv and 0= ijﬁ, then

21% - 3|

sin (0, v) < — .
min(Aj_1 —Aj, Aj —Ajt1)

Moreover, if 1T v > 0, then

212E - 3|
min(Aj_1 — Aj, A; —)»j+1)'

0 —vll <

Here || - || denotes the matrix 2-norm.
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Lemma 3 (Wasserstein Distance Between Isotropic Gaussians) Ler «;

N(w;, cil) and aj = N(wj,c;jl) be two Gaussians supported on R*. The W

distance between o; and o is

W3 (@i, o)) = o — ;]1* +n(Jei = /&),

Proof By [27, Remark 2.31], the Wasserstein distance between two Gaussians o =

N(@ny, Zy) and B = N(mg, Zp) is given by
2 _ 2 2
W2 (a’ ﬂ) - ”mol - mﬂ”z + B(Eolr Eﬁ)
where

B(Sa, Bp)° = Tr(Zq + Tp — 22255 2L/H12)

is the Bures distance; see, e.g., [4]. We let a; = N(w;, ¢;1) and o = N(wj, c;1),

which implies

Wi(ai, ;) = llw; — o> + Blcil, ¢; 1)

It is easy to see that B(c; 1, c; N? = n(/ci — /cj)z, from which the result follows.
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Faster HodgeRank Approximation )
Algorithm for Statistical Ranking and e
User Recommendation Problems

Shelby Ferrier, Junyuan Lin, and Guangpeng Ren

1 Introduction

Statistical ranking and user recommendation problems are central to a wide range
of applications, including sports, web search, and literature search. Over the years,
researchers have been searching for robust algorithms that can obtain accurate
ranking [2, 4-6, 10-12, 16, 18]. Out of those methods, the HodgeRank algorithm,
proposed by Jiang et al. [15], is able to derive a global ranking from subjective,
incomplete data sets that contain voters (e.g., people who have reviewed some
movies) and scored elements (e.g., the ratings each person gives to a movie).
The HodgeRank algorithm, distinguished from other ranking methods, analyzes
pairwise differences represented as edge flows on a graph using discrete or combi-
natorial Hodge theory. In Sect. 2, we provide a detailed summary of the HodgeRank
algorithm proposed by Jiang et al. [15], particularly how the HodgeRank algorithm
formulates the statistical ranking problems into linear least squares problems on
graphs.

In recent years, there have been several algorithms developed to approximate the
HodgeRank ranking algorithm, with a primary focus on specific applications. Xu
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et al. [25] propose a robust ranking framework that uses Hodge decomposition and
focus on detecting outliers through sparse approximations in computer vision. Wei
et al.’s [24] work applies HodgeRank model to characterize structural properties of
biomolecules, with a focus on accuracy in identifying cycles, loops, and folding
patterns within complex biological data while placing less emphasis on efficiency
with large-scale data.

By leveraging the graph properties, there are two main benefits to the problem
of ranking data sets: (1) the HodgeRank algorithm can be applied to data sets
that are incomplete and imbalanced; that is, not every voter rates every element,
and not all elements get an equal amount of rates. This is done by forming each
voter’s rating items into a fully connected subgraph and merging these subgraphs
into a larger item graph with weighted edges. (2) The HodgeRank algorithm can
be found particularly useful on data sets where the bias of the voters may need to
be considered. For example, some people give most movies top ratings, whereas
others may have higher standards for what a good movie is. The pairwise rankings
in the HodgeRank algorithm resolves this by focusing on the difference one voter
gives between two different elements, as opposed to their individual ratings. These
pairwise differences are stored in the graph as edge flows. This feature contributes
to the popularity of the HodgeRank algorithm among statistical ranking methods.

Another significance of deriving the statistical ranking problems into linear least
squares problems on graphs is that it provides a measurement for the quality of the
global ranking. With the relationship to least squares problems on graphs, many
mathematical solvers can be applied. A baseline solver to compute the least squares
problems is a direct solve on the pseudo-inverse of an n x n matrix where n is
the number of elements to be ranked. The time complexity of this direct solve is
O (n3); therefore, the HodgeRank algorithm becomes computationally limited as
the number of items being rated increases. We measured run times of more than an
hour as the number increased over 2000, which we show in Sect. 4. As a result, for
very large sets of elements (more than 10,000), it is preferable to approximate the
ranking rather than use the original algorithm. As mentioned in [3], the unsmoothed
aggregation algebraic multigrid (UA-AMG) [21] as a preconditioner for conjugate
gradient (CQG) yields efficient computation of the least squares problems. In [3],
authors used the algebraic multigrid (AMG) method [9] to cut down on run time to
O (nlog n) while closely approximating the universal ranking.

To further reduce the computation complexity, in Sect.3, we present a new
method to cut down the time complexity of HodgeRank, which sections the data
into groups before computing the ranking. We tested the grouping method on IMDb
movie rating data [1] and found the resulting ranking to be a strong approximation
for the Hodge ranking. Additionally, we saw that the accuracy of the results was
generally dependent on how many groups were used, with fewer groups producing
more accurate results. Finally, we analyze the time complexity of the method and
discuss the trade-off between run time and accuracy when picking the best group
size.
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Table 1 Example ratings

. Fever | Sore throat | Cough | Nausea
from patients 1-3 on four

symptoms. *The “X” in the Pat?ent 13 2 2 5
above data set represents a Patient 2 | 7 8 9 X*
missing value Patient 3 | 2 2 1 3

2 Method and Model

The goal of the HodgeRank algorithm is to obtain a relative ranking of elements in
a set, based on ratings given to them by individual voters.

To demonstrate the method created by Jiang et al. [15], we take an example
through the method in Table 1. Suppose we aim to rate the symptoms of COVID-19
by severity; thus, we survey three patients on a set of symptoms (fever, sore throat,
cough, and nausea):

A straightforward approach would be to rank the severity of symptoms by
computing the mean of each column. In this data set, the mean of each column
is four, which implies that each symptom is equally as severe. However, examining
the data reveals that some symptoms should be rated higher than others: nausea, for
example, is rated the most severe by every patient who reviewed it. To get a more
accurate ranking, we use the HodgeRank method instead.

2.1 Terminology

There is some terminology needed to understand HodgeRank, which we detail here.
Following the notation used in Jiang et al. [15] and Colley et al. [3], we define A to
be the set of voters and V to be the set of elements that are voted on. For @ € A, we
denote V, to be the set of elements rated by voter «. Similarly, we let A;; denote
the set of voters who rated both elements i and ;.

In our example, we have the following:

A = {Patient 1, Patient 2, Patient 3}
V = {Fever, Sore Throat, Cough, Nausea}
Vpatient 2 = {Fever, Sore Throat, Cough}
Also, we define the rankings as R : A x V — R. For example, if voter o gave
element i a score of 5, we would say R(w, i) = 5.

Using this terminology, we find a universal rating, which is a rating that applies
to all elements that have been voted on.
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2.2 Graph Building

The HodgeRank method involves building a complete graph with |V| nodes that
encodes information from our entire data set. In graph theory, a complete graph is a
graph that has an edge connecting every pair of nodes. To build a graph that encodes
the entire data set, we create one graph for each voter.

Using the elements in V, as nodes, we form a complete graph for every voter
where each node represents an element (see Fig. 1). Note in the example below that
we replace the name of each symptom (fever, sore throat, cough, nausea) with letters
(A, B, C, D), respectively.

Let E denote the set of all edges. For every edge, we define an orientation by
indiscriminately designating one node to be the sink node and the other to be the
source node. To keep things simple, we let nodes that are indexed earlier be the
source nodes (Fig. 2).

The relationship between pairs of nodes is described with the pairwise compari-
son function, f*(i, j), where « is a voter.

G, j) = R(e, j) — R(e, i) 6]

We can now define one graph, G, pertaining to all voters’ data. G is a complete
graph containing every alternative in V, so long as it has been voted on, as well as

(“2/‘) edges.

el

Patient 1 Patient 2 Patient 3

Fig. 1 Complete graphs for patients 1-3. The letters represent symptoms as follows: A (fever), B
(sore throat), C (cough), and D (nausea)

g ey

Fig. 2 Patient 2’s graph with pairwise comparisons. The orientation and weights are defined by
the pairwise comparison function. An example of how the score is calculated

‘\1
./1
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Fig. 3 The edge flow of the

entire group’s graph based on B
the ratings in Table 1. The / | \
letters are symptoms. The Q 2 o
orientation and weights are /
defined by the pairwise C < 0 |
comparison function \

2 5\ /g:

D

We should take into higher consideration pairs of elements that were voted on by
many people. With this in mind, we define the weights for each edge as the number
of voters who rated both alternatives:

wij = |Ajjl 2
where A;; is the set of voters who rated both i and ;.

The edge flow of the entire group’s graph, f : V x V — R, represents the
average pairwise difference of each edge:

1
[ )= DA 3)

|Al]| OlGA,'/'

We show the edge flow of the aforementioned example in Fig. 3.
Later in this paper, we’ll refer to the edge flow as the vectorized version of f,
indexed by the set of edges E, such that f € RIF!.

2.3 Least Squares Problem

Our goal is to find a universal rating r : V — R that maps every element to its
relative rating. By comparing r to the data processed in our graph, we can evaluate
the efficacy of our rating. A good choice for r should agree highly with our edge
flow, so for each pair of nodes, we aim to minimize

fG )= () —r@) “4)

We also take into account the number of voters who evaluated both i and j: w;;.
Edges corresponding to item pairs rated by many voters should be given greater
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weight than those rated by few. This handles the imbalanced nature of our data.
Thus, we arrive at the function we use to judge the efficacy of any ranking r:

3w (£ ) — () = r@)? 5)

ijev

Notably, multiplying by w;; does not boost any element’s rating. Instead, it places
more importance (or lack thereof) on the balance of f (i, j) and the difference of the
universal ratings.

2.4 Assessing Inconsistencies in the Graph

In many data sets, there are contradictions in the graph; paradoxical cycles often
arise in G, especially when each voter only reviews some of the elements in V. Let
Fig. 4 be a graph processed using Hodge, where the values along the edges are edge
flows.

In Fig.4, the edge flows suggest that element A should be scored lower than
element B, which should be scored lower than element C, which should be scored
lower than element A. This is paradoxical. Thus, defining a consistent global ranking
becomes infeasible in such scenarios. In their paper proposing the HodgeRank
algorithm, Jiang et al. [15] propose a method to quantify the extent of local
inconsistencies in a vector, which we call ¢. A detailed derivation of ¢ is not shown
in this work, but for interested readers, we provide the basic algorithm in Sect. 2.6.

For reference later in this paper, c¢ is indexed by C where C is the set of all 3-
cycles in the graph G. Similar to the set edges, we arbitrarily define an orientation
for each 3-cycle in C. Also, we can observe that any paradoxical cycle of arbitrary
length can be decomposed into a combination of 3-cycles since 3-cycles are the
simplest type of cycle. Therefore, it is sufficient to only consider 3-cycles for any
inconsistency in the graph.

Fig. 4 Example of edge

inconsistency. The letters are .\

voted elements. The

orientation and weights are

defined by the pairwise \
comparison function N / A

rg

hY
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2.5 Hodge Decomposition

In this section, we demonstrate how Hodge decomposition is used to show that it is
possible to find a ranking r € R!Y! (where r is the vectorized form of r indexed by
V) and local consistency ¢ € R!C! for any edge flow f € RIEl. Local consistency
means that any 3-cycles in the graph should not create contradictions with each
other or the larger structure.

First, we must define the boundary operators of the graph.

The negative divergence, denoted by 91 : RIEl — RIVI is defined as

—1, if v; is the source node in ¢},
(01)ij = {1,  if; is the sink node in e,

0, else.

Note that the divergence is simply 8]T .
The curl, 8; : RI¢! — RIEI is defined as

I,  if e; € Cjwith same orientation as C;,
(32)ij = {—1, ife; € C;with same orientation as C;,
0, else.

The 1-Hodge Laplacian is L] = BlT a1 + 8282T . Due to Hodge decomposition [3, 15,
19], we can show the following:

REV = imT) @ ker(Ly) @ im(3])

R'El denotes the vector space of all edge flows in the graph. i m(a{ ) is the subspace
of edge flows that are gradient flows of the score function. ker(L1) is the kernel
of the Laplacian operator L on edges. It corresponds to the space of harmonic
edge flows that are both curl-free and divergence-free, representing equilibrium
conditions in the graph. i m(azT ) corresponds to the curl operator, the subspace of
locally cyclic pairwise rankings with nonzero curls.

Therefore, for any f € RI®!, we can findr € R!V/, ¢ € RIC!, and xp, € ker(L;)
such that

f=0/r+dc+x,
This shows that for any f, one is able to find a ranking r and a local consistency

¢. An extensive explanation of Hodge decomposition can be found in Lim et al.’s
work [19], with implementations demonstrated in [3, 15].
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2.6 Solving with Linear Algebra

Using linear algebra, the minimization problem from Sect.2.3 can be rewritten.
First, let ® be the vectorized version of w indexed by E. Using the negative
divergence of the system, the minimization becomes

in ||f— 8 r|? 6
min [If = 3/ riljy (©)

where W e RIEZIXIEl is the diagonal matrix whose entries are .
Using some basic calculus, the minimization reduces to the following:

HWalr=a wf (7)

The only unknown in this equation is r, so this is an Ax = b problem. The matrix
a1 WBIT is a well-studied matrix called the graph Laplacian, which has no inverse,
so when solving for r, the pseudo-inverse must be taken. The time complexity of
this operation is O(n3) where n = |V|.

Following a similar derivation, the solution of ¢ follows the same pattern. The
minimization problem reduces to

min It - doel 8)
Similarly, this reduces to
3 Ware = 81 WH, 9)

This equation has one unknown, ¢, which can be solved with complexity 0(n3),
where n = |E|.

It should be noted that while r represents the universal ranking on the set of rated
elements, ¢ represents the consistency of the graphical model created from the raw
data. Thus, the two are calculated independently.

2.7 Methods to Reduce Run Time

The usability of this method is impacted by the potentially great computational run
time. The most computationally expensive step of the method is taking the pseudo-
inverse of the graph Laplacian, which is an operation of order O (n%) where n is |V .

There are a few established methods to reduce the cost of solving for r in
NWolr=0a WE.

One is the algebraic multigrid (AMG) method, which lets x € R" be approx-
imated with linear complexity, O(n), where x is the only unknown in Ax = b.
Furthermore, the work can be done in parallel across multiple machines, making it
an ideal choice for implementing HodgeRank when the number of elements to be
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ranked is very large. In short, the method is a successive subspace correction method
that recursively partitions the solution space to approximate the best solution. More
information can be found in the article by Falgout et al. [9], which introduces the
method, as well as in more recent advancements of the adaptive AMG [14] and
spanning tree-based AMG [13] for better convergence results.

Tai et al. [22] detail a successive subspace correction method (SSC), which is a
general convex optimization algorithm that decomposes the original problem into a
number of smaller optimization problems.

Additionally, there is a method created by Drineas et al. [7, 8], which employs a
row sampling method to approximate large-scale matrix multiplication and reduce
graph size.

We introduce a new method in Sect. 3 that falls under the umbrella of dimensional
reduction and is specifically suited to reduce the run time of the least squares solver
on universal ranking problems.

3 Grouping Method

In this section, we propose an algorithm that reduces the computational cost of the
method by reducing the size of the matrix that we take the pseudo inverse of.

The key idea is that partitioning the data into smaller subsets can significantly
reduce overall run time. An in-depth description of the method is given in the next
section.

3.1 Naive Ranking

The first step in the grouping method is to obtain a naive ranking of elements, which
we denote rp : V — R. Several strategies can be employed for this initial step.

e Arithmetic mean of rating: In this ranking, elements are ordered by their
average rating. This is similar to sorting search results by “top rated”:

ZaeA,- R(O{, l)

10
[A;] (10)

ro(i) =

* Arithmetic mean of edge flow: Here, ry is the result of averaging the edge flow
between one node and every other node. The edge flow refers to f, which we
defined in Eq. 3:

1
o) = D FGD (11)

jev
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* Weighted arithmetic mean of edge flow: Here, ro is the average edge flow
between one node and every other node weighted by w:

Z]eva)ljf(]vl)

(12)
2 jev Wij

ro(i) =

Defining the naive rank as the weighted arithmetic mean of the edge flow yielded
better empirical results, as we include in the later section. We assume this is the
case because it incorporates the edge flow and the edge weight, which are both key
components of the final step of the HodgeRank.

3.2 Splitting into Groups

Next, we evenly split the group into k subgroups by their naive rank; that is,
the highest-scoring elements and lowest-scoring elements are kept together. See
expression (13) for an example where the elements in V, which are indexed by
their naive ranking, are split into three subgroups:

Vi = {v1, v2, v3}
V =[v1, v2, v3, v4, V5, Vs, V7, V8, V9] == V5 = {v4, vs, ve} (13)
V3 = {v7, vs, vo}

It is possible to run the HodgeRank on each of the groupings to achieve a
universal rating, but doing so omits much data (see Fig. 5).

To demonstrate this, we count the number of edges omitted. The graph that might
be formed in the normal HodgeRank algorithm has n nodes and (g) edges. Splitting
the elements into k groupings and building graphs for each of the groupings with
[ %] nodes results in a total of at most k(r?) edges. The number of edges that would
be dropped is

Fig. 5 Running the HodgeRank on smaller groups; all omitted edges in black



Faster HodgeRank Algorithm 161

(n) _k<[%1> nn—1) n(x —1) _n(n— )
k 2 )7 2 2 2

Ideally, all edges should contribute to the final ranking. To resolve this issue,
we introduce pseudo-nodes into each subgroup, which will be placeholders for
subgroups connections to other subgroups.

3.3 Adding Pseudo-nodes

Let V be the set of elements and { V1, Va, ..., Vi} be the set of subgroups. Then, we
let W, forn € 1,2, ..., k denote the set of nodes that HodgeRank will run on such
that W,, = {v, Vi, |v € V,,, m # n}. We modify the definitions of edge flow and edge
weight to suit the introduction of subgroups as pseudo-nodes (see example in Fig. 6):

a7 Laen,, [ )
USER DI [ﬁ 2 wen,; f4@, j)] (14)
Zvei,uej I:IAIT,,I ZaeAW fa(U, u)]

[Ajl
w(i, /) = { e 1A (15)
Zvei,uej |AW|

where the first situation for both Eqs. 14 and 15 is when i and j represent single
nodes, the second situation is when i represents a subgroup and not j, and the third
situation is when i and j represent subgroups.

LN AT
=—

Vi

Fig. 6 Groupings with pseudo-nodes; V) represents the elements in the first group {vy, v2, v3},
and similarly for V, and V3. Edges on the right represent all edges between respective nodes,
with thicker edges representing more edges from the original graph. Pseudo-nodes represented by
squares
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"0

Vi o
V2 1

U3
Vg <
vr vs Vs
Vg 174 Ve

— 1

Vg

V4 Vo
V2 Vs (0
Y | vs ]
U3
Vs
Vs

Fig. 7 Universal ranking from grouping method. Note that pseudo-nodes are omitted from the
final ranking

Finally, HodgeRank is executed independently on each W,,, yielding k rankings.
We achieve our final ranking by stacking the groupings’ rankings on top of each
other according to their order from the naive rank (see example in Fig. 7).

4 Results

To test the grouping method, we used the IMDb movie data set [1]. The accuracy
of a rating found using HodgeRank with grouping is measured by its similarity to
the ranking found using the original HodgeRank algorithm. We employ the rank-
biased overlap (RBO) [23], which we detail later in the paper. Finally, from our
experimentation, we discuss how to pick the best group size by balancing accuracy
and run time.

4.1 Data

For our experimentation, we used the IMDb movie data set, which is a collection of
IMDb movies updated on 27 December 2020 including their UserID, MovielD, and
ratings collected by Vahid Baghi and uploaded to IEEE Dataport [1]. The data set
offers 4,669,820 ratings from 1,499,238 users to 351,109 movies.

4.1.1 Preprocessing

Since the HodgeRank algorithm uses pairwise differences to build edge flows in
the graphs, inspired by how Page et al. [20] handled dangling links by removing
them, we first filter out users who have only voted for one movie, since the user
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subgraph would only be one node. To ensure all the movie ratings are statistically
meaningful, we also filter the movies by requiring they get ratings from at least two
different users.

Then, we derive the diagonal weighted matrix W and the negative divergence
matrix d; based on the HodgeRank with the selected movies and the users who
rated them. We define the edge flows f according to the ratings that are related
to the filtered movies. We formulate the matrix L = 81W81T , which is the graph
Laplacian, and b = 9; Wf, which is the right-hand side in Eq.7. The largest
connected component of the graph Laplacian in the IMDb movie data set is taken
out and analyzed. After filtering, the set contains a total of 62,917 movies, including
29,945 movies that were rated by at least two people in this set. To test the grouping
method outlined in Sect. 3, we also select different sizes of graphs corresponding
to different divides of MovielD ranging from 1000 to 20,000 and only maintain the
largest connected component of the subgraph. Thus, we can test the performance of
the proposed algorithm on various sizes n for its robustness and accuracy. Finally,
we produce the ranking r by solving each small HodgeRank linear system Lr = b
using AMG, as suggested in the paper by Colley et al. [3], which implements AMG
directly with HodgeRank.

4.1.2 Organizing by Popularity

Figures 8 and 9 present breakdowns of the number of voters per the n’th most
popular movie. Upon running the grouping method on the IMDb data set, we

50
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20

Number of Voters

0O 05 1 15 2 25 3 35 4 45 5 55 6
n’th Most Rated Movie 104

Fig. 8 Average number of voters for first n most-rated movies (all movies)
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Fig. 9 Average number of 250
voters for first n most-rated
movies (top 10,000 movies)
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observe that the average number of voters varies significantly across the data set.
The most-rated movie has 1441 total reviews, while the least-rated movie receives
around 5 reviews. This imbalanced data set motivates us to organize the data set
by popularity before truncating them into different sizes. We believe that the most-
rated movies contain more information across the different users and potentially
help preserve the accuracy of the approximated rankings.

4.2 Computing Environment

The numerical tests are conducted with a 1.80 GHz Intel Core i7-8550U CPU, a
quad-core processor, and 16 GB of RAM.

4.3 Accuracy

To evaluate ranking accuracy, we employ the rank-biased overlap (RBO) statistical
method [23] to compare our approximated rankings resulting from the grouping
method with the traditional HodgeRank ranking. RBO is a similarity measure for
ranked lists, which takes into account the position of items in ranked lists. Therefore,
it is a more appropriate measure of ranking similarity than Kendall rank correlation
coefficient (Kendall’s tau) [17], which scores similarity of two rankings through
pair-wise concordance of elements found in both lists. RBO uses weights for each
rank position, which are derived from a convergent series. The goals of RBO
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are to handle non-conjointness, weight high ranks more heavily than low, and be
monotonic with increasing depth of evaluation:

o0
RBO(S,T,p)=(1—p) ) _ p' ' Aq
d=1

where S and T are two distinct ranked lists and d is the depth of the list. A is the
agreement between S and T by the proportion of the overlap size over the depth,
essentially Xsd”, where Xy = |Is.1.4] such that I is the intersection between
the subset of lists S and T such that each subsetted list contains the top d ranked
elements.

The parameter p represents the steepness of decline in weights. For example, a
smaller p indicates a more top-weighted metric.

The RBO score falls into the interval of [0, 1], where O means disjoint (i.e., no
correlation) and 1 means identical (i.e., perfect correlation).

The following is our derivation of RBO, which changes the infinite summation
into a finite one. Starting from the original RBO, we have

o0
RBO(S,T,p)=(1—p)Y_ p' A4
d=1

Taking data up to some finite depth of k, we have

k
RBOwuncarea(S. T. p. k) = (1= p) Y p?~' 44
d=1

To account for the ranks beyond k, we assume that the pattern observed up to depth
k continues. Let X; = 25:1 A, be the cumulative agreement up to depth k. Then,

the average agreement up to depth k is %, which we assume that it holds for all
depths beyond k as well. Therefore, the agreement beyond &k can be written as

o
1 Xk
RBObeyona(S, T, p, k) = (1 — p) Z pi-1. 2k

k
d=k+1

Using geometric series, we obtain
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Fig. 10 The effect of the number of groups on ranking accuracy

We can rewrite the agreement beyond k as the following:

X
_-pk

RBObeyond(Sa T,p, k)= X

We can combine with the truncated RBO:

k
Xe  x d—1
RBOS, T, p.k) === p'+ (1 =p) Y p'"'Ag

d=1
Letting Ay = % we have
k
RBO(S, T, p, k) = Axp* + (1= p) Y p* ' Aa
d=1

100

Figure 10 shows higher RBOs when very few groups are assigned for the trials
with 1000, 2000, 4000, 5000, and 10,000 movies. This is expected, as when group
size k = 1, it is essentially applying the HodgeRank algorithm on some most-
rated movie subsets, and the ranking should be highly correlated to the HodgeRank
ranking on the entire movie set. As the number of groups k grows, the RBO scores
for all sets drop and most of them converge to around 0.4. This is because, as k
grows to the size of the movie set, the ranking would reflect the naive rank instead
of the HodgeRank, resulting in a low RBO score with the HodgeRank.
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Another observation is that when the movie set size is smaller (e.g.,n = 1000),
increasing the group number k does not seem to drop the RBO by a lot. This likely
occurs because the group with 1000 movies has more movies that were rated by
more people than the other sets. The accuracy of the proposed grouping method
hinges on the comparison of ratings among distinct movie groups. Consequently,
when a movie has ratings from users spanning diverse groups, the edge flows across
these groups become more representative, culminating in a higher overall rating
accuracy.

Overall, the rankings found using the grouping method show a high correlation
with the ranking found using just the HodgeRank. As we see in the next section, the
run time is greatly reduced by using groupings.

4.4 Run Time

First, we calculate the theoretical time complexity for this method and recommend
a general formula for selecting the optimal number of groups.

Since the most computationally expensive step in both algorithms is taking the
pseudo-inverse, we focus on this operation. The complexity of directly computing
the pseudo-inverses during HodgeRank with grouping is

O(k(% +k—1)?) (16)

Here, 7 + k — 1 is the number of nodes including the pseudo-nodes in each group,
and directly solving this group’s pseudo-inverse is O (3 +k — 1)3. Since we have to
solve it for all k even groups, O(k(% + k — 1)3) is the total complexity.

The selection of k gives us freedom in balancing accuracy and efficiency. As
mentioned before, when k is small, the ranking algorithm is more similar to
HodgeRank and takes more time. However, a large k results in a fast naive ranking.
When the item set is relatively small and accuracy is the priority, we recommend
using as few groups as possible, with two groups being ideal, while maintaining
a sufficiently small run time. As the number of items being ranked increases, it
may not be feasible to compute the universal ranking with two groups; thus, we
generally recommend using k = logs1(n), where k is the number of groups. This
recommendation comes from our empirical observation of the group size, which
will balance high conformance to the original ranking with feasible compute times;
however, it is recommended to use the least number of groups as their computational
resources allow.

Plugging our recommended k in%to Eq. 16, the run time of approximating the

23

ranking drops from O (%) to 0(1'—), even when using a direct solve.

Uggl(”)
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Fig. 11 Sample size versus time

Using the IMDb movie rating data set, we obtained the following run times. All
run times are measured on trials where k = 2, which gave the most accurate results.
One can increase the group size k for more robust approximations.

As Fig. 11 shows, the run times of all trials, which used the grouping method,
took less than an hour to run, whereas the longest run time for the original
HodgeRank algorithm is 13.85 hours, for 10,000 movies.

In our pre-processing, we used the n movies that were voted on by the greatest
number of people for evaluation of HodgeRank with grouping, where » is the sample
size. Thus, as sample sizes become bigger, the resulting graphs are more and more
sparse. Although the sparsity of our graph may be negatively correlated with run
time improvements, we clearly see that the most sparse data set we tested on (sample
size = 10,000) saw major improvements in run time.

5 Conclusion

HodgeRank is an algorithm that provides a ranking on data sets that may feature
bias and incompleteness. It also offers a metric for judging the correctness of the
ranking as well as a quantization of inconsistencies in the graph.

We propose a new group-based method to decrease time complexity while
upholding ranking integrity. This approach entails segmenting the set into distinct
groups to diminish the matrix inversion’s dimensionality. Concretely, we achieve
fast ranking through naive ranking methods, partition the item sets into groups
guided by the naive ranking, and introduce pseudo-nodes to each subgraph to retain
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cross-group connections. This strategy effectively dissects the extensive Laplacian
system generated by the HodgeRank algorithm into more manageable components,
each amenable to efficient processing.

The proposed grouping method introduces a group size parameter k, which
controls whether the resulting ranking is more similar to the HodgeRank or the
naive rank. When choosing a smaller group size k, the grouping method yields a
ranking that is highly correlated to the original HodgeRank while decreasing its run
time. When setting k at a higher value, the resulting ranking is closer to the naive
rank, which drifts away from the HodgeRank results. The choice of k represents the
balance between accuracy and efficiency.

Since the grouping method is meant to address issues with data sets with many
elements, we theoretically analyzed its run time and showed that the complexity of
direct solving the least squares is reduced from O (n) to O(k(% +k—1)3), where n
is the number of rated items and k is the number of groups. Picking a good number
of groups is important to reduce runtime while maintaining accuracy; for n nodes,
we found that a practical number is k = log,; n to yield better numerical results.

Further work on the grouping method might address the issue of edge cases,
where nodes that are sorted into the wrong tier at the start cause errors in the
final ranking. Splitting up the groups in a more sophisticated way, such as adaptive
splitting and groups with overlapping elements instead of evenly splitting, may help
address this issue. Additionally, it would be interesting to look into the performance
and run time of embedded groupings for data sets with a great number of elements.

Competing Interests The work of Junyuan Lin was partially supported by the National Science
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A Comparison Study of Graph Laplacian g
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Michela Marini, Haiyan Cheng, Cristina Garcia-Cardona ), Weihong Guo,
Sara Hahner, Yuan Liu, Yifei Lou, and Sui Tang

1 Introduction

In recent years, graph signal processing has become popular in many data-driven
applications [4, 8, 15, 18,22, 23], offering a versatile framework for representing and
analyzing relationships within complex datasets. By using nodes to signify entities
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and edges to denote connections between them, graphs can model a wide array of
structures, from social networks and biological systems to transportation grids and
recommendation engines.

Consider a collection of data points {x,-};.“=1 C RY, where n is the number
of points and v is the dimension of each feature vector. One constructs a graph
G(V, E) by treating each point as a vertex v; € V,i = 1,...,n, and E an edge
connectivity representing specific relations between vertices. E can be represented
by a matrix, called an adjacency matrix. Specifically, for a graph with n nodes,
the adjacency matrix, denoted by A, is an n x n matrix where each element a;;
indicates whether there is an edge from node i to node j. The value of a;; is typically
either 1 (indicating the connection) or 0 (no connection). A generalization of the
adjacency matrix is a similarity matrix W associated with a weighted graph where
each edge is characterized by a real weight w;; representing application-specific
meanings, usually a measure of how similar nodes i and j are. This paper focuses
on an undirected and unsigned graph corresponding to a symmetric and nonnegative
weight function, i.e., w;; = w;; > 0,V1 <i, j <n.

The graph Laplacian, derived from the similarity matrix of a weighted graph,
is a fundamental tool in spectral graph theory [11]. Let the degree matrix D be
a diagonal matrix where each diagonal element is defined by d;; = > j wij- The
unnormalized graph Laplacian L, defined as L = D — W, encapsulates important
structural properties of the graph, such as connectivity and the presence of clusters.
For data science applications, it is widely recognized [4, 18] the computational and
performance advantages of deploying the symmetric normalized Laplacian, which
is defined as

Ly=I1—-D"'"?wp™1/2, (1)

The eigenvalues and eigenvectors of Ly are particularly useful, providing insights
into graph partitioning [9], clustering [4, 19, 22, 26], machine learning [8, 13], and
the behavior of diffusion processes on the graph [10].

However, it is computationally intensive to obtain the similarity matrix and
the graph Laplacian, often becoming a bottleneck in dealing with “big data.”
Specifically, the computational complexity of constructing a graph Laplacian is of
the order O (n?), making it intractable when 7 is extremely large. In addition, when
the graph Laplacian is used in certain applications [4, 23], the eigendecomposition
and/or singular value decomposition (SVD) is often required, which is in the
computational complexity of O(n?). Consequently, accelerating the construction
of the graph Laplacian together with its decompositions is essential for handling
large-scale graph-based applications.

This paper studies three methods to approximate L. The first method, called K -
nearest neighbors (KNN), involves creating a sparse approximation by computing
a small number of pairwise weight functions for each node, resulting in a sparse
matrix. The other two methods focus on low-rank approximations and are called
Nystrom method [14] and its variant using the QR decomposition [6]. Our empirical
evaluation of the methods yields the following observations:
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e Nystrom methods (the original one and its QR-based variant) provide good
approximations to the eigendecomposition of the Laplacian for the fully con-
nected graph while considerably reducing computation times since they require
computations for only a handful of samples in the dataset. This is observed in
both benchmarks and high-dimensional datasets.

e Both Nystrom-based methods are particularly advantageous when an eigen-
decomposition is required for downstream tasks, as they provide efficient
algorithms for computing accurate approximations without increasing time
demands.

e The KNN method provides an excellent approximation to the Laplacian of the
fully connected graph (given that the similarity metric is sufficiently smooth),
but requires computations over the entire dataset, which can become intractable
for datasets with a large number of nodes.

The rest of the paper is organized as follows. Section 2 provides a brief review
of the methods: KNN, Nystrom, and QR-based Nystrom. We then investigate the
performance of these approximations in Sect. 3 in terms of accuracy to approximate
the fully connected graph, computational time, and efficiency in applications of
classification, clustering, and CT reconstruction. Finally, the conclusions are given
in Sect. 4.

2 Method Review

A fully connected weighted graph can be represented via a dense weight matrix
W of dimensions n x n, where every pair of nodes is connected with an assigned
similarity value. In this work, we use the Gaussian similarity metric, where each
weight entry is defined as

—d(x-,x-)2 ..
u)u:ﬁXp!# s l,]=1,...,i’l, (2)

with d(x;, x;) being the Euclidean distance between the two samples (i.e., vertices)
x; and x;, which can be computed as dg (x;, X;) = ||X; — X ||2, i.e., the conventional
measure for calculating the distance between two points in the Euclidean space.
Note that o > 0 controls the smoothness of the similarity metric, providing more
drastic differences when its value is small and more gradual transitions when its
value is large. Note that the diagonal element w;; = 1 follows the definition in
Eq. (2), which is reasonable due to self-similarity.

When dealing with big data, e.g., hyperspectral data where the number of
pixels in the image could be in the order of 10°, the weight matrix presents
computational challenges and requires significant storage space. We review three
ways to approximate the weight matrix, namely, K -nearest neighbor [12], Nystrom
method [14], and QR-based Nystrém decomposition [6]. In the experimental
section, we compare their performance in terms of accuracy and efficiency.
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2.1 K-Nearest Neighbor Graph

The K -nearest neighbor (KNN) graph is frequently used in machine learning and
data analysis, particularly in pattern recognition, classification, and clustering tasks
[24, 27, 29]. As the name suggests, KNN constructs a graph by connecting each
node to its K -nearest neighbors based on a chosen distance metric. To do this, one
must first determine an appropriate distance metric and select a value for K.

For each data point, a distance metric is computed between this point and the
other points, followed by Eq. (2) to obtain the similarity measures between any pair.
Subsequently, weights are only stored for the K-nearest neighbors, corresponding
to the K largest similarity values. This process results in a sparse weight matrix W
with each row having at most K (< n) nonzero elements.

The naive KNN does not guarantee a symmetric matrix, since the node i being
in the top K neighbor of j does not entail j being in the top K neighbor of i. To
make the weight symmetric, we adopt a simple approach by taking the average of
the weight and its transpose, i.e., W <« %(W + WT). Another alternative is the
mutual KNN [20], which is out of the scope of this paper.

2.2 Nystrom Method

To reduce the time/space complexity, Fowlkes et al. [14] proposed the Nystrom
method to approximate the eigenvalues and eigenvectors of W € R"*" by using
only p sampled data points with p < n. Up to permutations, we adopt a block-
matrix form to represent the weight matrix W as follows:

W= [Wu le} ’ 3)
Wo1 Wa

where Wy € RP*P is the weight (similarity) matrix between the sampled data
points, Wi, = W2Tl is the one between the sampled points and the unsampled points,
and Wy, is the one between the unsampled points. The idea of Nystrom extension
is to approximate the matrix W and its corresponding normalized graph Laplacian,
L defined in Eq. (1), using W11 and Wj,, thereby avoiding the computation of the
relatively large matrix W»,. Since the matrix L involves the degree matrix, we
begin by normalizing W so that its degree matrix becomes the identity. In particular,
we define a matrix

— [w W,
W=[ ! 2, T], @)
Wa1 Wa Wi Wy,

and its row-sum vector in a block form:
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il —, [wn W, 1,
—Wln— —1 T )
d> Wor Wa W, "Wy, 1, .,

where 1; denotes the k-dimensional all one vector. Denoting s; = +/d; and sy =
+/d3, we can normalize the matrices Wy and W5 by

Wit =W @ (s1s]) W = Wa @ (s189), &)

where @ denotes the componentwise division. In the same block format as W, we
define

W= [W“ ~ W21 ~ ] (6)
W21 W21W11 W21

By definition, the degree matrix corresponding to W becomes the identity, and the
symmetric normalized graph Laplacian becomes

Ly=1-W. )

Next, we describe the SVD of w and use it to represent the symmetric
normalized graph Laplacian L. We assume W is positive definite (by choosing a
proper value of o in Eq. (2)); then it is invertible and we further denote W11/ as its

square root. We can express W in the following way:

o Wn} =T
W= VTR TAN
[W2] 1 21

:{[gﬂ} W Pus- 1/2}2{2 V2yTw 2wy, WJ]}, (8)
21

for any diagonal matrix ¥ and unitary matrix U, both of which can be determined
by the requirement that VTV = I with

Vo [‘1’11] WHI/ZUE—I/Z.
W21

We elaborate on this requirement by expressing it into
I=vTy = { —12T i [W11 WZI]} {|:£11:| W_I/ZUE 1/2}.
21

Multiplying the above equation from the left by UX!/?

1207 yields

and from the right by
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~ ~1/2 T G o—1/2
UsUT = Wi + W;,'2 Wi, Wy Wy '2,

which implies that U and ¥ can be obtained by the SVD of the matrix Wi +
Wi, Wy, Wy Wi 2, In summary, we have W = VEVT with VTV = 1.
Usmg the SVD of W, we further approximate LA, defined in Eq. (7), by

~VI-=%)V =VAVT, ©)

with A = I — X. This is an approximation, as VV " is generally not the identity
matrix. An improvement, originally suggested in [7], is to use the decomposition
to approximate I — L, instead, i.e., L ~ I — VZVT. We denote this alternative
approximation as Nystrom (I — L ). In Sect. 3, we compare the performance of the
two Nystrom-based alternatives to compute Zs through numerical experiments.

Overall, the Nystrom approach significantly reduces the computational costs by
computing pairwise similarities only for a subset of the dataset, resulting in the
computational complexity and storage requirements of O (n) instead of O (n?), as p
is negligible compared to n.

2.3 QR-Based Nystrom Decomposition

The Nystrém method requires Wi to be positive definite so that its square root is
well-defined in Eq. (8) to calculate the SVD of the corresponding normalized graph
Laplacian. If Wy is indefinite, Fowles et al. [ 14] provided a feasible solution based
on [3], but unfortunately, this approach incurs additional computational cost and is
prone to numerical errors.

Inspired by the work of [1] that used a recompression technique in [2] for
computing a fully connected graph Laplacian, Budd et al. [6] employed the
QR decomposition instead of SVD when approximating the normalized graph
Laplacian. Specifically, we consider the thin QR decomposition of

Wi
= OR, 10
|:W211| ) (10)

where VT’U and le are obtained in Eq.(5), Q € R"*? is orthonormal, and R €
RP*P is upper triangular. Then, we have the eigendecomposition:

RW'RT =ozoT, an
where & € RP*? is orthonormal and ¥ € RP*? is diagonal. We define ¥ = Q®,

which is orthonormal and adopt the following eigendecomposition of the symmetric
normalized Laplacian:
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Table 1 The computational complexity for KNN and Nystrom methods for obtaining a normal-
ized graph Laplacian of size n x n, with K as the internal parameter for KNN and p for both
Nystrom methods

Method Complexity
KNN O(Kn)
Nystrom Onp* + p?)
QR O(n*p + p*)
L~V —)W = WA, (12)

Please refer to [2, 6] for more details.

Similar to the Nystrom case, the decomposition can be used to approximate / —
L, instead, i.e., Ly ~ I — WX W . We denote this alternative approximation as QR
(I — Lg). In Sect. 3, we compare the performance of the two QR-based alternatives
to compute Ly through numerical experiments.

2.4 Summary

The choice of method depends on the specific requirements of the task, such as the
size of the dataset, the desired accuracy, and the available computational resources.
KNN is a simple and intuitive method for computing the weight matrix. It is
effective for processing data with a clear local structure, but it can be sensitive to
the choice of K and less effective for large, nonuniform datasets. Both Nystrom
methods can achieve good approximations for the symmetric normalized graph
Laplacian with a relatively small number of columns, though random selection
can sometimes lead to poor performance. The QR variant of the Nystrom method
enhances numerical robustness in the approximation but comes with higher com-
putational costs compared to the standard Nystrém method. The computational
complexity of each method is provided in Table 1.

3 Numerical Experiments

We conduct numerical experiments on two benchmark datasets and one high-
dimensional dataset to evaluate the efficacy of three graph Laplacian computation
approaches, including KNN, Nystrom, and QR-based Nystrom (QR in short). The
two benchmark datasets are obtained from the Scikit-learn library [21], while a
high-dimensional dataset is the low-dose CT dataset [17] as processed for CT
reconstruction in [28].
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3.1 Benchmark Datasets

We use two benchmark datasets from Scikit-learn, namely, the two-moon and digits
datasets. For each dataset, we compute (i) a fully connected graph with Gaussian
similarity for the weight matrix W defined in Eq. (2), (ii) the symmetric normalized
Laplacian L defined in Eq. (1), and (iii) the corresponding eigendecomposition via
the eigh function of the 1inalg utilities of the NumPy Python package. This matrix
L and its eigendecomposition become the ground truth with respect to which the
performance of the methods is evaluated. We compare the performance of the three
aforementioned methods, including the variant of approximating (I — Ly). Note
that KNN computes a sparse approximation to the weight matrix W, followed by
the symmetric normalization to obtain the graph Laplacian Lg. In this case, we
again compute the corresponding eigendecomposition via the eigh function of the
linalg utilities of NumPy. In contrast, Nystrom and QR-based Nystrom directly
compute an eigendecomposition of L.

The results reported include a comparison of the eigendecomposition obtained
for each method, approximation errors, computation times, and accuracy obtained
for unsupervised (clustering) and supervised (classification) tasks using the eigende-
composition as a pre-processing step. For the eigendecomposition, we report results
obtained under different o2 values in Eq. (2) to reveal a stability issue in the original
Nystrom method. For the remaining comparisons, we examine two values of o2,
and for each value, we vary the number of neighbors (K) in KNN and the number
of sample data points (p) in Nystrém methods. For each combination of parameters,
we report mean and standard deviations over 30 repetitions of the whole processing
pipeline, consisting of the following steps:

1. Generate data.

2. Split into training (70%) and testing (30%) partitions.

3. Construct Laplacians and their eigendecompositions using the training partition.
4. Evaluate clustering accuracy (over training partition).

5. Evaluate classification accuracy (over testing partition).

Approximation Error The approximation error is computed in terms of the
relative Frobenius distance:

-~

_ ILs = LsllIF

= , (13)
' I Lsl

where Lg is the ground truth, i.e., symmetric normalized Laplacian for the fully
connected graph, and L; is the approximation, which, as a reminder, corresponds
to

« KNN: Ly = I — D'Y2WD'Y? | with W the similarity matrix including only
K -nearest neighbors.

* Nystrom: ZS = VAV, computed using p sampled data points.

e Nystrdm (I — Ly): ZS =1 —-VEVT computed using p sampled data points.
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* QR-based Nystrom: L= \IIA\II—r computed using p sampled data points.
* QR-based Nystrom (I — Ly): Ly=1-vsyT | computed using p sampled
data points.

Computation Time Computation times reported were obtained on a 2.4 GHz 8-
Core Intel Core 19 MacBook Pro.

Clustering Accuracy We use spectral clustering [26], i.e., K-means over the
eigenvectors of Lg, as an unsupervised graph-based method to partition data into
clusters. In each case, we only select a handful (5-25) of the top eigenvectors
(i.e., the eigenvectors associated with the 5-25 smallest eigenvalues of matrix Ly).
Since this is an unsupervised method, we do not make use of the class labels. To
evaluate the accuracy, we only use the training data (i.e., the data used to build the
graph Laplacian) and make use of the Scikit-learn [21] rand_score metric, which
computes the rand index, a similarity measure between two clusterings based on
“considering all pairs of samples and counting pairs that are assigned in the same or
different clusters in the predicted and true clusterings.”

Classification Accuracy We apply the support vector machine (SVM) technique
for classification [16] using the Scikit-learn [21] functionality. SVM classification
is a supervised learning algorithm that tries to find a maximum margin separating
hyperplane, i.e., a hyperplane that separates the classes and has the maximum
distance between data points in disparate classes. Instead of using the data points
in the original domain, we project them onto a subspace defined by the eigenvectors
of a Laplacian matrix, i.e., X = XU, where X is a matrix with rows corresponding
to the data points and U is the matrix that is composed of eigenvectors of L;. We
only use a subset of eigenvectors corresponding to the dimensionality of the data.
In this way, we can project both training and testing partitions. We also use a linear
kernel, to evaluate the usefulness of the eigendecomposition as a pre-processing
mechanism. To evaluate the accuracy, given that we know the true labels, we use
the testing data and make use of the Scikit-learn accuracy_score metric, which
computes the fraction of correctly classified samples.

3.1.1 Two-Moons Dataset

The two-moons dataset comprises a total of 2000 samples. Each sample is a point
in a 2D plane, following the arch of a moon. As shown in Fig. 1, the dataset is
divided into two classes, purple and yellow points, each containing 1000 samples.
Additionally, each class comprises 500 points where the true moon samples have
been perturbed with a 10% noise level, and another 500 points where the true moon
samples have been perturbed with a 20% noise level.
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Fig. 1 Two-moons dataset 1.25
from one random realization 1.00
of the noise distribution. Each
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Figure 2 compares the eigenvalues obtained by the three methods with o2 = 0.01,
K = 10 nearest neighbors for KNN and p = 250 sampled points for both
Nystrom methods. It is clear that all the eigenvalues approximate the ones for the
fully connected graph (labeled by “Full” in Fig. 2). The inset is included to remark
that Nystrom methods produce a rank p approximation to the eigendecomposition,
thereby making only p eigenvalues available for these methods. Similarly, Fig.3
compares the Nystrom and Nystrom (I — L) approximations (left) as well as QR
and QR (I — Ly) approximations (right). Both methods with two approximation
variants display a good agreement with the eigenvalues of the fully connected graph.

‘We then examine the top three eigenvectors (i.e., the eigenvectors associated with
the smallest eigenvalues) of L obtained by all the methods in Fig. 4. As the original
two-moons data is in 2D, we can plot the distribution of the training set in the x-y
plane and color each point according to the value of a specific eigenvector. The row
ordering of the input data X establishes the row correspondence to the eigenvector
components. Note that the first eigenvector (first row), in which L is related
to the normalized degree [26], remains consistent between fully connected graph
and Nystrom approximations. In contrast, it remains almost constant for KNN, as
expected, since the normalized degree should be similar for graphs with the same
number of nearest neighbors. Likewise, Fig.5 compares the Nystrom , Nystrom



A Comparison Study of Graph Laplacian Computation 181

1.0 1.0
0.8 Sors 08 Em
0 %050 0 @oso
0) o 1
3506 2oz 306 Uozs
4 0.00 g 0.00 L
2 o %0 2 2%
[ Ordered Indi [ Od d\ \di
Soa rdered Indices o4 rdored Indices
w w
0.2 —e— Nystrom 0.2 —*— QR
Nystrom (I-Ls) —¥— QR (I-Ls)
0.0 — Full 0.0 — Full
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
Ordered Indices Ordered Indices

Fig. 3 Eigenvalues of the symmetric normalized Laplacian obtained by Nystrom methods (p =
250) on the two-moons dataset with > = 0.01. Note that the methods completely overlap and
only (I — L) variants, which lay on top of the direct L; approximation, are visible in the plots

Full KNN Nystrom QR 0.030
a1 e \g \ "::‘\\ 0.025
g os '.‘f 1 x{\ R 45
S oo y 1 * & 1 , 0.020
i o5 \’..-’, \’..- \’..-’, 0.015
0.010
~ 107 4 . . . 0.02
E 03 » ? » .
{ o [ 0.00
_?_71 0.0a b & .“ \’.’
w
_05 Sa¥ -0.02
0.05
m 1O
T 05 % > [ Y e
g o o ?|J§ 0.00
o 00 E ‘
w
—03 -0.05

Fig. 4 Top three eigenvectors of the symmetric normalized Laplacian obtained by KNN (K = 10)
and Nystrom methods (p = 250) on the two-moons dataset with o2 =0.01

(I — Lg), QR, and QR (I — L) approximations, showing a good agreement among
these methods. In summary, Figs. 4 and 5 illustrate that, aside from sign differences
in the eigenvectors, all the Nystrom variants produce a good approximation to
the first eigenvectors. The KNN method, on the other hand, produces much more
localized patterns. The errors in the approximations given by Eq. (13) are 0.127935
for KNN, 0.927003 for Nystrom, 0.022307 for Nystrom (I — L), 0.926823 for
QR, and 0.021647 for QR (I — L;). From these error estimations, it is clear that the
(I — Ly) variant of the Nystrom methods produces much better approximations to
the full symmetric normalized Laplacian than the direct L, approximations.

We investigate the eigenvalues obtained by the competing methods under
different values of o2; specifically, o2 = 0.005,0.01, 0.07 and 0.1 are considered
in Fig. 6, showing that the smaller o2 is, the larger error to the fully connected
graph is made by the Nystrom approximations. For simplicity, we omit the (I — L)
approximation variants from Fig. 6, because they fall on top of the graphs for the
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Table 2 Comparison of the approximations errors, i.e., E, defined in (13), made by KNN (K =
10) and Nystrom method (p = 250) on the two-moons dataset under different values of o2. NaN
indicates that the original Nystrém method fails at 62 = 0.1 when the submatrix Wi; is not
positive definite

2

o
Method 0.005 0.01 0.07 0.1
KNN 0.180776 0.127935 0.066262 0.058065
Nystrom 0.940897 0.927003 0.911308 NaN
Nystrom (I — Ly) 0.068371 0.022307 0.000006 NaN

QR 0.941037 0.926823 0.911150 0.910177
QR (I — Ly) 0.069773 0.021647 0.000008 0.000005

direct Ly approximation when plotted. On the other hand, both variants of the
original Nystrom method fail for larger values of 02, e.g., 02 = 0.1 and p = 250
used here, as the submatrix Wy is not positive definite. Note that both QR-based
variants succeed in this case. Table 2 records the approximation errors for these four
values of o, Note that, in general, the (/ — L) variants yield better approximation
results.

Approximation Errors

The approximation errors with respect to a range of K -nearest neighbors in KNN
and p sampled data points in both Nystrom methods, using both approximation
variants, are plotted in Fig. 7 for 0> = 0.01 and o> = 0.07. The results are averaged
over 30 random trials. Since the ranges of K and p are different, the plots include
two x-axis: the top one in red corresponds to the K values for KNN, while the
bottom one in black corresponds to the p values for Nystrom methods. Figure 7
clearly illustrates that the approximation given by the Nystrom methods improves
as the number of sample points p increases. It also shows that the Nystrom method
does not converge for larger values of p, where only results for p < 250 can be
computed. Since the original Nystrom and QR mostly overlap, it is difficult to
observe the lack of convergence of the original Nystrém from these error plots.
However, the other plots, especially Fig.9, make this observation more apparent.
The approximation errors for the KNN method are generally smaller than the
Nystrom methods (for the direct L approximation) and are relatively independent
of K. The Nystrom methods that approximate (I — Lg) produce smaller errors,
compared to KNN. The performance of Nystrom methods on downstream tasks
involving the eigendecomposition is better than the KNN method as shown in Figs. 9
and 10.
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Fig. 7 Error in L approximation for KNN as a function of K (top axis) and Nystrdm methods
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deviation computed is very small, with practically no-shaded region distinguishable. Note that
Nystrom methods completely overlap (up to where the original Nystrom is stable, i.e., p < 800
(left) and p < 200 (right)), and only QR results, which fall on top of the original Nystrom (same
phenomenon for the QR methods), are visible in the plots

K K
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
0.8{ —*— Nystrom —*— QR —»— KNN —e— Nystrom —*— QR —»— KNN
Nystrom (I-Ls) ~ —¥— QR (I-Ls) 0.8 Nystrom (I-Ls) ~ —¥— QR (I-Ls)
0.7 8
0.6
Yos w oo
[} [}
£04 I
= =04
0.3
0.2 0.2
0.1
0.0 0.0
200 400 600 800 1000 200 400 600 800 1000
p P

Fig. 8 Computation times for KNN as a function of K (top axis) and Nystrom methods as a
function of p, for 02 = 0.01 (left) and 02 = 0.07 (right), on the two-moons dataset. The results
are averaged over 30 random trials and computed means are reported. The shaded region in the
plots represents the standard deviation calculated over the random trials

Computation Time

Under the same setup as the approximation error, the computation times are plotted
in Fig. 8, where the standard deviations calculated over 30 random trials are depicted
as a shaded region. Note that the times reported for KNN include the eigendecom-
position stage, which is naturally included in the Nystrom class. Figure 8 shows
that the QR-based Nystrom is slightly faster than the original Nystrom method, and
their difference becomes larger as p or o2 increases. In addition, the KNN method,
utilizing the nearest neighbors routine from the giotto-tda Python package [25],
ensures stable computation times, remaining almost constant across the range of
K € [2,75] most probably due to its exploitation of multi-core parallelism. Figure 8
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Fig. 10 Accuracy of SVM classification for KNN as a function of K (top axis) and Nystrom
methods as a function of p, for 2 = 0.01 (left) and 62 = 0.07 (right), for the two-moons dataset.
The results are averaged over 30 random trials and computed means are reported. The shaded
region in the plots represents the standard deviation calculated over the random trials. Note that
Nystrom methods completely overlap (up to where the original Nystrom is stable, i.e., p < 800

(left) and p < 200 (right)), and only QR, which lays on top of original Nystrom, is visible in the
plots

reveals that there is a range where substantial computation savings can be obtained
by using the Nystrom approximation methods, without a significant sacrifice in
performance (see accuracy plots, e.g., Figs. 9 and 10).

Unsupervised Task

We report the performance of the weight approximation methods in a downstream
task: unsupervised clustering. Specifically, averaged accuracy results obtained by
spectral clustering over 30 random trials are plotted in Fig.9 for 6> = 0.01 and
o2 = 0.07. The standard deviations calculated over the random trials are depicted
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Fig. 11 Representative samples from each of the ten-class digits dataset. Each sample is an 8 x8

pattern that can be flattened to a 64-dimensional vector. The training set used has about 1250
samples

as a shaded region in the plots. Given that the eigenvectors tend to be more localized
in KNN, 25 eigenvectors are used for the spectral clustering, while only five
eigenvectors are used for Nystrom methods. It is clear in Fig. 9 that projecting on the
eigendecomposition of the Nystrom methods produces better results than KNN, but
no major improvements are observed for approximations using larger K or p. These
plots also make more evident that no results are reported for Nystrom p > 800 (left
plot) and for p > 250 (right plot) due to the invalid partial computations (i.e.,
submatrix Wi not positive definite or unstable inversion).

Supervised Task

Another downstream task given by the SVM classification is examined in Fig. 10,
showing that supervised learning contributes to a large improvement in the clas-
sification results compared to unsupervised clustering. It is also interesting to
note that although the Nystrom methods that directly approximate L yield larger
approximation errors than KNN (see Fig.7), the classification accuracy is similar
and relatively high for all the weight approximation methods, probably due to the
supervised nature of this task.

3.1.2 Digits Dataset

The digits dataset comprises a total of 1797 images of handwritten digits ranging
from O to 9. Each image is of dimension 8 x 8 and hence can be represented by a
64-dimensional array of gray-scale intensity values, vectorized from a 2D image.
This dataset is a copy of the test set of the UCI ML handwritten digits datasets.! An
illustration of the images in each class can be found in Fig. 11.

Uhttps://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Fig. 13 Eigenvalues of the symmetric normalized Laplacian obtained by Nystrom methods (p =
250) on the digits dataset with o> = 1.0. Note that the methods completely overlap and only
(I — L) variants, which lay on top of the direct L; approximation, are visible in the plots

Eigendecomposition

Figure 12 compares the eigenvalues obtained by three methods with o2 = 1.0,
K = 10 nearest neighbors for KNN, and p = 250 sampled points for both Nystrom
methods. All the eigenvalues approximate the ones for the fully connected graph,
except that the Nystrom methods start to show a slight deviation from the ground
truth. Figure 13 compares the Nystrom, Nystrom (I — Lg), QR, and QR (I — Ly)
approximations, showing a very good agreement between them.

Following the two-moons example, we examine the top three eigenvectors of Lg
obtained by all the methods in Figs. 14 and 15. As it is difficult to directly visualize
the distribution of the original 64-dimensional data in the x-y plane, we plot each
eigenvector as a function of the row index and color each component according to
the value of such index. Again, the row ordering of the input data X establishes
the row correspondence to the eigenvector components. Similar to the two-moons
case, the first eigenvector (first row), which is related to the normalized degree [26],
is consistent between fully connected graph and all the Nystrom approximations,
while it is almost constant for KNN. Briefly, Figs. 14 and 15 illustrate that, aside
from sign differences in the eigenvectors, both Nystrom variants produce a good
approximation to the first eigenvectors, while the KNN method produces different
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Fig. 14 Eigendecomposition of the symmetric normalized Laplacian for the digits dataset for each
of the methods with 62 = 1.0, K = 10 for KNN, and p = 250 for Nystrém methods
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Fig. 15 Eigendecomposition of the symmetric normalized Laplacian obtained by Nystrom meth-
ods (p = 250) with the two approximation variants on the digits dataset with 2 = 1.0

patterns. The errors in the approximations given by Eq.(13) are 0.071614 for
KNN, 0.906414 for Nystrom, 0.031120 for Nystrom (I — Ly), 0.906467 for QR,
and 0.030089 for QR (I — Lg). Similar to the two-moons case, from these error
estimations, it is clear that the (I — L) variants of the Nystrom methods produce
much better approximations to the full symmetric normalized Laplacian than the

direct Ly approximations.

We investigate the eigenvalues obtained by the competing methods under
different values of o'2; specifically, o2 = 0.5,1.0,5.3 and 10.3 are considered in
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Fig. 16 Eigenvalues of the symmetric normalized Laplacian obtained by KNN (K = 10) and
Nystrém methods (p = 250) on the digits dataset under different values of o-2. Note that Nystrom
methods completely overlap and only QR, which lays on top of original Nystrom, is visible in the

plots

Table 3 Comparison of the error E, (13) of the approximation methods for the digits dataset for
different o2 and for K = 10 (KNN) and p = 250 (Nystrom methods)

Method

KNN

Nystrom
Nystrom (I — Ly)
QR

QR(I — Ly)

o2

0.5

0.337764
0.925103
0.264682
0.922371
0.270744

1.0

0.071614
0.906414
0.031120
0.906467
0.030089

5.3

0.007724
0.896262
0.000317
0.896263
0.000296

10.3

0.003838
0.895787
0.000063
0.895788
0.000068

Fig. 16, showing that the smaller o' is, the larger error to the fully connected graph
is made by the Nystrom approximations. However, in contrast with the two-moons
case, for all these o2 values used, both the original Nystrom and QR-based Nystrém
succeed. Table 3 records the approximation errors for these four values of 2. Note
again that the (I — L) variants yield small approximation errors.
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Fig. 17 Error in L approximation for KNN as a function of K (top axis) and Nystrom methods
as a function of p, for 02 = 1.0 (left) and 02 = 10.3 (right), on the digits dataset. The results
are averaged over 30 random trials and computed means are reported. The standard deviation
computed is very small, with practically no-shaded region distinguishable. Note that Nystrom
methods completely overlap and only QR results, which fall on top of original Nystrom , (or
QR(I — L) which fall on top of Nystrom (I — Ly)), are visible in the plots

Approximation Errors

The approximation errors with respect to a range of K -nearest neighbors in KNN
and p sampled data points in both Nystrém methods are plotted in Fig. 17 for 62 =
1.0 and o2 = 10.3. The results are averaged over 30 random trials. Since the ranges
of K and p are different, the plots include two x-axis: the top one in red corresponds
to the K values for KNN, while the bottom one in black corresponds to the p values
for Nystrom methods. For this dataset, the Nystrom method produces valid results
across all the parameters tested. Figure 17 agrees with the observations made for the
two-moons datasets, showing again that the approximations obtained via Nystrom
methods improve as the number of sample points p increases and that the error of
the KNN method is smaller than the Nystrom methods that directly approximate L
and is relatively independent of K. Nystrom methods that approximate (I — Ly)
produce smaller errors. The performance of Nystrom methods on downstream tasks
involving the eigendecomposition is better (see Fig. 19) or matches (see Fig. 20) the
performance of the KNN method.

Computation Time

Under the same setup as the approximation error, the computation times are
plotted in Fig. 18, where the standard deviations calculated over 30 random trials
are depicted as a shaded region. As before, the times reported for KNN include
the eigendecomposition stage. Figure 18 shows that the QR-based Nystrom is
slightly faster than the original Nystrom method and that the KNN computation
(via giotto-tda routine [25]) ensures stable computation times, remaining almost
constant across the range K € [2,75]. Figure 18 reveals that there is a range
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Fig. 18 Computation times for KNN as a function of K (top axis) and Nystrom methods as a
function of p, for 0?2 = 1.0 (left) and 02 = 10.3 (right), on the digits dataset. The results are
averaged over 30 random trials and computed means are reported. The shaded region in the plots
represents the standard deviation calculated over the random trials
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Fig. 19 Accuracy of spectral clustering for KNN as a function of K (top axis) and Nystrom
methods as a function of p, for 02 = 1.0 (left) and 62 = 10.3 (right), on the digits dataset.
The results are averaged over 30 random trials and computed means are reported. The shaded
region in the plots represents the standard deviation calculated over the random trials. Note that
Nystrom methods completely overlap and practically only QR(/ — L), which falls on top of the
other Nystrom variants, is visible in the plots

when substantial computation savings can be obtained by using the Nystrom
approximation methods, without a significant sacrifice in performance (see accuracy
plots, e.g., Figs. 19 and 20).

Unsupervised Task

We report the performance of the weight approximation methods in the downstream
task of unsupervised clustering. Averaged accuracy results obtained by spectral
clustering over 30 random trials are plotted in Fig. 19 for 6> = 1.0 and 0> = 10.3.
The standard deviations calculated over the random trials are depicted as a shaded
region in the plots. Given that the eigenvectors tend to be more localized in KNN-
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Fig. 20 Accuracy of SVM classification for KNN as a function of K (top axis) and Nystrom
methods as a function of p, for o2 = 1.0 (left) and 62 = 10.3 (right), on the digits dataset. The
results are averaged over 30 random trials and computed means are reported. The shaded region
in the plots represents the standard deviation calculated over the random trials. Note that Nystrom
methods completely overlap and only QR, which lays on top of original Nystrom, is visible in the
plots

based decompositions, 25 top eigenvectors were used for the spectral clustering,
while only five top eigenvectors were used for Nystrom methods. It is clear in Fig. 19
that projecting on the eigendecomposition of the Nystrom methods produces good
results, with around 90% accuracy, and these are much better than what is obtained
with KNN. Nevertheless, in this case, major improvements in accuracy are observed
for using a larger number of neighbors K in the KNN method.

Supervised Task

We also evaluate the downstream task of SVM classification and report results in
Fig.20. As observed before, the supervised learning improves the classification
results, and again, even when the approximation to Ly computed by the Nystrom
methods has a larger error than KNN (see Fig. 17), the accuracy results are similar
and deemed satisfactory in all cases.

3.2 CT Reconstruction

To test and compare the algorithms in different downstream processing tasks, we use
a low-dose CT reconstruction problem with real image data of high dimensionality
(256 x 256). In particular, we follow the MAGIC (manifold and graph integrative
convolution network) approach [28], which unrolls a gradient descent algorithm into
a neural network, using a convolutional neural network (CNN) to preserve pixel-
level features and a graph convolutional network (GCN) to extract the nonlocal
features from a patch-based manifold space. The graph is constructed by treating
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every pixel of the CT image as a node and computing the weight using the Eq. (2)
measured by the Euclidean distance between two small patches, whose top-left
corner corresponds to the respective nodes. Then, the graph Laplacian is used in
the GCN component of MAGIC to define the spectral graph convolution [5]. Here,
the matrix composed of eigenvectors of the normalized graph Laplacian, i.e., V
in Eq. (9), is analogous to the Fourier transform in standard spatial convolution,
following the convolution theorem.

In what follows, we use three methods, KNN, Nystrom, and QR-based Nystrom,
to approximate the computation of L; for the GCN component of MAGIC and
evaluate the obtained reconstructions in terms of peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and computational time. In all cases, we
build the similarity matrix using a Gaussian similarity, Eq. (2), with 0> = 5.7. Note
that given the high dimensionality of the data, we do not even attempt to build a fully
connected graph for this case. We do not run Nystrom variants that approximate
(I — Ly) since we expect similar performance to the one obtained with the direct
L approximations. We follow the MAGIC work and use the same architecture and
training parameters. For a proof of concept, we enact the following simplifications:
(1) we use a reduced set of ten training images, (ii) we train for 50 epochs using a
batch size of 2, and (iii) we test the trained model on ten test images different from
the training set. We compare results for dose levels of 0.01 and 0.1 (see more details
about the dose levels in the original work [28]).

Table 4 displays performance results for the reconstructions for the two dose
levels or each of the three methods for computing L;. The mean and standard
deviations over the testing set are reported. Note that PSNR results are computed
assuming a signal range in [0, 1], not the actual dynamic range. It can be observed
that the results are very similar for all three methods, and of course, better results
are obtained for measurements using a large dose level. Specific visual results are
shown in Figs. 21 and 22 for dose levels of 0.01 and 0.1, respectively. Results for the
lower-dose level have more granular artifacts, while results for the high-dose level
are smoother (it may be necessary to zoom over the figures to note the difference).
Finally, Fig. 23 shows a comparison of computation times on a GPU cluster (one
node, eight NVIDIA GeForce RTX 2080 Ti GPUs), obtained for the three methods
when approximating the symmetric normalized Laplacian for the coarse stage of the

Table 4 CT reconstruction PSNR [dB] SSIM
f:‘f:lz a(r(lfgrll ;lrrllg%r ;;vi?ofose Dose level | Method |Mean |Std |Mean | Std
K =5 (KNN) and p = 50 0.01 KNN 35.60 1 0.38 |0.9133 | 0.0066
(Nystrom methods) Nystrom | 35.60 |0.38 |0.9118 |0.0063
QR 36.04 |0.39 |0.9252 |0.0057
0.10 KNN 41.36 10.36 | 0.9676 |0.0033

Nystrom | 41.33 | 0.37 |0.9670 | 0.0033
QR 41.13 0.38 | 0.9654 |0.0036



194 M. Marini et al.

Fig. 21 Visual results of CT reconstruction under 0.01 dose level. From left to right: ground truth,
KNN, Nystrom, and QR

Fig. 22 Visual results of CT reconstruction under 0.1 dose level. From left to right: ground truth,
KNN, Nystrom, and QR

MAGIC reconstruction, using different numbers of p sampled data patches for the
Nystrom methods and different numbers of K patch neighbors for the KNN method.
It is seen, consistent with results presented in previous sections, that the Nystrom
methods considerably reduce the computation time without significantly decreasing
performance. Also, note that the QR-based Nystrom method is slightly faster than
the original Nystrom method, which aligns with the observation in the synthetic
case.
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4 Conclusions

Through extensive numerical experimentation, including benchmarks as well as
high-dimensional real datasets, we confirm the advantages of the Nystrom methods
for approximating the eigendecomposition of the symmetric Laplacian. Briefly,
these methods provide accurate approximations of the eigenvalues and eigenvectors
of a fully connected graph. Additionally, significant time savings are achieved by
computing approximations based on eigendecompositions using subsets of data
samples. The direct computation of eigenvalues and eigenvectors also facilitates
the analysis of the graph structure, which is beneficial for downstream tasks such
as clustering, classification, or graph-based signal filtering. We also observe that the
QR method is slightly faster than the original Nystrom method. However, the latter
can become unstable or yield nonvalid solutions when a “large” number of data
samples or a “large” value of o2 (resulting in the weight matrix being low rank) is
used. It also seems the case that the Nystrom approximations to the fully connected
graph become worse when a “smaller” value of o2 is used. The problem, however,
is that typically there is no a priori way to determine what “small” or “large” means
in this context since it is heavily dataset-dependent. Overall, the QR-based method
seems like a good alternative for more robust and faster approximations. Moreover,
variants that approximate (I — L) have much smaller approximation errors to the
fully normalized symmetric Laplacian. It is also worth noticing that the relative
Frobenius distance E, can provide a somewhat misleading idea of the quality of
the approximations, in particular when comparing the relative errors of KNN and
Nystrom methods. Although Nystrém methods that directly approximate Ly seem
to have worse errors compared to KNN and Nystrom methods that approximate
(I — Ly) have much smaller approximation errors, their performance can be similar
in downstream tasks.
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1 Introduction

This chapter explores a geometric approach for supervised dimension reduction
(SDR), where we assume we have features x1, ..., x, together with observations
of a response variable yy, ..., y,, where y; & f(x;) for some unknown function
f. In general, the goals are twofold: (1) obtain a low-dimensional representation
of the data using an embedding/process guided by the response variable Y, which
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leads to more effective exploratory analysis, and (2) perform prediction of unknown
labels, which can be significantly improved by appropriate choice of SDR algorithm.
In the linear case, SDR is a well-studied problem: therein, the goal is to restrict
features to the active subspace, i.e., project out any data dimensions that contain
no information useful for predicting Y [15, 16, 54], and apply a nonparametric
regression for prediction in the active subspace. Seminal works include sliced
inverse regression (SIR) [18], which discovers the active subspace by finding the
conditional expectation of the predictors, conditioned on the response, as well
as [17, 21, 64, 65], which eliminate some of the restrictive assumptions of SIR.
Unfortunately, these useful tools fail when the underlying relevant domain is
nonlinear. One possible approach in the case of a nonlinear active manifold is to
apply nonparametric manifold regression [7, 12]; however, these methods are not
targeted to the regime where the data manifold has many coordinates irrelevant to Y,
and thus are not truly nonlinear SDR methods. A number of methods have thus been
developed, which extend supervised dimension reduction to the nonlinear/manifold
case, including neural-network-based approaches [24, 38, 67], methods designed
for discrete labels [1, 13, 20, 23, 25, 28, 34, 53, 62, 66], and methods applicable to
a continuous response variable [5, 10, 13, 51, 52, 57] as considered in the current
chapter; see also [11, 26, 40, 47, 50].

We propose a novel geometric approach to nonlinear SDR that utilizes the
local gradients of a (generally continuous) response variable to stretch the data
in directions useful for prediction and shrink the data in uninformative directions.
More specifically, when the response y € R is univariate, we define (locally) the
following metric:

dy (xi, x))* = (1 = O llx; — x; 11>+ lly: — v, 112 (1)

The parameter 0 < t < 1 controls the extent to which the labels y impact the
distance. In practice, if the labels are noisy, i.e., if y; = f(x;) + €;, it may be
advantageous to use the following formulation:

N2 , 2t L \2 L 12
dVY,‘[(xlvxj) = (1 —1)llx _xj” + 5 (Vyi, xi _xj) + <Vyj,xz _xj>
2)
where Vy; & V f(x;) is an approximation of the gradient of the response at x;.

Note in the noiseless case, these two definitions are locally essentially identical for
smooth C? functions, since by Taylor’s Theorem:
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RMIT University, Melbourne, VIC, Australia

R. Wang
Department of Computational Mathematics, Science & Engineering, Michigan State University,
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Vi =y = (Vyi,xi —x;) + O(lxi — x;11*)
= (Vyj, xi —x;) + O(lxi —x;1*)
— i —¥))? = (Vyi, xi —x;)2 4+ O(xi — x;11°)

= (Vyj. 2 = x;)* + O(llxi = ;1)
2 1 2 2 3
— i =37 = 5 (Vo =2 + (Vs = x)?) + Ol — 1)

However, writing the metric as (2) leads to some insight, since it illustrates that
the metric is elongating in the direction of the gradient. When t is small, Vy does
not impact the metric, and one recovers Euclidean distance; when t is large, local
connections are adjusted to shrink distances in the directions of Vy+. When data
points are sampled from a Riemannian manifold (M, g) and t < 1, this stretching
in fact corresponds to a new Riemannian metric tensor g on M defined by the
following modified inner product {U, V}, on the tangent plane 7, M:

{U.Vh =1(Vf(x), U)(Vf(x), Vix + (1 =) (U, V)«

for U,V e Ty M, where (U, V), is the inner product corresponding to the original
Riemannian metric g(x).

Equation (2) is thus a local approximation of the geodesic distance under g.
Utilizing the theory in [6] for anisotropic kernels, the work [5] proposes an iterative
nonlinear SDR algorithm for the t small case. Although it is based on insightful
geometric principles, the algorithm is too complex to be practical in real data
applications, and the theoretical framework is not applicable when t = 1; in this
case, there is a collapse of geometry since g is no longer full-rank and M becomes a
sub-Riemannian manifold. This chapter explores the utility of the gradient elongated
metric (2) for supervised dimension reduction, focusing specifically on the two key
tasks of visualization and prediction.

2 Methodology

We first leverage (2) to develop an algorithm for visualization as described in
Sect. 2.3; we then propose an algorithm for prediction of unlabeled data points by
combining (2) with Laplacian learning as described in Sect. 2.4.

2.1 Notation and Assumptions

Throughout the chapter, we assume that a set of n feature vectors X = {xy, ..., x,}
are sampled from a compact Riemannian manifold M of intrinsic dimension d
embedded in RP. We let yq, ..., y, denote the corresponding labels, which can
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be observed or unobserved, and either discrete or continuous. We let Ijzpel/ Ilgbel
denote the indices of the labeled/unlabeled points, m = |[1ape]| denote the number
of labeled points, and Xjape] = {x; : i € Dabel} and yiapel = {yi : I € Dapel} denote
the feature and response values of the labeled points. We let NN (x, X) denote the
set of k Euclidean nearest neighbors of x in the set X.

In the noiseless setting, we assume y; = f(x;) for some function f and that we
have access to (x;, y;) for i € Iape]. However, we will also evaluate the prediction
methodology proposed in Sect. 2.4 in the presence of feature or label noise and thus
consider the following two noise models.

Model 1 (Noisy Labels) We assume

yi = f(xi) +oyni, 3)

where the n; are independent standard normal random variables, oy > 0is the noise
level, and the x; are sampled from M. We assume access to (x;, y;) fori € Ijgpe but
only to x; fori € Ilgbel.

Model 2 (Noisy Features) We assume
yi=fm) , xi=m;+o0x&, 4

where the &; are independent multivariate normal random vectors with mean zero
and covariance Ip, oy > 0 is the noise level, and the m; are sampled from M. We
assume access to (x;, y;i) fori € Ijzpe; but only to x; fori € Ilgbel'

2.2 Estimation of V f (x;)

To compute dyy,:(x;,x;) as introduced in (2), it is essential to estimate Vy;
and Vy;. We utilize a similar least squares fitting procedure as in locally linear
regression [48] as described below. Given the labeled dataset (x;, y;) fori € Lapel
and the specific data feature x, we denote the k Euclidean nearest neighbors (k-NNs)
of x within the labeled dataset as (x1(x), y1(x)), ..., (xg(x), yr(x)).

Notice that given a smooth function f : R® — R and a, b € RP sufficiently
close to each other, the approximation f(a) ~ f(b) + Vf(b)"(a — b) holds.
For each neighbor point of x, we use this linear approximation to predict the
label y;(x) = f(xj(x)) = f(b) + Vf(bB) (xi(x) —b) = f(b) = Vf(b)'b+
Vib) xi(x) = c+ VD) xi(x),i = 1,...,k, where we set ¢ = f(b) —
V £ (b)Tb. To identify ¢ and V £ (b), we use the following least squares fitting

¢,G=arg min Z yi (¥) = ¢ = G i ()12
ceR,GeRP
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and assign V f (b)) = G to be the estimated gradient.
The closed-form solution of the above minimization is

GE—x16)T [ -y

G = : :
& =) ] LY = nx)
where x = %Zx,- (x) and y = %Zyi (x). In our numerical experiments, we
(* —x100)) "
eliminate the small singular values from the coefficient matrix :
(* = xe ()T

prior to calculating the pseudo-inverse to improve the stability of our algorithm.

2.3 Visualization

We create a kNN graph G = (X, E, W) of local connections based off of the
features x;, in which each point is connected to its Euclidean nearest neighbors, but
the corresponding edges are weighted according to the gradient-adjusted metric (2),
i.e., the edge weights depend on the response y. More specifically, if x;, x; are
Euclidean nearest neighbors, we define W;; = dvy,: (x;, x;); else W;; = 0. We then
define a new metric by computing shortest path distances within this graph:

s—1

Cyyr(a,b):= inf Y dyy.(xi, xiy1), (5)
(X0, Xs) 4
i=0
where the infimum is taken over all sequences of points xo, . . ., x; in X with xo = a,

xs = b, and consecutive x; connected in G. Note when T = 1 and the number of
sample points n — o0, we expect that £yy converges to the following geodesic
distance (see, e.g., [4]):

1 1
Lyy(a,b) = inf/ V@), y' ) dt = inff
v Jo v Jo

df (y ()
TH dt, (6)

where the infimum is taken over all differentiable curves y : [0, 1] — RP satisfying
y(0) = a and y (1) = b. As seen in (6), curves that remain in a level set of f will be
measured as having distance zero: one can travel along the level sets “for free,” but
cost is incurred when the value of f changes, i.e., when the path has a component
in the direction of V f.

Once the (supervised) distances (5) are computed between all points in X,
we use these distances within unsupervised dimension reduction algorithm for
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visualization. Specifically, we employ these distances within both classic multi-
dimensional scaling (CMDS), a linear method introduced in [60] (see [8] for an
overview), as well as the 7-distributed stochastic neighbor embedding (t-SNE), a
nonlinear method developed in [32], to obtain reduced-dimensional visualizations
of X.

Related work on data-driven metrics and unsupervised dimension reduction The
proposed algorithm can be thought of as a generalization of the classic Isomap
[59] algorithm, which approximates manifold geodesic distance d(a, b) by classic
shortest path distance in a graph of local connections, i.e., by inf(y, .. x) Zf;é [|x; —
Xi+1|l, where the infimum is taken over paths (xo, ..., xy) connecting a, b. Recent
work has also focused on the analysis of power weighted shortest path distances ,
[22, 27, 33, 42, 61], where the distances are computed as inf(y,, . x,) Zf;é lx; —
Xi+1||? for some p > 1. If data points are i.i.d. samples from a probabil-
ity measure with density p on M, then this discrete distance (appropriately
normalized) converges to a density-reweighted geodesic distance Lg (a,b) =

inf, f p(y (@) 7 |y’ (t)| dt, where the infimum is once again over all differentiable
curves on M connecting a, b. Such metrics stretch the manifold geometry according
to the data density, an adjustment that can be highly useful for clustering [43] as
well as topological data analysis [22]. This chapter investigates a similar geometric
approach, but the manifold is stretched according to a response variable instead of a
density function. Alternatively, one could adjust data geometry utilizing a diffusion
process [14, 39, 44, 58]. The novelty of our approach is utilizing the metric (6),
and although we use CMDS and t-SNE for visualization, this choice is somewhat
arbitrary, and the metric could be combined with other embedding algorithms such
as metric MDS [9], Laplacian Eigenmaps [3], diffusion maps [14], UMAP [2], etc.
In addition, recent studies have explored alternative metrics for graph Laplacian
embeddings, including the use of optimal transportation [63] and Wasserstein-based
isometric mappings [29]. These approaches offer more flexible and robust geometric
frameworks for analyzing high-dimensional data, which align with the objectives of
our supervised dimensionality reduction model.

Related work on supervised dimension reduction We employ a supervised version
of dimensionality reduction techniques. The majority of SDR algorithms are
designed for discrete label information. For example, these algorithms might define
dissimilarity according to:

i —x 112
. 1—e # X;, x; in the same class
dis(x;, x;) = b
=112
e B —a  x;,x; in different classes

for parameters «, 8, where B generally depends on the feature distances and «
determines the degree of supervision. In contrast, the proposed method of this
chapter is very natural in the case of a continuous response, i.e., for problems
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of prediction and not just classification. Other methods for continuous response
variables include [5, 10, 13, 57]. In addition, embedding methods based on random
forest proximities have been proposed, which can be applied to either discrete or
continuous labels [30, 41, 51, 52]. However since decision trees leverage individual
features, resulting methods may not perform as well when the response is a linear
combination of features (e.g., y = x1 + x2) or a more complex nonlinear function
of features. Although random forests can partially address this issue by aggregating
multiple trees, our method may offer an advantage in this setting.

The two works most relevant to the current chapter are [10] and [13]. The work
[10] utilizes the same mathematical framework we are suggesting (Figs. 2c, f, 3c,
and f are visualizations of an active manifold as described in [10]). However, unlike
[10], which defines an active manifold as a submanifold of the original domain
by following a gradient flow on a high-dimensional grid, we propose to compute
an active manifold via simple embeddings of gradient-based path distances. This
new approach allows one to lift some of the restrictive assumptions in [10] such
as connected level sets (indeed, this restriction rules out some very interesting
examples like evolutionary processes). The work [13] defines an SDR embedding
by minimizing

C(Q) = pKL(P|[Q) + (1 — p)KL(O[|Q)

over embedding coordinates {z;} € R”, with p < D, where P, O, Q € R™*"™
are similarity matrices computed over the features {x;}7, labels {y;}/",, and
embedding coordinates {z;}7 ; with entries given by

pii o exp( =l = xj12/202) . o ocexp(—lyi — wiI)
gij o Iz =212+ D7 i #

and p;;; = 0;; = ¢g;; = 0. KL(:|-) is the discrete Kullback-Leibler divergence, and
p € [0, 1] weighs the contributions of the feature divergence and label divergence
to C. The authors refer to this method as supervised t-SNE (St-SNE) as it is an
extension of t-SNE (t-SNE can be viewed as St-SNE with p = 1). As we are
proposing, they balance between finding an embedding Q that is representative
of the features (first term) with finding an embedding that is representative of
the response (second term). However, we demonstrate that this approach will not
be capable of simultaneously discarding irrelevant features and preserving the
geometry of y—as p decreases, all points with similar y-values will be “glued
together,” and the underlying structure of the response variable will be lost. See
Figs. 2 and 3 and the accompanying descriptions for an illustration.
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2.4 Prediction

We propose a new method for transductive semi-supervised learning, which com-
bines the gradient-elongated metric (2) with Laplacian regularization, an effective
interpolation method used in machine learning for estimating values on a graph
structure. Specifically, given n data points consisting of both labeled and unlabeled
features, Laplacian regularization predicts the unknown labels by solving:

yH = arg min || Plabel Y = Yiabe I3+ 2y Ly, 7
y

where Papel 1S @ projection matrix that selects the labeled data from the full label
vector y, Vel 18 the vector of known labels, and L € R"*" is the graph Laplacian
matrix defined using pairwise distances of features of all the data points. The method
thus extends the given label information in a smooth way across the graph and is
particularly useful in areas involving social networks [35], sensor networks [68],
or image restoration [56]. The graph Laplacian is used to impose a smoothness
constraint on the interpolation process, ensuring that the interpolated values change
gradually along the graph’s edges. This regularization helps in producing more
accurate and reliable interpolations, especially in scenarios where the data points
are sparsely distributed across the graph. However, if the knowledge of the graph
structure used in graph Laplacian regularized interpolation is not accurate, it may
greatly impact the accuracy of the interpolation.

We apply the Laplacian regularization procedure but define L = L(dvy, ;) using
the local gradient metric (2)' with partially observed label information incorporated.
Specifically, we define a graph of local connections among the features weighted

d i.xj)? . .
M), where gradients are approximated for all features

by W;; = exp(—
using the training data and the method of Sect.2.2, and € > 0 is a scale parameter.
Even though the gradient approximations are not very accurate when the number
of training points is small, we demonstrate the method still provides a significant
improvement over local linear regression and standard Laplacian regularization.

For comparative analysis, we evaluate our prediction approach against several
existing methods, specifically K-nearest neighbors (KNN) regression [31], local
linear regression (LLR) [48], traditional Laplacian learning (TLL) [45], and non-
linear level-set learning (NLL) [67]. We have summarized these methodologies as
follows:

1. KNN regression (kNN): Each unlabeled data point is paired with its k nearest
neighbors among the labeled points, determined by Euclidean distance. The label

'In the numerical experiments, the local gradient metric is calculated using the normalized data
X; —X s — ) _ _ I
] ;’;x - - and y‘,’ J ‘ where X = % Sk, v = IIlalheI| lelalbel‘ yi.
\/m ity llxi—xll \/ L llabel g2

Miabel
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for the unlabeled point is assigned based on the average label of these k nearest
labeled neighbors.
2. Local linear regression (LLR): the label of the point x is defined as

1 1 T 1 f
y(x) = zl{yknn + (x - Exknn1k> (XJ - ;X{;ﬂlZlk) (Vknn — 11} Yian)

where 1; € RF is a vector with all 1s, Xyny is the matrix with each column
corresponding to the feature information of the k nearest neighbors (kNNs) of x,
and yknn denotes the label vector for the kNN of x.

3. Traditional Laplacian learning (TLL): we approach the task of estimating labels
for unlabeled data by solving the optimization problem (7), where L = D — W
is a graph Laplacian matrix, with W being the similarity matrix defined on all the
data points and D being the associated degree matrix. The construction of the
similarity matrix is carried out in the following manner:

(a) Initialize W;; = exp (—M
distance between points x; and x; and € > 0 is a scale parameter as before.

(b) For every row in W, maintain only the k highest values, setting the remainder
to zero and ensuring that each row contains at most k non-zero elements.

(c) Symmetrize W by constructing W e R according to VT/i o=
max(W;;, W), i,j = 1...,n. Note that other approaches can also be
used to symmetrizs W, including W=w + w7 or W/l-j = min(W;;, Wj;).
Finally, set W = W.

), where |lx; — x;|| signifies the Euclidean

4. Supervised Laplacian learning (SLL): This approach employs Laplacian learning
method for label estimation of unlabeled data, with the modification that
dvy (x;, x;) (2) is substituted for the Euclidean distance in construction of the
similarity matrix W.

5. Nonlinear level-set learning (NLL): In the NLL approach of [67], a neural
network is trained to identify a nonlinear embedding g : R? — RP of input data
x € RP such that the first few coordinates g(x)1.p, where p < D, are highly
predictive of f(x) € R. The remaining coordinates g(x) p+1:p are not predictive
of f, and g(x)1.p can be used as a reduced-dimensional embedding of x. The
embedding g : R? — RP is parametrized as a neural network and trained using
a loss that drives the first few coordinates of the embedding, g(-)1., to capture
directions orthogonal to level sets of f, and the last coordinates g(-)p+1:p to
capture directions parallel to the level sets of f. Under these conditions, the
value of f will change with perturbations in the direction of g(x)i:, but will
not change with perturbations in the directions of g(x),+1:p. Evaluation of the
loss requires evaluations of f and its gradient V f; hence, for our experiments in
Sect. 3, we approximate the needed gradients using the method of Sect. 2.2
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3 Numerical Results

3.1 Visualization

In this section, our goal is to visualize the geometry or structure of given datasets,
as described in Sect. 1. We start by considering two toy datasets. Specifically, we
consider a tree with three branches (Small Tree) and a tree with seven branches (Big
Tree). The datasets are created by first sampling points m; along a one-dimensional
tree structure, defining the label of m; to correspond to the geodesic distance from
the root of the tree to m;; noise was then added to produce the noisy data points x;,
which are plotted in Fig. 1 (here we consider noise according to Model 2); the plots
are colored by the response variable.

Results for Small Tree are shown in Fig. 2. In the first two rows of Fig.2, we
show the results of applying CMDS and t-SNE (respectively) to visualize in two
dimensions the path distance £ oy, ; for different values of t in (2). For comparison,
the third row of Fig.2 shows a visualization obtained with St-SNE from [13] for
different values of p. Note how, as supervision increases (increasing t in our method
with CMDS and t-SNE or decreasing p in St-SNE), our method is able to denoise
the tree while preserving the underlying structure of the data. In contrast, the St-
SNE visualization does not remain faithful to the true geometry—the branches of
the tree are glued together.

Various visualizations of the Big Tree dataset are shown in Fig. 3. As before,
the first two rows show CMDS and t-SNE embeddings of the path distance £y, ;
for different values of t; the third row shows a St-SNE visualization for different
values of p. Note again the visual confirmation that our method is able to faithfully
represent the true geometry of the data even as 7 increases, as opposed to St-
SNE with decreasing p. Also note that a three-dimensional CMDS embedding
is necessary to accurately display the finer branches at the endpoints of the big
branches. Note we also computed the MDS embedding of the random forest-based

08
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08

(a) Small Tree (b) Big Tree

Fig. 1 Noisy tree datasets, colored by the response variable
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(a) CMDS embedding, T = 0.1 (b) CMDS embedding, 7 = 0.5 (¢) CMDS embedding, 7 = 1

(d) t-SNE embedding, 7 = 0.1 (e) t-SNE embedding, 7 = 0.5 (f) t-SNE embedding, 7 = 1
12 » 12

(g) St-SNE, p = 1 (h) St-SNE. p = 0.5 (i) SLSNE, p = 0

Fig. 2 Two-dimensional visualization of the path distance £ay,; calculated on the small tree
dataset by applying a CMDS embedding (top row) and a t-SNE embedding (middle row) for
different values of 7. The last row shows a comparison with St-SNE for different values of p

proximities (RF-GAP) proposed in [52] to the small and big tree datasets; see Fig. 8
in Appendix “Further Visualization Results”. However, the geometry of the tree
structure is lost.

In addition, we display visualization results on two real-world datasets: one
concerning severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and
one concerning the differentiation of embryoid bodies (EB) [44]. In a recent study
published in [55], the authors want to quantify the neurological phenotypes induced
by the SARS-CoV-2 spike protein in neurons, as measured by in-vitro multi-well
micro-electrode arrays. To this end, a visualization of how much different instances
and exposures of the SARS-CoV-2 spike protein affect neurons is of great value.
Figure 4 displays a visualization of £y with T = 0.8 (top row) as measured
on the SARS-CoV-2 dataset referenced in [55], by applying a t-SNE embedding. In
each subfigure, blue represents instances of control neurons, while yellow represents
exposed neurons, with the exposure ranging from 1 to 100ng. Note how the
separation becomes clearer as the spike protein exposure increases, which supports
the hypothesis that the neurons are affected under exposure to the SARS-CoV-2
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(a) CMDS embedding in 3 dimensions, 7 = 0.1 (b) CMDS embedding in 3 dimensions, T = 0.5 (¢) CMDS embedding in 3 dimensions, 7 = 1

(d) t-SNE embedding in 2 dimensions, 7 = 0.1 (e) -SNE embedding in 2 dimensions, 7 = 0.5 (f) 1-SNE embedding in 2 dimensions, 7 = 1

-

(8) SUSNE.p = 1 () SLSNE. p = 0.5 (i) SLSNE. p = 0

Fig. 3 Visualization of the path distance £y . calculated on the big tree dataset by applying a
CMDS embedding (top row) and a t-SNE embedding (middle row) for different values of t. The
last row shows a comparison with St-SNE for different values of p

spike protein. For comparison, we also show in Fig. 4 visualizations obtained with
t-SNE (second row), St-SNE with p = 0.75 (third row), and MDS of RF-GAP [52]
(bottom row). The fourth row of Fig.4 shows visualizations obtained with PCA;
our method more clearly depicts the separation as the exposure increases while
maintaining the underlying geometry observed in the unsupervised case.

Next we apply our method to the EB dataset, which tracks the development of
human stem cells as they differentiate into various embryoid bodies. Measurements
are taken every 3 days over a 27-day period, and cells were sequenced with the 10x
chromium platform; see [44] for more details. We consider a subset of 35,000 cells
and use the day the cell was sequenced (i.e., time) as the response variable; the goal
of applying our methodology is to emphasize the features that are changing in time,
i.e., the ones relevant to differentiation, and to de-emphasize features not changing
in time, which are not relevant for a visualization of differentiation. Figure 5 (top
row) shows the results of applying CMDS to visualize £ oy, ; for various values of 7:
as 7 is increased, the separation of the time periods becomes more clear, as expected,
but one also sees a larger spread of values for higher label values, which reflects the
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Fig. 4 Visualization of the SARS-CoV-2 dataset. In each case, blue indicates the control, and
yellow indicates the SARS-CoV-2-exposed neurons

fact that the stem cells are developing into a variety of embryoid bodies. Although
supervised t-SNE (third row) clearly separates classes as p is decreased, it fails to
reflect this geometry of small-to-large variances for larger values of p, and thus the
embedding is not as biologically meaningful. Combining our metric £y ; with t-
SNE (second row) yields cleaner class separation than our metric with CMDS (top
row), but it does not reflect the global geometry as accurately as CMDS. Finally, we
also compare with the MDS embedding of RF-GAP proximities [52]; see Fig. 5(i).
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() CMDS embedding of € gy -, 7 =0.2 (b) CMDS embedding of £ gy 7,7 =0.5 (€) CMDS embedding of £ gy 7,7 = 0.8

" J
R

(@) SNE embedding of £y 7,7 =0.2 (@) -SNE embedding of £ 1y 7, 7 = 0.5 (1) -SNE embedding of £y 7,7 = 0.8
£ hEORQQG . 5
() SI-SNE, p = 0.5 (i) StSNE, p = 0.2

(j) t-SNE (k) PCA (I) MDS embedding of RE-GAP proximities

Fig. 5 Visualization of the EB dataset. Colors indicate the number of days the embryonic bodies
have grown, where the progression from blue to yellow corresponds to a progression from 1 day
to 5 days

To quantitatively assess the quality of supervised dimension reduction algorithms
is a difficult task, but we attempt to do so by calculating the variable importance
correlation metric proposed in [51]. This metric computes scores quantifying the
importance of each predictor variable for predicting the response and also for
predicting the embedding coordinates and then calculates the correlation between
the importance scores; the goal is to assess the preservation of the structure of the
predictor variables. The correlation metrics of all of the EB embeddings shown in
Fig.5 are given in Table 1. The highest score was obtained by supervised t-SNE
with small p (0.777); we emphasize however that it is clear from Fig. 5(i) that the
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Table 1 Variable importance CMDS of £y, =02 10695
correlation metric from [51] '

on EB dataset [44] t=05 |0.729

t=0.8 /0.733

t-SNE of £y ¢ t=0.2 |0.693

=05 ]0.672

r=0.8 |0.651

Supervised t-SNE p=0.8 |0.627

p =05 10.650

p =02 0777

MDS of RF-gap 0.644

PCA (unsupervised) 0.591

t-SNE (unsupervised) 0.582

embedding oversimplifies the geometry, collapsing all the various embryoid bodies
into the small yellow cluster; the second highest score was obtained by our gradient-
elongated metric with CMDS for large 7 (0.733).

3.2 Prediction

In this section, we investigate the utility of the SLL method proposed in Sect. 2.4
for prediction of unknown labels on both synthetic and real-world datasets.

3.2.1 Synthetic Datasets

We first consider prediction on the following six synthetic datasets. For each
dataset, we sample n = 1000 points; we assume access to 100 labeled points and
measure predictive performance on the remaining points. The datasets are described
below:

(i) Small Tree d8: dataset is generated by forming a small tree (three branches)
in the first two dimensions and then sampling from a d = 8-dimensional tube
about this tree. The response variable is y = 8(xy — 1)3, i.e., it depends on the
tree structure/direction of elongation.

(i) Big Tree d4: dataset is generated by forming a large tree (seven branches) in
the first two dimensions and then sampling from a d = 4-dimensional tube
about this tree. The response variable is y = (SX4)3, i.e., it does not depend on
the tree structure/direction of elongation.

(iii) Cube: data is sampled from a d = 5-dimensional unit cube, and the response
variable is defined by y = 4(x1 + x2)*.

(iv) Sphere: data is sampled from the d = 4-dimensional unit sphere S*, and the
response is defined by y = 6%, where @ is the angle formed with a fixed polar
cap.
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(v) Swiss Roll: data is sampled from a d = 2-dimensional Swiss Roll, and the
response variable is y = 02, where £1 is an intrinsic manifold coordinate.

(vi) Annulus: data is sampled from a d = 4-dimensional annulus; specifically, all
points satisfy 1 < ||x|| < 3, and the response variable is y = r2 = ||lx||3.

3.2.2 Noiseless Experiments on Synthetic Data

In this section, we present the outcomes of our experiments where we compared
supervised Laplacian learning (SLL) with prevalent methods such as k-nearest
neighbors regression (kNN), local linear regression (LLR), and traditional Laplace
learning (TLL) on the synthetic datasets without noise. For each dataset and for
each method, we test a wide range of parameters as outlined in Appendix “Local
and Laplacian-Based Methods” and in this section report the lowest relative error
across all parameter settings for each dataset/method combination.

We also compare our proposed method to the result of using a one-dimensional
embedding generated by the nonlinear level set learning (NLL) of [67] as an input to
local linear regression (LLR) or k-nearest neighbors regression (kNN). Specifically,
because the output y € R in each of the synthetic datasets depends only on a one-
dimensional function of the input coordinates x € R, we use NLL to learn an
embedding g : R? — RP and then use g(x); € R as a predictor for y € R within
LLR and kNN. For further experimental details, see Appendix ‘“Nonlinear Level-Set
Learning”.

For each example and parameter configuration, the dataset was randomly
partitioned into a training set of Ny,in = 100 points, used to train the prediction
methods, and a test set of Nst = 900 points over which the mean relative error
of the prediction method was computed. The relative errors and runtimes reported
in Table 2 correspond to optimal choices of parameters—that is, the parameters
yielding minimal mean relative erro—for each method/example and are averages
over ten independent trials for each method/example combination, i.e., ten different
partitions of the data into training and test sets.

The computational tasks in this study were executed on a MacBook Pro or
MacBook Air equipped with an Apple M1 chip, featuring 8 cores split between
4 performance cores and 4 efficiency cores, and 16 GB of RAM. From Table 2, we
see that the SLL approach demonstrated minimal relative error among all methods
across all datasets. The runtime required for SLL is also quite reasonable, clocking
in at <0.1s on a standard laptop computer across all examples—this runtime stands
in particular stark contrast to the NLL method, which requires training of a neural
network.

On all of the above examples, supervised Laplacian learning (SLL) outperforms
all competing methods in the noiseless setting, except on the Swiss Roll where SLL
and TLL work equally well (perhaps because the intrinsic dimension is so small)
and on the Annulus where SLL and the NLL-based methods work equally well. The
minimum relative error among all examples (9.82%) is achieved on the Swiss Roll
dataset, which also features the fewest optimal nearest neighbors and the smallest ©
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Ta.“‘i 3 F;laltive grrcfr inf 2 =0.01, 7 = 1, | Relative error

fned i r.and ¢ (vorageover =005 KN [LLR [TLL [SLL

ten trials). The best results Small tree 0.3719 |0.1781 | 0.9678 |0.1309

are emphasized in bold Big tree 0.7838 | 0.4138 |0.7916 |0.1530
Cube 0.4488 | 0.3971 |0.9034 |0.1782
Sphere 0.3471 |0.2225 | 0.8582 |0.1641
Swiss roll 0.4857 |0.3648 | 0.1186 |0.1071
Annulus 0.7434 | 0.6859 | 0.8773 |0.2723

value. We posit that this predictive power and parsimony in parameters may be due
to the simpler, lower-dimensional structure of the Swiss Roll. The relative errors for
the other datasets ranged between 12.42 and 27.43%.

To compare methods across the same parameters, we fix A = 0.01, ¢ = 1, and
€ = 0.005 and compare relative error accordingly as seen in Table 3. Across all
methods we either see the best relative error with the SLL method or have a tie for
lowest relative error for the Swiss Roll dataset.

3.2.3 Noisy Experiments on Synthetic Data

In this section, we compare the prediction efficacy of the SLL method against kNN,
LLR, and TLL on the synthetic datasets in the presence of additive noise, either on
the labels as described by Model 1 or the features as described by Model 2. We do
not include a comparison to the NLL-driven prediction methods in the noisy setting,
as we saw previously that their performance was no better than SLL (and sometimes
quite worse) and their runtimes were roughly four orders of magnitude higher than
SLL, owing to the need to train a neural network.

With o denoting the noise level (o = oy in the case of noisy features and o = oy
in the case of noisy labels), we incorporate additive noise as given by Models 1
and 2. We do this for the noise on data features or on data labels separately. In each
case, we tune the parameters of each method across the collection of parameters as
described in Appendix “Local and Laplacian-Based Methods” and then choose the
best parameters for each method. However, we do fix T = 1 and A = 1072 in all
experiments, as optimal performance of our method is almost always for t large,
and results were insensitive to choice of A. We then plot the results of the relative
error of each method against the varying o levels in both cases, as seen in Fig. 6
(noise on features) and Fig. 7 (noise on labels).

For both noise models, as the noise level increases, the relative error increases
across all methods. However, our proposed SLL method significantly outperforms
all other methods across all noise levels, with the exception of nearly identical
performance between our SLL method and traditional Laplace learning on the Swiss
Roll as seen in Figs. 6e and 7e. As in the noiseless case, we again posit that this may
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() Cube Example

v-p

(d) Sphere Example (¢) Swiss Roll Example () Annulus Example

Fig. 6 Relative errors vs. noise levels o for noise on data features (Model 2)

() Small Tree Example (b) Big Tree Example () Cube Example

(d) Sphere Example (e) Swiss Roll Example (f) Annulus Example

Fig. 7 Relative errors vs. noise level o for noise on data labels (Model 1)

be due to the low intrinsic dimension of the Swiss Roll. Overall, our SLL method
remains highly robust to noise on both the data features and on the labels.
3.2.4 Experiments on Real-World Datasets

Here we consider the problem of predicting house prices and other variables using
the following real-world datasets. For each dataset, we assume access to 10% of the
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Table 4 The evaluation of relative error and runtime performance in label prediction using various
algorithms across real-world datasets for fixed lambda, tau, and epsilon

Lambda = 0.01, Tau =1, Relative error

Epsilon = 0.005 kNN LLR TLL SLL
Abalone 0.7314 0.6984 0.7570 0.6719
Ames housing 0.4699 0.4363 0.8080 0.4002
California housing 0.6046 0.5219 0.6429 0.5056

labels and measure predictive performance on the remaining points. The datasets
used in this study are described as follows:

@

(ii)

(iii)

Abalone: The Abalone dataset consists of 4, 177 samples with 8 features and
can be accessed from [46]. It is used to predict the age of abalone from physical
measurements such as length, diameter, and shell weight. For simplicity, we
chose to ignore the categorical “sex” variable in this analysis. This dataset has
been a benchmark in regression tasks.

Ames Housing: This dataset contains 2, 930 samples with 82 selected features.
It provides detailed information about residential properties in Ames, lowa,
and is commonly used for regression tasks predicting house prices based on
various physical and locational attributes[19]. We accessed this dataset from
Kaggle [36], and the features were selected with an absolute correlation greater
than 0.3 with the target variable, SalePrice, to ensure the inclusion of only the
most relevant predictors.

California Housing: With 20,433 samples and 9 features, the California
Housing dataset is used to predict house prices based on demographic and
geographic data from California [49]. This dataset was accessed from Kaggle
[37], and to keep the analysis more straightforward, we excluded the categori-
cal “ocean proximity” variable.

The results across all datasets demonstrate that our method outperformed the
other algorithms, although the error was rather high for all methods with so few
labels (Table 4). For these datasets, SLL significantly outperformed TLL, but
there was only a small improvement over LLR; we conjecture that this is because
the response variable is (locally) fairly linear, whereas our synthetic examples
were constructed to have strong nonlinearities. Overall, the findings highlight the
effectiveness of SLL in leveraging the structural relationships within the data while
also reaffirming the competitiveness of traditional methods.

4 Conclusion

This chapter explores a geometric approach to supervised dimension reduction,
where local gradient information is used to elongate useful dimensions. By com-
puting and embedding geodesic distances under this local gradient stretching, we
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obtain supervised visualizations capable of simultaneously denoising the data while
preserving global geometric information. By incorporating this metric into a graph
Laplacian construction, we obtain a supervised graph Laplacian, which is used for
prediction in a Laplacian learning framework. Extensive numerical experiments
indicate the utility of this approach when the number of labels is small and the
data is noisy. Since shortest path distances can be sensitive to noise, future work
will explore whether combining diffusion-based algorithms such as PHATE [44]
with our local metric can produce more noise-robust visualizations. Future work
will also explore a more rigorous theoretical analysis of the convergence of dyy . to
the continuum limit (6), a theoretical analysis of supervised Laplacian learning, and
the application of our prediction methodology on more real-world data.
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Appendix: Supporting Results

Further Visualization Results

Figure 8 shows the MDS embedding of RF-GAP proximities on the Small Tree and
Big Tree datasets.

03
03

02
02

01 04

-0

02

03

(a) Small Tree (b) Big Tree

Fig. 8 MDS embeddings of RF-GAP proximities on tree datasets
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Local and Laplacian-Based Methods

For each synthetic dataset, we tune the parameters of the kNN, LLR, and TLL
methods along with our SLL method across a wide range and report the best relative
error. The parameter sets are given in Table 5.

Based on this parameter tuning, the optimal parameters returning the lowest

relative error for our SLL method are shown in Table 6.

For the noisy experiments, we again tune the parameters of the kNN, LLR, and
TLL methods along with our SLL method and report the resulting best relative error.

The parameter sets are given in Table 7.

Table 5 Parameters used for the noiseless cases

Parameter | Value

J. F. Chhoa et al.

€ set 1073,2x1073,3x1073,4x1073,5x 1073, 6 x 1073, 7 x 1073, 8 x 1073,
9x1073,1072

NN set 2,3,4,6,8,12, 16,23, 32, 46, 64, 91

X set 10-%,1074,1072, 1.0, 10?

T set 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1

Table 6 Optimal parameters for supervised Laplacian learning (SLL)

Data SLL error Nearest neighbor € A T

Small tree (d = 8) 0.1300 23 0.006 0.01 1

Big tree (d = 4) 0.1160 91 0.002 0.01 1

Cube (d = 5) 0.1607 64 0.003 0.01 1

Sphere (d = 4) 0.1828 32 0.006 0.0001 1

Swiss roll (d = 2) 0.0982 6 0.008 0.0001 0.

Annulus (d = 4) 0.2743 23 0.006 0.01 1

Table 7 Parameters used for the noisy cases

Parameter | Value

€ set 1073,2%1073,3 x 1073,4 x 1073,5 x 1073, 6 x 1073, 7 x 1073, 8 x 1073,
9 x1073,1072

oy set 1073,2x1073,4 x 1073, 8 x 1073, 1.6 x 1072,3.2 x 1072, 6.4 x 1072,
0.128, 0.256

oy set 1073,2x 1073,4 x 1073,8 x 1073, 1.6 x 1072,3.2 x 1072, 6.4 x 1072,
0.128, 0.256

NN set 2,3,4,6,8, 12, 16, 23, 32, 46, 64,91
A 1072

T 1

Trials 10
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Nonlinear Level-Set Learning

For each of the synthetic datasets of Sect.3.2, we apply the nonlinear level-
set learning (NLL) method of [67] in the noiseless setting to obtain a nonlinear
embedding g : R? — RP such that g(x); € R is highly predictive of y = f(x) €
R. As the output y € R only depends on a one-dimensional function of the input
coordinates x € RP in each example, a one-dimensional embedding of x, which
is entirely predictive y, exists in each example. Following [67], we parametrize g
as seven-layer reversible neural network with “time-step” 7 = 0.25 and hyperbolic
tangent activation. We train the network using the loss in [67] (Equations 9-11),
computed over 100 training data points and parametrized with anisotropy weights
w = (0,1,1,...,1) € RP. These anisotropy weights serve to drive the first
coordinate of the embedding to be orthogonal to level sets of f, which on an intuitive
level corresponds to embedding as much information as possible about how f(x)
changes with x into the first coordinate of g(x). We weight the two loss terms
in Equation (11) of [67] equally. Training is performed using stochastic gradient
descent with learning rate « = 0.01 and stopped when the loss drops below 0.0001
or after 20,000 steps are taken, whichever occurs first. After the embedding g has
been obtained in this way, we test the efficacy of g(x); in predicting y = f(x)
via k-nearest neighbors regression (KNN) and local linear regression over the 900
remaining test data points.

As the NLL loss depends on evaluations of V f, which for most practical
applications we will not have access to, we approximate the gradient of f using
the k-neighbors method of Sect. 2.2. We vary the number of neighbors kg,q used in
gradient computation, as well as the number of neighbors kxnn used in the subse-
quent prediction via k-nearest neighbors and the number k| r used in prediction via
local linear regression, within the set {1, 2, ..., 25} and for each example report best
kNN and LLR relative error over all combinations (Kgrad, kkNN) and (Kgrad, KLLR),
as averaged over ten independent trials (i.e., ten different partitions of the data into
training and test sets). The minimal relative errors for each example, along with the
optimal combinations of kgrad, kkNN, and kp LR and corresponding training times,
can be found in Table 8.

Table 8 Relative error, embedding training times, and optimal parameters for prediction on NLL
embeddings via k-nearest neighbors and local linear regression

k-nearest neighbors regression Local linear regression

Relative Training Training

error kgrad | kkNN | time (s) Relative error | kgrag | kLLR | time (s)
Small tree | 0.2900 |23 2 1256 0.2528 25 6 896
Big tree 0.1519 |25 4 568 0.1791 25 11 568
Cube 0.5749 6 4 679 0.6495 6 5 679
Sphere 0.6236 6 8 708 0.6914 6 25 708
Swiss roll | 0.6437 4 10 492 0.5645 11 25 488

Annulus | 0.3006 |17 7 493 0.2971 22 23 503
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Reducing NLP Model Embeddings for )
Deployment in Embedded Systems e

Karolyn Babalola, Arnaja Mitra, and Jing Qin

1 Introduction

The latest advancements in natural language processing (NLP) have revolutionized
the way technology represents and replicates human communication. In partic-
ular, transformer-based models have marked a major turning point in NLP by
enabling large-scale statistical representations of semantics and syntactic rules
[36]. Transformer-based technologies underlie many state-of-the-art large language
models, such as ChatGPT [6] and its variants, LL.aMa [33], and BERT [10]. They
significantly outperform previous NLP approaches by networking several layers of
encoding networks that comprise hundreds of millions to billions of parameters.
The growth of NLP technology has undoubtedly relied heavily on the increasing
availability of high-performance computing resources. To overcome the associated
computational bottlenecks, our hypothesis focuses on finding a balance between
model efficiency and performance, with the goal of developing smaller, faster
models that maintain high levels of accuracy.

The compute-intensive structure of state-of-the-art NLP models has restricted its
application in resource-limited environments. Embedded systems, such as FPGAs
[5], network-restricted applications, the Internet of Things (IoT), and edge devices,
often impose restrictions that make deploying large language models virtually
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impossible without significant reductions in model size. To that end, various
methods, such as distillation and pruning, exist to achieve this reduction.

Distillation is a size-reduction method that involves transferring knowledge
from a “teacher” model to a smaller “student” model, which is a copy of the
teacher model with several layers removed. Distillation occurs by training the
student on the loss over the soft target probabilities of the teacher. DistilBERT [28]
and TinyBERT [16] are well-known examples of distilled BERT models. While
the original base BERT model comprises 110M parameters and uses 431 MB of
memory, DistilBERT contains 66M parameters requiring approximately 259 MB of
memory, and TinyBERT has a remarkable 14.5M parameters, which would require
approximately 60 MB of memory. Despite their reduced size, distilled models
retain comparable performance as the base BERT model on bench-marking tasks.
Consequently, several pre-trained versions of distilled models have been made
available for fine-tuning on more specific NLP tasks such as intent classification,
sentiment classification, and named-entity recognition [30].

Pruning is another technique for reducing the size of a model by removing model
weights and their respective synapses. In practice, one takes a pre-trained model,
such as BERT or RoBERTa [18], and selectively masks or ablates the weights
within the attention heads of each encoding layer. This can be achieved using greedy
methods, such as magnitude weight pruning [13], or those mentioned in [20], and/or
entropy methods as explored in [29].

Distilled and pruned models have shown considerable robustness in their overall
performance but still exhibit some degradation compared to their original models.
Because previous studies focus on maximizing benchmarking performance of
reduced models, it is unclear about how to effectively balance model reduction
and fine-tuning techniques for specific NLP tasks in terms of size and performance
trade-offs. Recent investigations have begun to explore the performance trade-offs
of iterative model reduction using distillation and pruning [29]. In addition, effective
dimensionality reduction techniques have been shown for fixed word embeddings in
text analysis applications [26, 27, 31]. Building on this promise, we hypothesize
that because categorical features of the corpus are preserved in the pre-trained
BERT models’ token embedding, dimension reduction methods that preserve a
significant percentage of the variance could help maintain performance as model
size decreases. In this work, we aim to explore the trade-offs of model reduction
by applying dimensionality-reduction techniques to the embedding layer of BERT
models.

1.1 NLP Tasks in Embedded Systems

The process of documenting NLP task performance trade-offs for size-reduced
transformer-based models was initiated in [29]. In this case, three tasks, intent
classification, sentiment classification, and named-entity recognition, were chosen
based on a simple robot arm apparatus that the authors chose. However, the chosen



Reducing NLP Model Embeddings for Deployment in Embedded Systems 229

tasks embody a range of use cases that have relevant applications in compute-
constrained environments.

Intent classification (IC) is a natural language understanding (NLU) task that
involves classifying a user’s intention from either a predefined set of utterances or
a summary of text input. In [29], they were using intent-classification to control the
output of a robot arm based on a user’s input. They tested the accuracy of the chosen
models using a well-defined public IC dataset called HurIC [35]. HurlC is a pre-
defined corpus of utterances used to define human-robot interaction in house service
robots. Interestingly enough, the HurlC dataset has a well-defined classification;
thus, models of many sizes produce relatively high performances.

The sentiment classification NLP task is defined as interpreting a predefined
set user’s utterances into a set of sentiment labels. In [29], the authors use this to
classify user emotion in combination with intent to determine how to program the
actions of a robot. They use the dataset called GoEmotions' to test their models’
performance in different environments [7]. This dataset has been tested in several
other use cases and provides a useful test bed to expand beyond the use case in
[29]. Furthermore, GoEmotion presents a relatively challenging task that produces
arange of performance outcomes for different models.

Finally, in [29], named-entity recognition (NER) is used to enable the robot arm
use case to target entities in its environment on which to direct user instructions.
This is a widely used NLP task with many applications. In this use case, they
tested entity recognition using two different datasets, i.e., CONLL-2003 [32] and
WNUT17 [8]. WNUT17 is a dataset comprised of user-generated social-media data
that was developed for the task of identifying previously unseen and unusual entities
in ongoing discussions. The authors chose the WNUT17 due to its similarity to user
utterance data and its shared task of recognizing unknown entities; however, the
overall task of WNUT17 is quite difficult and tends to produce low performance
for many models. CoNLL-2003 is a dataset of annotated entities generated from
Reuters news stories published between August 1996 and August 1997. CoNLL
has similarly high-performance outcomes as the HuRIC, but it provides a useful
benchmarking task for NER.

While [29] documents the performance trade-offs of the three aforementioned
NLP tasks, we focus our study testing a range of dimensionality-reduction tech-
niques on NER and particularly the CoNLL-2003 dataset, since its relatively high
performance lends itself well to demonstrating degradation.

Uhttps://huggingface.co/datasets/go_emotions
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1.2 Extended Exploration of Model Size Reduction and
Performance

In [29], the authors tested the performance of two large BERT models, i.e., BERT
and RoBERTa, and two distilled models, namely, DistilBERT and TinyBERT; all
models were fine-tuned on the aforementioned NLP tasks [29]. These models’
performance stats were contrasted with their own custom-pruned models. The
custom models were pruned by measuring the entropy of the attention heads within
a given each layer of the model and masking the heads with the lowest entropy. If
the masked heads produced an F1 score above a predefined threshold, it would be
removed, and the masking and removal process would iterate until the minimum F1
threshold was reached. This process resulted in models ranging in sizes from 75.9M
parameters and 303.5 MB to as small as 34.1M parameters and 136.4 MB.

This investigation replicates the methodological approach demonstrated in [29]
to reduce BERT models to fit certain resource and performance constraints.
However, rather than pruning BERT models, this study investigates whether one
could achieve comparable performance by manipulating the token embedding layer
and, thus, models’ overall hidden size. The initial reasoning for this approach is
a predicated fact that reducing the embedding size by any factor is advantageous
because it automatically reduces the model’s total parameter space by the same
factor, e.g., reducing the embedding layer from 768 by a factor of 3-256 would
reduce the DistilBERT parameter space to 22M. This chapter discusses the results
and challenges faced while exploring this idea.

The remainder of the chapter is organized as follows. In Sect. 2, we introduce the
token embedding layer in BERT type of models, briefly present the four dimension
reduction methods that we employ, and our proposed embedding dimension-reduced
NLP pipeline. A variety of numerical experiments on named-entity recognition test
with DistilBERT are conducted and described in Sect.3 to discuss the impacts
of reduced dimension, batch size, and learning rate on recognition accuracy and
training runtime. Finally, we conclude the chapter and outline future work in Sect. 4.

2 Proposed Methodology

In this work, we apply various dimension reduction methods to reduce the model
token embedding size, so as to produce new embedding vectors that maximize
the variance of its components in a smaller vector space. In particular, we chose
principal components analysis (PCA), truncated singular value decomposition
(TSVD), agglomerative clustering (AC), and uniform manifold approximation and
projection (UMAP).
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2.1 Embeddings in BERT

Tensor representations of chunks of text, referred to as tokens, form foundation of
quantitative NLP. Such numerical representations range from large, sparse categori-
cal representations of words in a corpus, such as the one-hot encoding [22], to corpus
frequency representations such as TF-IDF [1]. Selecting an appropriate numerical
representation of words and tokens has often been the first step in optimizing the
performance of a task-specific NLP model. For instance, historically topic models,
such as LDA [4], often relied on generating a bag-of-words representation that infers
a “global” word distribution and presumes exchangeability [2].

More recent topic models have replaced sparse representation of words with
embeddings. Generated by neural network models, embeddings are vectors that
encode categorical features of words or tokens into a multidimensional space [3].
Algorithms such as Word2Vec [21] and GloVe [25] have been used to train on
corpuses in specific domains and are a means of sharing pre-trained embeddings
to perform vector-based search tasks or to precede a downstream classifier or
clustering model. Even topic models received more recent updates, using embedding
representations [11, 17].

BERT transformer models leverage token embeddings; however, they are a
fixed part of its first layer (cf. Fig. 1). The token embedding is summed with a
position embedding and a token type embedding in the first layer. The position
embedding encodes the position of each word in a fixed input sequence, typically
512. The token type embedding encodes to which sequence a token belongs; for
instance, in sequence-to-sequence training, the token type would label the inputs
as either sequence “A” or sequence “B,” whether the sequence is the input or the
output respectively. Unlike word2vec and GloVe, the token embedding in BERT
models is initialized as Wordpiece embeddings [37] and trained with the entire
model to generate a contextual language representation in output of the final
(hidden) layer. The models are then further fine-tuned for specific tasks, such as
classification and question/answering. Therefore, pre-trained BERT models have
their own unique token embeddings. Nonetheless, the token embedding alone still
effectively represents the categorical features of the corpus; this can be demonstrated
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by contrasting the cosine similarity of embeddings corresponding to words in the
corpus that are similar in meaning to those that are not [9].

Previous studies have shown effective dimensionality reduction for fixed word
embeddings with text analysis applications [26, 27, 31]. Extending this idea, we
assume that since categorical features of the corpus are preserved in the pre-trained
BERT models’ token embedding, it follows that dimension reduction methods that
preserve a significant percentage of the variance could help maintain performance
as the model size decreases.

2.2 Dimension Reduction Methods

In this section, we briefly introduce the dimension reduction methods employed
in this study. For a given token embedding matrix X € R™*", where m is the
number of tokens and 7 is the dimension of token features, we intend to reduce
its dimensionality. The default dimension n = 768 is quite large, which not only
leads to the increased storage requirement but also slows down computation or
retrieval speeds. There are many dimensionality reduction approaches that have
been developed to convert high-dimensional datasets into their low-dimensional
representations while retaining the most important data features.

PCA was first proposed in [24] as an analogue of the principal axis theorem in
mechanics and was later independently developed and named by Harold Hotelling
[14]. As one of the most popular dimensionality reduction methods, PCA uses a
linear transformation to project the high-dimensional embedding matrix into its low-
dimensional representations with the size m X k, where k < n such that the variance
of the low-dimensional representations is maximized.

Another method that we apply is truncated singular value decomposition
(TSVD), which comes naturally with the singular value decomposition of a matrix
and has been widely used for low-rank matrix approximation [12]. If an embedding
matrix X is assumed to be low rank with a relatively small rank k < min{m, n},
then we can use the following way to approximate X:

k
v T
X = Zaiui Vi,

i=1

where o; are the singular values of X arranged in the descending order and u; and
v; are the left and right singular vectors. In fact, we can show that X achieves the
smallest Frobenius norm in the following sense:

X = argmin X —=Ylr.
Y eR™*": rank(Y) <k
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As one important hierarchical clustering method, agglomerative clustering (AC)
[15] is a “bottom-up” approach, where each data point starts as its cluster and
pairs of clusters are merged as one moves up the hierarchy. The iterative algorithm
terminates until all points belong to a single cluster or a stopping criterion is
satisfied. In this method, the similarity between two clusters is typically measured
by the distance between the closest members of the clusters, which is called the
single linkage; the farthest members, which are called the complete linkage; and
the average distance between all pairs of members, called the average linkage, or
other metrics. In addition, agglomerative clustering yields a dendrogram, i.e., a tree
structure indicating the merges that can generate the final clustering result. In this
work, we apply agglomerative clustering to reduce the feature numbers in the token
embedding matrix while preserving the most distinguishable features.

More recently, uniform manifold approximation and projection (UMAP) has
been proposed as a powerful nonlinear dimensionality reduction technique [19].
By visualization, it resembles the T-distributed stochastic neighbor embedding
(t-SNE) [34], but it assumes that the data is uniformly distributed on a locally
connected Riemannian manifold with the Riemannian metric being locally constant
or approximately locally constant. This assumption may not be valid in NLP, which
prevents the training on the reduced dataset from achieving high accuracy (see
Sect. 3 for more justifications). Note that unlike PCA, UMAP can preserve nonlinear
overall variance of the dataset, but it typically projects the data onto 2D or 3D
spaces for visualization. In our experiments, UMAP is much slower than the other
counterparts for training, so we exclude it from comparison.

2.3 Embedding Reduced NLP Method

In this work, we extract the pre-trained token embedding from a fine-tuned Distil-
BERT model and retrain a reconfigured DistilBERT model with token embedding
reduced using the dimensionality reduction methods described above. We explore
whether the information retained in the token embedding layer is significant enough
to help maintain some portion of the performance of the original model size. In lieu
of our initial goal, to train and test reduced models on the three NLP tasks stated in
Sect. 1.1, we opted to focus on the NER task while adding a demonstration of the
effect of hyperparameter tuning on the performance.

3 Numerical Experiments

In this section, we illustrate the influence of dimension reduction methods applied
to the token embedding matrix of DistilBERT on the overall performance of an
NER task, including the accuracy and training runtime. Although hyperparameter
optimization may seem less critical for models trained infrequently and deployed in
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Table 1 Overview of the CoNLL-2003 dataset

English data German data
Data type Articles | Sentences | Tokens Articles | Sentences | Tokens
Training set 946 14,987 203,621 | 553 12,705 206,931
Development set | 216 3,466 51,362 | 201 3,068 51,444
Test set 231 3,684 46,435 155 3,160 51,943

embedded systems, it is still essential for achieving optimal performance. A well-
tuned model improves prediction accuracy and generalizability, directly enhancing
application reliability. While training may require more resources, optimizing
for efficient inference is crucial, as this phase runs continuously in embedded
environments. Even small improvements in tuning can significantly impact runtime,
power efficiency, and accuracy, which is particularly important for applications
where low latency and power consumption are critical. Motivated by these facts,
our investigation here aims to future-proof the DistilBERT model for potentially
more resource-constrained or larger-scale applications where runtime and hardware
efficiency become more pronounced.

Our main question arises: Can reducing the size of a model by manipulating
the embedding size using dimensionality reduction methods produce performance
results comparable to that of the original model? In addition, we observe whether
we can map reduction methods to expected performance trade-offs. To answer this,
we train the model DistilBERT to perform one of the NLP tasks mentioned above,
i.e., named-entity recognition (NER), on one benchmark dataset.

All the numerical experiments are implemented on Python 3 in a desktop
computer with Intel CPU i9-9960X RAM 64 GB and GPU Dual Nvidia Quadro
RTX5000 with Windows 10 Pro.

Throughout the section, we focus on the CoNLL-2003 dataset [32], which
comprises eight files covering two languages: English and German. These files
are annotated with four types of named entities: persons, locations, organizations,
and miscellaneous entities that do not belong to the previous three groups. For
each language, there exists a training file, a development file, a test file, and a
large file with unannotated data, offering a standardized framework for training and
evaluating NER models. The English data was sourced from news articles within the
Reuters corpus, spanning stories from August 1996 to August 1997. Likewise, the
German data was extracted from the August 1992 issues of the German newspaper
Frankfurter Rundschau. Refer to Table 1 for the distribution of various categories
and subsets in the CONLL-2003 dataset.

We have fine-tuned the DistilBERT model using the aforementioned dataset
collected from Hugging Face? to perform the NLP task NER while maintaining
the following hyperparameter setup: batch size among {8, 16, 32, 64}, number
of epochs as 7, learning rate among {107%, 107>, 10~#}, and weight decay rate

2 https:/huggingface.co/
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between 0.01 and 0.3. To evaluate the performance, we use the standard metrics for
classification: precision, recall, F1 score, and accuracy [23]. Let FP, FN, T P, and
T N denote the respective number of false positives, false negatives, true positives,
and true negatives. Then the four metrics are defined as follows:

* Precision is the ratio of relevant instances among the retrieved instances, given
by Pr=TP/(TP + FP).

* Recall is the ratio of relevant instances that were retrieved, given by Re =
TP/(TP + FN).

e FI1 Score (or F-measure) is the harmonic mean of precision and recall, given by
F1 =2PrRe/(Pr + Re).

e Accuracy is the ratio of correct predictions to the total number of predictions,
defined asacc = (TP +TN)/(TP+ FN+ FP+TN).

3.1 Experiment 1: Vary Reduced Dimension

In our initial experiment, we set the batch size to 8 and the learning rate to 10~*. We
first ran the DistilBERT without data dimension reduction as a baseline in Table 2.
We then evaluated each dimension reduction method using various dimensions: 128,
256, 512, and 768. Table 3 shows the overall precision, recall, F1 score, accuracy,
and training runtime for PCA. Similar results for TSVD, AC, and UMAP are
presented in Tables 4, 5, and 6, respectively.

Tables 2, 3, 4, 5 and 6 show that data compression may cause very modest
drops in accuracy despite very substantial drops in F1 score. The F1 score, which
emphasizes both false positives (incorrectly predicted entities) and false negatives
(missed entities), is particularly sensitive to small errors in named-entity recognition
(NER) tasks. As data dimensionality decreases, imbalances in entity types, e.g.,

Table 2 Evaluation results without dimension reduction with batch size 8 and learning rate 10~*

Dim | Overall precision | Overall recall | Overall F1 | Overall accuracy | Train runtime (s)

128 | 0.516295 0.515718 0.516006 | 0.882060 2101.14
256 | 0.572505 0.612149 0.591664 | 0.903490 2738.20
512 | 0.633252 0.664280 0.648395 | 0.918455 4375.02
768 | 0.920866 0.928180 0.924508 | 0.981270 6615.40

Table 3 Evaluation results from PCA with batch size 8 and learning rate 104

Dim | Overall precision | Overall recall | Overall F1 | Overall accuracy | Train runtime (s)

128 | 0.526883 0.525115 0.525997 | 0.884395 2012.77
256 | 0.579988 0.623783 0.601089 | 0.905063 2627.11
512 | 0.634869 0.656673 0.645587 | 0.918646 4107.24

768 | 0.721791 0.739233 0.730408 | 0.941570 6290.71
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Table 4 Evaluation results from TSVD with batch size 8 and learning rate 10~*

Dim | Overall precision | Overall recall | Overall F1 | Overall accuracy | Train runtime (s)

128 1 0.521172 0.527352 0.524244 | 0.883156 2000.89
256 | 0.581499 0.626580 0.603199 | 0.905031 2590.51
512 | 0.631465 0.651527 0.641339 | 0.918360 4135.47
768 | 0.851968 0.852444 0.852206 | 0.964573 6260.57

Table 5 Evaluation results from AC with batch size 8 and learning rate 10~*

Dim | Overall precision | Overall recall | Overall F1 | Overall accuracy | Train runtime (s)

128 1 0.526924 0.525450 0.526186 | 0.883156 2007.38
256 | 0.576366 0.613827 0.594507 | 0.904157 2588.36
512 | 0.634869 0.656673 0.645587 | 0.918646 4162.72
768 | 0.721791 0.739233 0.730408 | 0.941570 6357.39

Table 6 Evaluation results from UMAP with batch size 8 and learning rate 104

Dim | Overall precision | Overall recall | Overall F1 | Overall accuracy | Train runtime (s)

128 | 0.482526 0.312004 0.378966 | 0.860740 2221.97
256 | 0.481790 0.375881 0.422296 | 0.874323 2957.02
512 | 0.517582 0.439646 0.475442 | 0.887620 4749.07
768 |0 0 0 0.789108 6948.93

some entities appearing more frequently than others, become more pronounced.
Accuracy remains relatively stable as the model correctly classifies the majority
of entities, particularly the common ones, even if rare entities are occasionally
misclassified or missed. However, the F1 score drops more substantially due to the
greater impact on recall and precision for rare entities, which in turn lowers the
harmonic mean.

As the dimension increases, longer running times are required for the training
step, but the accuracy scores improve. Among the four methods, UMAP exhibits the
poorest performance in terms of accuracy, also requiring slightly more training time.
When the original hidden dimension of 768 is used, UMAP produces zero precision,
recall, and F1 score. This is likely due to the fact that the manifold assumption of
UMAP may not be satisfied for the token embedding matrix.

On the other hand, PCA, TSVD, and AC perform similarly in terms of accuracy
and runtime. When the reduced dimension size is 256, these three methods can
achieve an accuracy of above 90%, but with much faster training times.

3.2 Experiment 2: Vary Batch Size

In our second experiment, we kept the learning rate fixed at 10~* and the reduced
dimension at 256. Tables 7 and 8 present the overall F1 and accuracy for each
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Table 7 Overall F1 for all

¢ : Batch size | PCA TSVD AC UMAP
the methods with learning 6 6
rate 10~% and dimension 256 8 0.601089 | 0.524244 |0.526186 | 0.37896!
16 0.575301 | 0.573156 |0.57065 | 0.418090
32 0.554822 | 0.552738 |0.556845 | 0.350840
64 0.500000 |0.494786 |0.503551 |0.27224
Table 8 Overall accuracy for Batch size | PCA TSVD AC UMAP
all the methods with learning
rate 10~% and dimension 256 8 0.905063 | 0.905031 |0.904157 |0.874323
16 0.898550 | 0.898994 |0.899392 | 0.871130
32 0.893720 | 0.893974 |0.894758 |0.856133
64 0.878866 | 0.874593 |0.877611 |0.836847
Table 9 Train runtime (s) for Batch size | PCA TSVD AC UMAP
all the methods with learning 5 6
rate 10~% and dimension 256 8 2627.11 |2590.51 | 2588.36 |2957.02
16 3616.34 | 3631.47 |3830.19 |3671.07
32 3206.81 | 2603.91 |2576.84 |3717.51
64 2257.94 | 2251.65 |2567.62 |2315.40
Thab'e 1}? do"e_fi‘l“bFl }flof 3“8 Learning rate | PCA TSVD | AC UMAP
the methods with batch size
—6
and dimension 256 10 0.106690 |0.109293 |0.095072 |0
1073 0.392026 | 0.396161 |0.389151 |0.103087
1074 0.601089 | 0.603199 |0.594507 | 0.422296

method with varying batch sizes in {8, 16, 32, 64}. The corresponding training
runtimes are shown in Table 9. It can be observed that as the batch size increases, the
accuracy of each method generally decreases. In addition, the training time tends to
be longest when the batch size is 32.

3.3 Experiment 3: Vary Learning Rate

In this experiment, we kept the batch size fixed at 8 and the reduced dimension
at 256 and varied the learning rate among 107%, 1075, 10~*. Tables 10 and 11
show the overall F1 and accuracy for all the methods, while Table 12 displays the
corresponding training runtimes. One can observe that as the learning rate increases
from 107 to 1074, the accuracy consistently improves for each method with less
training runtime. Therefore, a learning rate of 10™* appears to be the optimal
choice for these methods. Furthermore, UMAP still performs the poorest in terms
of accuracy compared to all the other methods. It is important to note that since the
learning rate changes dynamically during training, testing the model with a fixed or
static learning rate may not provide illuminating insights into its final performance.
As a result, the learning rate may be the least informative metric at this stage.
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Table 11 Overall accuracy

; Learning rate | PCA TSVD AC UMAP
Is?zreag;ﬁzzﬁﬂfgg’g};gmh 106 0.798275 | 0.800086 | 0.796797 | 0.789108
10 0.854417 | 0.854656 | 0.852686 | 0.802103

104 0.905063 | 0.905031 | 0.904157 | 0.874323

Table 12 Train runtime (s) Learningrate |PCA | TSVD | AC UMAP
ﬁ‘f;ag;ﬂiﬁﬁiﬁfﬁgé’amh 10-6 6290.81 | 6329.54 | 5486.01 | 5011.44
105 202244 293025 | 3890.68 | 4596.04

104 2627.11 | 259051 | 258836 | 2957.02

4 Conclusions and Future Work

This investigation presents one of many potential approaches to developing pre-
scriptive methods for reducing the size of large language models and enabling their
deployment to resource-constrained systems. Reducing token embedding dimen-
sions seems to be a relatively simple and direct approach to manipulating the size of
a BERT model, as reducing the embedding by any factor, n, reduces the entire model
size by n. Furthermore, the token embeddings provide a quantitative representation
of the underlying corpus, as evidenced by the proximity of similar word vectors.
However, there are many caveats to reducing only the token embeddings in the first
layer of a BERT model.

First, to change the embedding size of a BERT model in Hugging Face
(PyTorch?), one has to change the embedding size in the model class—config. This
results in a random re-initialization of all model weights for the pre-trained model.
This re-initialization is necessary because the embedding dimension, also known as
the hidden dimension, is a fundamental component that supports the entire structure
of the model. The embedding/hidden size is the largest component of the weight
matrices within each attention head. In simple terms, each attention head essentially
maps the importance of each word in a sequence to every other word, with the words
represented by their embeddings. When the embedding size is changed, the model
weights must be re-initialized, leading to the loss of most of the benefits of pre-
training. Apart from the dimension-transformed embedding matrix, and any residual
influence from previous weights, the model has to be retrained from scratch. We
used a fine-tuning training method, and therefore the reduced overall performance as
measured by accuracy and F1 score, was somewhat limited. To improve the results,
one could tweak the hyperparameters to extend training, but this raises the question
of the overall cost-benefit trade-off unless a more exhaustive and expensive full
model training protocol is followed.

Among the selected dimensionality-reduction methods, PCA, TSVD, and AC
exhibit similar performance; however, UMAP significantly underperforms. This

3 https://github.com/pytorch/pytorch
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may be due to several factors, such as the possible failure of UMAP’s manifold
assumptions to hold for this particular dataset [19]. Nonetheless, since UMAP
generally performs well on diverse types of data, a more likely explanation could be
the stochastic nature of UMAP and the need for a more thorough exploration of the
seed used in generating the UMAP projection. Including a seed-tuning step might
have improved its performance. In addition, the non-Euclidean nature of UMAP
projections, while effective for visualizing clusters, may have overly distorted the
feature space, hindering the performance of BERT-based NER.

In the future, we would explore implementing the dimension reduction technique
on the token embedding and then propagating the transformation through each layer
of the model. This would require a transparent means of determining how each
component of the prior embedding was transformed to generate the new, smaller
embedding. We would, then, estimate the complexity of generating the new model
as applying numerical transformation to all embedding-length components in each
layer of the model. This approach assumes that a significant amount of the model
entropy is contained in the token embedding.

Furthermore, we could also explore randomly removing weights from all sub-
sequent layers to fit the new hidden dimension and then fine-tune the model. This
approach may help reduce the subsequent retraining time observed with a full model
re-initialization.
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Part IV
Data Analysis and Machine Learning



Automated Extraction of Roadside Slope )
from Aerial LiDAR Data in Rural North e
Carolina

Saurya Acharya, Matthew Satusky, and Ashok Krishnamurthy

1 Introduction

Most single-vehicle crashes involve roadway departure, when a vehicle crosses
the edge-line of a roadway. According to the National Highway Traffic Safety
Administration, roadside and shoulder crashes comprised 50.2 and 43.5% of fatal
and injurious crashes, respectively, involving a single vehicle in 2023 [1]. Key
elements contributing to roadside crashes are fixed obstacles, such as utility poles or
fences, and changes in terrain, like ditches and embankments. Big data and artificial
intelligence—based safety research has led to increased focus on identification of
objects in the vicinity of the roadway [2], but less attention has been paid to terrain
geometry, despite evidence that terrain slope has been shown to factor heavily in
crash fatality models [3-5].

While urban landscapes tend to be more human-engineered and therefore have
less severe grade changes, rural areas have highly variable morphological features
surrounding roadways. The rural landscape of the United States comprises a
significant portion of the nation’s road infrastructure, accounting for 68% of road
miles, totaling over 6 million miles as of 2020. In 2021, 40% of motor vehicle
traffic fatalities in the United States occurred in rural areas, resulting in a rate 1.5
times higher than urban areas per 100 million miles driven [6].
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Fig. 1 Aerial LiDAR data form a top-down elevation map of the scanned area. (a) An aircraft is
flown over an area, sending LiDAR pulses to the terrain below. The return time and intensity are
recorded along with GPS coordinates. (b) A 3D point cloud is generated using the GPS coordinates
(x, y) and the elevation calculated from return times (z). The points can be classified using return
intensity and other methods. The data in the example point cloud shown are classified as ground
(light green), vegetation (low = pink, medium = orange, high = dark green), road (purple), and
buildings (red)

In North Carolina, a substantial proportion of crashes involving vulnerable
road users occur in agricultural settings, such as farms, woods, and pastures. In
2023, 34% of these incidents resulted in serious injuries and fatalities, more than
industrial, commercial, residential, and institutional areas [7]. Previous attempts to
assess roadside hazards in rural areas identified the side slope, or slope of roadside
terrain, as a significant component in crash prediction. However, these same studies
identified a lack of side slope data for two-lane rural roads in many Department of
Transportation (DOT) databases [4, 8, 9].

Because physical surveys are cost- and time-prohibitive, light detection and rang-
ing (LiDAR) is a compelling alternative for assessing roadside terrain grade. LIDAR
is a remote sensing method where return time and intensity of light pulses are used
to create a surface map of the surroundings. Roadway LiDAR data are typically
collected by Mobile Laser Scanning (MLS), where the sensors are attached to a road
vehicle or aerial scanning by a sensor-equipped aircraft, generating a topographical
map [8]. The resulting point clouds also contain additional information such as the
intensity, terrain type, and GPS time (Fig. 1).

Due to its widespread availability, LIDAR technology has been integrated into
numerous applications from environmental monitoring to urban planning. For
instance, the North Carolina Emergency Risk Management Office, in collaboration
with the North Carolina DOT and other stakeholders, has spearheaded initiatives
to acquire statewide aerial LiDAR data. This concerted effort has resulted in the
comprehensive coverage of the entire state, enabling detailed analyses and informed
decision-making processes [10]. These kinds of initiatives are not only in North
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Carolina; other states have similarly recognized the value of LiDAR data and
undertaken similar projects with support from federal initiatives. According to the
US Geological Survey, there are efforts to create and maintain consistent elevation
databases in all 50 states and Puerto Rico [11]. Although federal initiatives may
exhibit lower accuracy and density compared to state-level endeavors, they nonethe-
less contribute significantly to the widespread availability of LiDAR datasets on a
national scale.

The objective of this preliminary study is to identify stretches of roadway
with potentially hazardous side slopes, particularly on secondary roads in rural
areas. We propose creating an open-source pipeline for processing aerial LiDAR
data. The benefits of this approach are a reduction of time and cost, since many
states have already undertaken high-quality scans across large regions. This study
aims to leverage existing topographical survey data from the North Carolina DOT.
Additionally, we aim to utilize open-source Python libraries to limit licensing and
training constraints imposed by commercial geospatial data analysis packages.

2 Prior Work

Balado et al. [12] developed a deep learning model, PointNet, to segment ditches,
embankments, and guardrails from MLS point clouds. The model correctly iden-
tified 92% of road points, but displayed reduced accuracy on embankment and
ditch points, with 88.3% and 65.4%, respectively. The variability in accuracy was
attributed to class imbalances in the dataset, as well as foliage interference with
embankment points.

Shams et al. [13] tested the effectiveness of airborne and mobile terrestrial
LiDAR scanning systems in measuring roadway cross slopes (the slope from
midline to edgeline). Mobile LiDAR data required 3 months of collection from
five different vendors, while a single vendor provided the aerial LiDAR data by
performing 15 flight line passes. As a result, the study found that both aerial
and mobile terrestrial LiDAR scanners have cross slope accuracies comparable
to conventional manual surveying methods. However, data collection was a costly
process in comparison to the widely available datasets used in this method.

Rua et al. [14] used LiDAR data and Monte Carlo simulations to identify areas
susceptible to rock slides. To verify their results, human experts were employed
to manually measure the cross slopes using ArcGIS, which was a time- and cost-
intensive process. In the end, they were able to identify 95% of the slopes found by
the experts, and the disagreements were borderline cases.

Jayaler and Zhou [4] gathered 5 years of Illinois runoff road crash data and were
able to define a reliability index to measure roadside safety on two-lane roads. They
utilized a roadside hazard rating (RHR) system from Zegeer et al. [15] to identify
a correlation between the calculated reliability indexes of side slopes and crash
severity.
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3 Methodology

In this preliminary work, we attempt to establish a minimum LiDAR spatial
resolution to reliably collect side slope grades as a continuous feature along a
given stretch of road. Furthermore, we aim to directly segment the roadway from
the LiDAR data rather than using precalculated polylines. Our method involves
converting a block of LiDAR data into a pixelated image, segmenting the roadway,
identifying the directional and perpendicular vectors of each road segment, and
finally collecting LiDAR data in areas immediately adjacent to each roadway
segment. Our analysis is entirely automated using Python, with the exception of
selecting test scene boundaries.

3.1 Development Scenes

Aerial LiDAR data for Buncombe County, North Carolina, (North Carolina DOT
Division 13) were provided by the North Carolina DOT. The data had a nominal
pulse spacing of 8 points per square meter (ppsm) with a 95% non-vegetated vertical
accuracy of 0.64 ft. The coordinate points were pre-classified by terrain or object
type, including vegetation/stratum, buildings, and roads. For methods development,
four example scenes were selected, each covering a 409.6 x 409.6ft area and
containing roughly 1 million LiDAR points. Scenes were selected for variable road
geometries.

3.2 Defining Road Segments and Slope Collection Areas

Each LiDAR point contains world coordinates (x, y), elevation (z), and an asso-
ciated class, as outlined in Table 1. To reduce the amount and dimensionality of
data, the three-dimensional LiDAR points were rasterized into a 512 x 512 pixel
image, with each pixel covering a 0.8 x 0.8 ft area. Pixels containing any road
points were classified as road; otherwise, they were assigned the classification value
that occurred most within their (x, y) coordinates. Pixels containing no LiDAR
points were assigned values using nearest-neighbor interpolation from surrounding
pixels. Road pixels were isolated as a binary image, and road boundary pixels were
identified using Sobel edge detection. The boundary was split into two connected
components to separate opposite sides of the road.

Figure 2a and b illustrate our approach for a single road segment. One road
edge is designated the reference edge (r), from which pixels are sampled at
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Table 1 LiDAR

; : Classification code | Description
classifications

1 Default

2 Ground

3 Low Veg/Strata

4 Medium Veg/Strata

5 High Veg/Strata

6 Buildings (Automated)
7 Low points

9 Water (Hydro cleaned area)
10 Breakline proximity

11 Withheld (high points)
13 Roads

14 Bridges

17 Overlap default

18 Overlap ground

25 Overlap water

a user-specified interval (“segment length” or “length”). A segment is defined
by two consecutive sampled pixels (rg:qrr and renq), a directional vector (d),
and perpendicular vectors crossing the road (p) and away from the road (p’).
Bresenham’s line algorithm [16] is used to identify the pixels 054+ and 0¢,4, Where
p intersects the opposing edge of the road (o) when originating from 74, and repgq,
respectively (Fig.2a). The mean coordinates of the start and end pairs define the
segment centerline.

The rectangular region adjacent to the reference edge is created by the vertices
Fstart and 7qnq, and the coordinates are sampled a user-specified distance (“width”)
along p’ from each reference pixel (Fig.2b). The process is repeated for the
opposing side of the road, using 0s:4,+ and o.n4 as the origin coordinates and p
as the directional vector. The region boundaries are then converted to the world
coordinate reference frame from pixel coordinates.

For shoulder slope calculations, the raw LiDAR data are filtered to include only
points labeled “ground” within the bounding boxes of the adjacent regions. The
remaining data are rotated to an orthographic elevation projection viewed along the
road segment centerline (Fig. 3a). Plotting the rotated x- and z-coordinates results
in a two-dimensional cross section of the elevation data adjacent to the segment,
where x is the distance from the centerline and y is the elevation (Fig. 3b). Linear
regression was used to determine the slope of the elevation data on each side of the
road independently, and the sign of the slope to the left of the road is reversed to
normalize the direction of elevation change relative to the road (i.e., an increase or
decrease in elevation is positive or negative, respectively). All steps are repeated for
each identified segment.
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Fig. 2 A schematic representation of the data sampling method. (a) A segment is defined by
reference pixels (dark blue circles), pixels on the opposite edge (light blue circles), centerline
coordinates (red circles), a directional vector (yellow arrow), and perpendicular vectors. (b)
Rectangular regions adjacent to the segment are created by moving outward from the segment
edge pixels (blue circles) to points a given width away (green circles). (¢) Data within the adjacent
regions (gray boxes) are used for slope calculation, and the process is repeated for each segment.
Processing consecutive segments of a curved road results in overlaps on the inside and gaps on the
outside of the curve

4 Results

To determine the most effective size for each sample region, we used the shorter
edge (containing the least pixels) of the road as the reference edge and systemati-
cally tested adjacent region sizes with all length and width dimension combinations
between 3 and 30 pixels (inclusive), resulting in 784 test conditions. Because no
ground-truth data were available to directly compare the accuracy of the derived
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Fig. 3 Fitting shoulder slopes to a length of road. (a) Data points adjacent to a road segment
are rotated from three dimensions in the world perspective (left) to two dimensions using an
orthographic elevation projection (right), where the viewing vector is the centerline of the segment
at ground level. The resulting x-axis is the distance from the center of the road (ft), and the y-
axis is the original z-axis (elevation in ft). (b) A visualization of example outputs for consecutive
segments. Data points are colored based on the side of the road compared to the segment vector
(blue = left, orange = right). The whitespace in the middle results from filtering road points.
Linear slope fits are shown for each side (red = left, green = right), and the R-squared values are
displayed in the legend

slopes, the R-squared for the fit to the rotated data points for each shoulder segment
was used as a proxy metric. The logic in using this metric was that data collected
within sub-optimally large regions would reflect larger-scale terrain shifts, while
insufficiently large areas would collect only a few highly varied points. Either of
these scenarios would be reflected in the goodness-of-fit parameter.
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Fig. 4 Comparison of performance of length and width combinations. All combinations of
segment lengths and region widths from 3 to 30 pixels (784 total) were applied to all four test
scenes. (a) Mean R-squared values across all segments plotted as a function of width and colored
by length (lighter = shorter). (b) Mean percentage of pixels in both edges for which slopes were
calculated as a function of segment length and colored by width (lighter = more narrow)

4.1 Fitting Shoulder Slopes

The mean R-squared values across the four test scenes is shown in Fig. 4a. There is a
general positive trend in R-squared as the region width increases, suggesting wider
areas may smooth over smaller features like ditches. On the contrary, increasing the
segment length shows a consistent decrease in R-squared, suggesting the segment
length parameter is more sensitive to terrain features. This effect is more pronounced
at widths smaller than 10 pixels (8 ft), with a clearly defined peak at 8 pixels in
length and 3 pixels in width (6.4 ft and 2.4-3.4 ft, respectively; R-squared = 0.683).

4.2 Shoulder Coverage

One potential drawback of our approach is coverage loss due to gaps between
adjacent rectangular regions on the outside edge of curves (Fig. 2c) and areas with
sparse ground data points, either from roadside foliage or unclassified data. For
each segment, the contiguous pixels between the start and end coordinate on each
edge were assigned the associated slope value with that shoulder region, if one was
successfully calculated. Total coverage was defined as the percentage of pixels along
each road edge with an assigned slope.

The effect of region size on the edge pixel coverage is shown in Fig. 4b. Longer
segments displayed more coverage than shorter ones, plateauing around 96% from
10 to 20 pixels before gradually falling off. The width only affected coverage of
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the shortest ( <7 pixels) and longest ( >20 pixels) segments. Specifically, smaller
widths performed better at lower lengths, while larger widths performed better at
longer lengths.

The amount of coverage loss associated with gaps can be determined by the
dependence of the loss on the reference edge. We base coverage on the edge pixels
between the start and end of a segment. Because we directly sample the pixels on the
reference edge, the only data loss on that edge should occur due to sparse data (e.g.,
from foliage), whereas gaps between bounding boxes will only occur on the opposite
edge, as those start/end coordinates are calculated from the reference points. This
relationship remains true regardless of which side is designated the reference
(Fig. 5a). To demonstrate this effect, we repeated the analysis with the reference
and opposing edges reversed (now the longer and shorter edges, respectively) and
observed the coverage of each side of the road independently. The average coverage
of either road edge is dramatically higher for shorter segment lengths when that side
is the reference edge (Fig. 5b,c). This result is likely due to shorter segment lengths
requiring more bounding boxes and consequently more opportunity to generate
gaps. In both cases, the coverage converges around a 10 pixel segment length. The
opposite edge coverage (Fig. 5b, red; c, blue) looks nearly identical in both cases,
but the mean coverage of the reference edge in each scenario shows that the longer
edge has less coverage across all segment lengths (Fig. 5d). Because there should
be no gaps on the reference edge, this difference must be due to other factors like
roadside foliage.

4.3 Qualitative Performance Analysis

Given the lack of available ground-truth slope data, we are unable to quantify the
accuracy of our tool. However, we can qualitatively examine each of the four test
scenes to get a sense of how well the tool is performing. We selected a region size
of 3 pixels (2.4-3.4 ft) long and 8 pixels (6.4 ft) wide because it yielded the peak
R-squared value for smaller areas (Fig.4a) and had approximately 98% and 94%
coverage of the reference and opposing edges, respectively (Fig. 5a). Slopes were
binned based on three vertical-to-horizontal-grade ratios previously used to identify
road hazards [4, 15]. Specifically, high safety risk is classified as 1V:2H, moderate
as 1V:3H, and low as 1V:4H. Figure 6 shows the outputs of the pipeline for the four
scenes with the binned slopes overlaid on the road edges.

Three immediate trends are apparent between scenes. First, the overhead images
(top left in each panel) indicate that across all images, there are more trees directly
adjacent to the longer side of the road, providing a likely explanation for the
difference observed between the reference edge coverage in our opposing tests
(Fig. 5d). Second, the distributions of slopes (top right in each panel) show that the
vast majority of shoulders are flat. Intuitively, most roadways do not have extreme
terrain slopes next to them, and this observation serves as a sanity check. Finally,
negative slopes appear more frequently than positive, although these scenes were
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Fig. 5 Coverage dependence on reference edge selection. (a) Gaps between bounding boxes only
occur on the opposite side of the road. Any data loss on the reference edge is due to sparse data. (b)
The mean fraction of pixels covered on the shorter side of the road across segment lengths when it
is designated the reference (blue) or opposite (red) edge. (¢) The mean fraction of pixels covered
on the longer side of the road across segment lengths when it is designated the reference (red) or
opposite (blue) edge. (d) The mean fraction of pixels covered on the reference edge across segment
lengths when referencing the shorter (blue) or longer (red) edge. All error bars are standard error
from the mean

selected for differences in road geometries without underlying knowledge of the
surrounding terrain, and this pattern could be due to coincidence.

Looking at the scenes individually, the tool correctly identifies regions of higher
slope. Scene 1 has almost entirely flat shoulders, with the exception of one region
of negative slope that has a darker region near its center (Fig. 6a, top left). When
looking at the terrain overlay (Fig.6a, bottom), we can see a wide area of low
elevation that approaches the road in this dark region. Similar features are detected
in Scenes 2 and 3 (Fig. 6b,c, bottom). Prominent sections of positive slope identified
in Scenes 2 and 3 also align to features in the terrain as well (in the case Scene 2,
the red section corresponds to an uphill driveway entrance according to the street
view, which is not shown). Scene 4 is a unique case because it is a private driveway,
but interestingly, there is a region of dark red near the house at the bottom of the
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Fig. 6 Results of shoulder slope calculations for (a) Scene 1, (b) Scene 2, (¢) Scene 3, (d) Scene
4. Each panel consists of a scatterplot of LiDAR elevation data with slopes overlaid on the road
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(top right), and the scatter plot overlaid on the terrain map from Google Earth (Google, Mountain
View, CA) (bottom). Brighter scatter points indicate higher elevation. Negative slopes are depicted
in blue, and positive slopes are red, with darker hues indicating more extreme slopes. Gray pixels
indicate areas with no slope, and yellow areas are where the slope could not be calculated

overhead image (Fig. 6d, top left, rectangular feature). That section appears to have
a dark mark in the terrain map (Fig. 6d, bottom) where the driveway is cut into the
hillside (the terrain image is rotated for easier viewing).
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There are aspects where the method can be improved. All images contain a
number of yellow regions where the slope could not be calculated, many in areas not
obscured by foliage. Furthermore, there are regions where slope is being identified
but have oscillating or spotty coverage. This observation is particularly strong in
Scene 3 (Fig. 6¢c), where the negative slope around the outside of the curve has
mostly strong slopes interspersed with lower magnitude or missing data, but it is also
present in several identified regions in Scene 4 (Fig. 6d). In both images, however,
this effect occurs near roadside foliage.

5 Conclusion

In this work, we proposed a method for obtaining roadway side slope grade from
aerial LiDAR data. This methodology was used to extract shoulder slopes for rural
roads with variable length, curvature, and orientation. Initial results suggest we can
find terrain grade at 94% shoulder coverage with a segment length of 2.4-3.4 ft
and a sampling area 6.4 ft from the road edge. Unfortunately, we cannot draw
too many conclusions about the accuracy of the calculated grades or whether our
optimal window sizes truly yield the best results due to the lack of validation data.
We are currently working with the NCDOT and outside sources to create a dataset
using existing physical survey and MLS data to determine the accuracy.

However, the approach does have limitations. This method relies on calculating
the midline of the road, so in its preliminary state, roads with complex shapes such
as intersections or roundabouts will present issues. Furthermore, because the data
are collected aerially, the density of foliage in the immediate proximity to the road
can limit the ground data available for fitting. Combining aerial LIDAR with MLS
scans could potentially overcome foliage issues, since MLS would scan laterally
beneath any tree canopy.

The success of this method is dependent on the availability of data classifications,
since the pipeline currently does not have a means of segmenting roadways
from unlabeled data, although some off-the-shelf solutions exist. Additionally, the
minimum segment dimensions are dependent on the density of ALS sampling. In
the geographical region used for this study, the nominal pulse spacing was 8 ppsm,
but other regions in the state have sampling densities between 2 and 30 ppsm. More
dense sampling would allow for smaller segment dimensions and potentially higher
resolution along the road or more confident slope fitting. However, reducing the
point density would require larger segments, leading to variability when analyzing
multiple regions. To mediate this variability, the ALS data could be rasterized,
thereby normalizing segment dimensions.

There are immediate ways in which the pipeline can be improved. Currently,
the length of the segment is determined by indexing the list of edge coordinates
rather than using a distance metric. We would like to define the centerline as a
mathematical spline to achieve more precise control. Using a single edge as a
reference has the drawback of leaving gaps on the other side of the road. To counter
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this artifact, we may attempt to use both sides of the road separately. To further
reduce gaps, the data may be smoothed by using overlapping road segments. This
approach could also potentially reduce issues with foliage covering the ground
adjacent to the road. Alternatively, we could employ non-rectangular shoulder areas.

Future goals of this project are to extend the application of this method to
scenes with more complex road geometries (like intersections) and cover as much
of the state as possible. This expansion will allow for a broader understanding of
its effectiveness across different road environments and conditions. Overall, this
preliminary work displays the potential to identify areas of concern for the NCDOT
without collecting additional data and using open-source technology.
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Pharmacokinetics

Markus Hovd (), Alona Kryshchenko ), Michael N. Neely (),
Julian Otalvaro (», Alan Schumitzky, and Walter M. Yamada

1 Introduction

Pharmacokinetic modeling and simulation have become a cornerstone in both
drug development and therapeutic drug monitoring. The ability to integrate pre-
clinical and clinical data, along with covariates, allows for accurate inference of
both drug exposure (pharmacokinetics, PK) and response (pharmacodynamics, PD).
These statistics are integral to drug therapy optimization at both the individual
and population levels. Two different statistical approaches are common: parametric
and non-parametric [6]. While parametric approaches assume that the probability
distribution of model parameter values follows predefined distributions such as the
normal and log-normal [1, 3, 7, 19, 20], non-parametric approaches are free of this
assumption. Rather, the joint parameter value probability distribution consists of
discrete support points, each point comprising a vector of values for every parameter
and an associated probability based on the likelihood of those parameter values. If
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desired, the shape of the distribution can be inferred by calculations on the optimized
support points and their corresponding probabilities, e.g., covariance, mean or
median, or an operation on the points, for example, kernel density estimation. Non-
parametric approaches allow for more accurate a priori detection of sub-populations
and outliers [5, 17].

The non-parametric adaptive grid (NPAG) algorithm is a well-established non-
parametric estimation method widely used in pharmacokinetics and pharmacody-
namics (PK/PD) [5]. NPAG is a “ throw-and-catch” algorithm. It begins with a
viable solution (i.e., the likelihood of the current set of support points is greater than
0), and assuming a better solution can be found on the Euclidean grid surrounding
each support point of that viable solution, it casts out new, potentially better support
points along each dimension of the grid. Successive cycles will find the local
optimum around the viable solution. Confidence is gained as the grid is “adaptive”
in both discretization length and position in space. However, due to the nature of the
adaptive grid, NPAG is computationally expensive and therefore slow to converge.

With increasingly complex PK-PD models, large in the number of parameters,
subjects, or both, algorithm speed becomes critical. This has motivated the devel-
opment of the current non-parametric estimation technique that can maintain the
accuracy of NPAG while significantly improving time to convergence. Addressing
the convergence speed issue in non-parametric estimation is crucial for streamlining
the PK/PD modeling and analysis workflow, enabling faster and more cost-effective
drug development processes. The proposed algorithm in this chapter tackles this
challenge by introducing innovative computational methods and optimization strate-
gies to enhance the efficiency of non-parametric parameter estimation.

2 Methods

2.1 Design of the Non-parametric Optimal Design Estimation
Algorithm

Pharmacokinetic observations can be statistically described using a mixing distribu-
tion model, where the probability of random variable arguments (the PK population
model) in the PK compartmental model is governed by a mixing distribution.

The task of estimating this mixing distribution from a set of PK observations
can be defined as follows. Let Y7, ..., Yy represent a sequence of independent
but not necessarily identically distributed random vectors, constructed from one
or more observations from each of N subjects in the population. Additionally, let
01, ...,0xn denote a sequence of independent and identically distributed random
vectors representing unknown parameter values for N subjects. These 6 values
belong to a compact subset ® of Euclidean space with a common but unknown
distribution F, representing the parameter space of the population model.
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The objective is to maximize the likelihood function L(F) with respect to all
probability distributions F on ®. Each 6; is not observed, but it is assumed that the
conditional densities p(Y;|6;) are known fori = 1, ..., N. The mixing distribution
of Y; with respect to F is then given by p(Y;|F) = f p(Yil6,)d F(6;).

Let FML be the distribution that maximizes L(F). It serves as a consistent
estimator of the true mixing distribution. Because of independence of the {Y;}, the
likelihood function can be written as

N
L(F)ZP(YI,--~»YN|F)ZH/P(Yi|9i)dF(9i) (D
i=1

It is important to note that L (F) is a convex function of F. Further, it is shown in
[15], under simple hypotheses, that the global maximizer F™ L of L(F) is a discrete
distribution with at most N support points, where N is the number of subjects in the
population and a support point is a vector of model parameter values with nonzero
probability.

The problem of finding F”* has been addressed in [22] by the NPAG algorithm
that uses the primal-dual interior point method to find optimal weights and an
Adaptive Grid algorithm to find optimal support points. It was also addressed in Les-
perance and Kalbfleisch [13] by the combination of the Semi-Infinite Programming
algorithm to find optimal weights; in the Improved Supervised Descent Method
(ISDM) algorithm using the D-function to find optimal support points; and in [21]
by the combination of Quadratic Programming algorithm to find optimal weights
and ISDM algorithm to find optimal support points.

The algorithm described here is an alternative to the NPAG algorithm and is
different from it in the step of finding optimal support points. It utilizes the primal-
dual interior-point method for convex programming to find optimal weights of the
FML and introduces the optimization of the directional derivative of the likelihood
function to address the search for optimal support points of the F™ L This algorithm
was proposed by Dr. Robert Leary in the PAGE conference poster [12].

The design of the NPOD algorithm is summarized in the steps below.

2.1.1 Design Principles and Theoretical Foundation

Traditionally, non-parametric maximum likelihood methods rely on iterative
approaches such as the expectation-maximization algorithm, which entails
optimizing conditional expectation. However, this process can be quite time-
intensive, particularly for problems with high dimensions. To address this,
we’ve developed an enhanced iterative non-parametric optimal design (NPOD)
algorithm that streamlines certain optimization stages using directional derivatives,
significantly boosting its speed compared to the original version detailed by [17, 22].



262 M. Hovd et al.
2.1.2 Algorithm Implementation

Initialization

The first step of any non-parametric algorithm is the initialization of the n-
dimensional parameter space. Importantly, the parameter space must be bounded,
as an infinitely large parameter space is both computationally and physiologically
impossible. In most cases, the sample space represents an uninformed prior.
However, it may also be initialized with the joint distribution obtained from previous
searches or other algorithms. In the present implementation of NPOD, we are using
a modified version of the Sobol pseudo-random sequence generator based on the
work by Burley et al. [2] with an improved hash by Kuo et al. [8, 9].

Likelihood Calculation

The next step is the calculation of the likelihood or the objective function. This is the
most computationally expensive step in the algorithm, as it is calculated by solving
the differential equation representing the pharmacokinetic model for each subject
for each point in the initial grid.

Optimization

Following the calculation of the likelihood, the weight of each support point is
recalculated in order to maximize the sum of the likelihood function across all
subjects. This is achieved through the use of a primal-dual interior point algorithm
[22].

Rank Revealing Function

Another important property of the joint parameter distribution in the non-parametric
approach is that the maximum number of support points can at most be equal
to the number of subjects. Non-optimal solutions can have more support points
than the number of subjects. In this step, we use QR decomposition of the
U = P(Y;|6k) yxx matrix and remove all the support points that are not in the
orthonormal basis for the column space of W matrix. We do this at each cycle to
guarantee optimizations never expand uncontrollably.

Support Point Adjustment

It is at this step that the NPOD and NPAG algorithms diverge; while NPAG employs
an adaptive grid to suggest new support points in the search space, NPOD employs
a directional derivative of the log-likelihood function using Nelder-Mead algorithm
[10].

The directional derivatives of the log-likelihood of F in the direction of the
atomic density function centered at each support point are denoted as Ds, £(F).
The idea originates in a text by Fedorov [4], which covers D-optimal design
theory. Another connection to Fedorov’s D-optimal design theory and maximum
likelihood estimators is provided by Mallet [16]. That paper provides an alternative
to Lindsay’s approach. In fact, according to Schumitzky [18], Lindsay and Mallet
worked jointly to develop the theory that reduced the space of distributions to the
space of only discrete distributions with K support points, denoted Fx (where K is
no more than the number of subjects N).
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Let F be any distribution on €2, the space of parameters for £. Then define the
directional derivative D-Function as
N
P 1§)
D, F) = v | N 2)
(; P(Y; | F)
where £ is a parameter and N is the population size. Lindsay [14] showed that
F* = FML if and only if

?Eaé‘ D(, F*) =0. 3)

Additionally, in the same paper, Lindsay showed when

max D(&, F*) #£ 0, 4
EeQ
it is still true that
L(FMLy — L(F*) < max D, F*) )
€

for F*, FML ¢ 7.
In NPOD, the updated set of support points is found as follows: fork =1, ..., K
where K is the current grid size and F™ is the current distribution:

0 = argmaxt o (D, F™)), (6)
D(§ F("))z XN:w — N (7
’ — P(Y; | FO) ’
K
P(Y; | F™) =" (w" P(¥; | 6") ®)

=1

where argmax' only takes ¢ steps in the Nelder-Mead optimization process [10].
This adjustment plays a pivotal role in enhancing the efficiency of NPOD compared
to NPAG, particularly in achieving convergence to local maxima.

The parameter 7 is regarded as one of the hyperparameters that can be fine-tuned
to optimize the performance of the algorithm. Typically, we set ¢ to be less than
5, based on empirical observations and computational experiments. This choice
balances the trade-off between computational cost and optimization effectiveness.

By limiting the number of steps in the Nelder-Mead optimization, we can
focus the algorithm’s search on promising regions of the parameter space while
avoiding excessive computational overhead. This targeted approach enables NPOD
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to converge more efficiently toward local maxima, making it a valuable tool for
solving optimization problems in diverse domains.

Once QIE"H) is determined through the optimization process, a validation step
ensues to ensure its integrity within the algorithm. Specifically, it undergoes scrutiny
to confirm two critical aspects: firstly, that it constitutes a distinct point and,
secondly, that it remains within the predefined boundary conditions.

This validation mechanism serves as a safeguard against redundancy and bound-
ary violations, both of which could potentially compromise the accuracy and
reliability of the optimization process. By confirming the uniqueness and adherence
to boundary constraints of 9,5”“), the algorithm maintains the integrity of its param-
eter space exploration, facilitating robust and effective optimization outcomes.

Convergence

The previous steps, excluding initialization, are iteratively repeated until no further
improvement can be found, indicating convergence to an optimal solution. Improve-
ment is evaluated by change in the likelihood, for which we consider a change less
than 10~ to indicate convergence.

2.1.3 Computational Considerations and Optimizations

Initial Search Space

NPOD is initialized with a sufficiently compact set of support points within the
search space. We report results for varying density Sobol sequence initializations in
the Results section.

Hyperparameters

The NPOD algorithm, relying on the D-optimization function, is tuned by the
number of iterations of the Nelder-Mead algorithm 7. In our examples, a value of 5
was used for 7, empirically chosen based on experience.

2.2 Software Implementation

Recently, significant efforts have been placed in creating a new framework for
pharmacometric algorithm development. While the original NPAG algorithm was
written in Fortran, both the NPAG and NPOD algorithm have been rewritten in
Rust, a memory-safe and computationally efficient programming language. While
the framework itself will be presented in a future work, both algorithms are
available to use in the development branch of the Pmetrics code repository [11].
All computations were performed on a MacBook Pro (Apple) equipped with an M3
Max processor with 128 GB of RAM.
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2.3 Comparative Analysis of NPOD with NPAG

The natural choice of a comparative algorithm for non-parametric pharmacokinetic
modeling is NPAG. To compare the algorithms, we use two datasets, one synthetic
in which the real parameter distribution is known and another using real pharma-
cokinetic data from subjects in which the underlying distribution is not known. We
will refer to these as datasets A and B, respectively.

The model used to fit dataset A is shown in Eq.(9), where A is the amount
of drug in the central compartment, K, is the elimination rate constant with a
bimodal distribution, and V; is the apparent volume of distribution with unimodal
distribution. The model includes an intravenous infusion, modeled as R;;r, the rate
of infusion.

dA

A
E:_KE‘A'i‘Rinfs C=—+c¢ )

Va

Dataset A consisted of simulated data with known parameter distribution, and
with known measurement noise in the observations € ~ N(0, 0.05 % C), previously
discussed by Neely et al. [17]. It includes a total of 51 simulated subjects, all of
whom received an intravenous infusion of 500 units over a duration of 30 minutes.
Each subject was sampled 10 times over 24 hours, at 0.5, 1, 2, 3, 4, 6, 8, 12, 18, and
24 hours from the start of the infusion.

The model used to fit dataset B is shown in Eq.(10), where A; represents
the absorptive compartment and A, represents the amount of drug in the central
compartment, from which K, is the elimination rate constant and Vj; is the apparent
volume of distribution. The model includes an individual lag-term on the input dose
D, modeled as a delayed unit Dirac delta function §.

dA; dA
7=—Ka~A1+D*3(t—tlag), 7=Ka'Al_Ke'A2,
A
C=—-2= 10
Vd—i-e (10)

Dataset B was originally provided as one of the example datasets available in the
Pmetrics package for R [17]. It includes data from 20 patients, all of whom received
600 units six times every 24 hours. A total of 139 samples were obtained across all
subjects, all following the second-to-last dose.

Any observation has an associated uncertainty, which must be accounted for
during parameter estimation. We model uncertainty as €, which is normally
distributed with mean zero and standard deviation w defined by Eq. (12) or (13).
First, an error polynomial model is used to estimate the uncertainty (o) in each
measurement (y). This is given in Eq. (11).

0=Co+Ci-y+Cr-y>+C3-y° (11)
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Additional noise is modelled through either an additive (A, Eq. (12)), or propor-
tional (y, Eq. (13)) error model. Each observation is then weighted by the reciprocal
of the squared uncertainty, i.e., 1/ w?.

w=+o?+ A2 (12)

w=0" Yy (13)

For the simulated dataset A, an additive error model was used with an initial value
of A = 0 and a flat uncertainty of 5%, i.e., C; = 0.05, and Cyp = C» = C3 = 0. For
the real-world dataset B, a proportional error model was used with an initial value
of y =5,and C; = 0.02, C2 = 0.05, C3 = —0.002, and C4 = 0.

Both algorithms were compared on each dataset with various densities of the
initial parameter search space, with otherwise equal conditions. Multiples of 51
were used for the number of initial support points, i.e., K = 51 -2*, where x ranged
from O to 11, producing initial densities ranging from 51 to 104,448.

3 Results

For dataset A, the convergence rates and the location of support points at conver-
gence for NPAG and NPOD, with an initial count of 104,448 support points, are
illustrated in Figs. 1 and 2. The weighted means for K, (NPAG = 0.187, NPOD =
0.187) and V; (NPAG = 103.7, NPOD = 103.8) between the two algorithms were
almost identical. Furthermore, for all the different initial grid densities evaluated,
ranging from 51 to 104,448, NPOD was able to achieve convergence at a much
faster rate compared to NPAG, requiring almost one twentieth the number of cycles
for a high number of initial points (Table 1). However, the difference in overall
computation time is negligible.

Furthermore, the shape of the objective function across cycles is markedly
different between NPOD and NPAG, shown in Fig. 1. It is immediately apparent
that NPOD has a much steeper convergence.

For dataset B, which, to reiterate, consists of real-world data, NPOD was able to
obtain a solution as likely or more compared with NPAG with a lower number of
cycles. However, for this dataset, the overall computation time was lower, with up
to fivefold difference, as seen in Table 2.

The number of cycles required for convergence is again visualized for both
algorithms in Fig. 3.



A Non-parametric Optimal Design Algorithm for Population Pharmacokinetics 267

Table 1 For dataset A, the comparison of number of cycles required for convergence, the value
of the objective function obtained, and time taken for various sizes of the initial parameter search
space. Abbreviations: LL, the twice negative logarithm of the likelihood, also known as the
objective function value

NPAG NPOD
Support Support
Ne Cycles | LL points Time Cycles |LL points Time
51 196 —646.45 |48 3.87s |21 —646.85 |47 1.56s
102 164 —646.38 |49 3.40s |15 —646.85 |48 1.47s
204 132 —646.52 |48 3.00s |13 —646.80 |47 1.47s
408 136 —646.39 |48 3.27s |11 —646.78 | 48 1.43s
816 139 —646.43 |46 331s |11 —646.81 |48 1.56s
1632 112 —646.45 |48 3.45s |11 —646.83 |49 1.75s
3264 99 —646.59 |48 3.83s 7 —646.77 |49 2.19s
6528 97 —646.48 |50 5.50s 6 —646.77 |49 3.33s
13,056 93 —646.37 |48 7.99s 7 —646.84 |49 5.99s
26,112 85 —646.52 |48 13.97s 6 —646.84 |48 10.80s
52,224 98 —646.49 |50 25.39s 5 —646.83 |49 25.01s
104,448 99 —646.57 |48 51.78s 6 —646.83 |48 50.02s
Gridsize = 51 Gridsize = 102 Gridsize = 204 Gridsize = 408
NPAG: 196 NPAG: 164 3000 NPAG: 132 NPAG: 136
10000 NPOD: 21 8000 NPOD: 15 NPOD: 13 1000 NPOD: 11
o L o L LL -500 L
w0 Gridsize = 816 0 Gridsize = 1632 Gridsize = 3264 Gridsize = 6528
300 NPAG: 139 NPAG: 112 NPAG: 99 NPAG: 97
s NPOD: 11 -200 NPOD: 11 400 NPOD: 7 _s50 NPOD: 6
§ -300 S L L ~600
Gridsize = 13056 10 Gridsize = 26112 Gridsize = 52224 Gridsize = 104448
NPAG: 93 NPAG: 85 NPAG: 98 NPAG: 99
500 NPOD: 7 620 npoDi6 P NPOD:5 % NPOD: 6

0 25 50 75 0 20 40 60 80 ] 25 50 75 100 [ 25 50 75 100
Cycle

-=- NPAG -e- NPOD

Fig. 1 Comparison of objective function between NPAG and NPOD for different numbers of
initial grid points in the parameter search space. Grid sizes are chosen as multiples of the number
of subjects (n = 51)
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Fig. 2 Kernel density 200

estimate for the joint NG
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Table 2 For dataset B, the comparison of number of cycles required for convergence, the value
of the objective function obtained, and time taken for various sizes of the initial parameter search
space. Abbreviations: LL, the twice negative logarithm of the likelihood, also known as the
objective function value

NPAG NPOD
Support Support

Ne Cycles | LL points Time Cycles | LL points | Time

51 1091 —337.93 |19 68.43s | 189 —331.98 |19 47.74 s
102 2166 —337.97 |20 95.11s | 248 —-33691 |17 36.87s
204 1234 —336.56 |20 75.95s | 119 —342.64 |17 32.75s
408 1313 —336.54 |19 71.25s | 68 —346.98 |18 21.31s
816 2218 —34391 |20 11691s | 74 —34531 |17 21.72s
1632 3034 —34391 |20 110.95s | 69 —345.38 |17 22.62s
3264 1415 —343.92 |20 65.83s | 192 —335.75 |18 36.29s
6528 1913 —343.84 |20 73.75s | 75 —336.66 |18 25.46s
13,056 | 1401 —33791 |20 77.60s | 85 —336.09 |17 36.40s
26,112 2169 —336.54 |20 122.14s | 82 —33435 |17 56.66s
52,224 1209 —336.53 |20 135.22s | 65 —335.45 |18 89.48's
104,448 | 2014 —336.53 |20 202.92s | 75 —33538 |18 147.74s
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Gridsize = 51 Gridsize = 102 Gridsize = 204 Gridsize = 408
480
o NPAG: 1091 NPAG: 2166 NPAG: 1234 NPAG: 1313
NPOD: 189 40 NPOD: 248 NPOD: 119 NPOD: 68
400
360 ‘
) — —
0 300 600 900 ) 500 1000 1500 2000 [ 250 500 750 1000 1250 0 500 1000
Gridsize = 816 Gridsize = 1632 Gridsize = 3264 Gridsize = 6528
480
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'g 400 400
3
2
38
360 E E 360 L

— —
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NPAG: 1209
NPOD: 65
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Fig. 3 For dataset B, the comparison of objective function between NPAG and NPOD for different
number of initial grid points in the parameter search space. For simplicity, the same grid sizes in
the first example was used

4 Discussion

We have developed and demonstrated an algorithm for non-parametric parameter
estimation with application to population pharmacokinetics. The algorithm relies on
directional derivatives, which constitutes a new approach to parameter estimation in
pharmacometrics.

Furthermore, we compared the NPOD algorithm to the current gold-standard
non-parametric algorithm, NPAG, on two datasets; one simulated without any noise
in the observations and another using real-world data. The two algorithms have
some important differences, which is elucidated by the results in Table 1. Most
importantly, NPOD was able to determine a solution that was as likely as that of
NPAG. The time savings with NPOD is due to the markedly reduced number of
cycles, with a difference of up to 20-fold for a simple model on a simulated dataset
(dataset A) and more than twice that for a more complex model with real-world
data (dataset B). However, the optimization step of NPOD, which is guided by the
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D-function value, is more expensive than the adaptive grid in NPAG and as such
requires more time in each cycle. Because we expect NPOD to always converge
in fewer cycles than NPAG, we also expect that time to convergence will be at
worst similar and at best shorter than NPAG, although this remains to be empirically
demonstrated as we gain experience with NPOD.

The estimated joint parameter distribution from both NPOD and NPAG was very
similar, as seen in Fig. 2, where the support points are close to perfectly overlapping.
The simulated dataset included an extreme outlier, whose parameter values deviated
greatly from the population weighted mean (K., 1.0 vs 0.187; V; 200.0 vs 103.8).
This is especially impressive considering that the single outlier constitutes only
1/51, or approximately 2% of the dataset. This quality is one of the many strengths
of NPAG, which is also found for NPOD. The detection of outliers is an important
aspect in population pharmacokinetics and one of the chief advantages of non-
parametric approaches, compared to parametric [6].

We evaluated the performance of the two algorithms over various densities of the
initial search space. While this density does not appear to significantly affect the
final objective function value for this simulated dataset, it does affect the number
of cycle required to reach convergence. The “throw-and-catch” nature of NPAG
ignores the gradient around the current local solution, which NPOD is sensitive to.
Importantly, this gradient includes observation noise. NPAG is relatively insensitive
to local gradient perturbations resulting from observation errors as it merely
compares two potential and spatially distinct solutions at each cycle. However,
NPAG is completely naive of the intervening space. In either case, both algorithms
were capable of obtaining the most likely solution even from a very sparse initial
parameter space, equal to the number of subjects.

For Dataset A, NPOD results in a lower log-likelihood (LL) value, indicating
potentially more accurate results. A natural questions arises: “Why use NPAG at
all?”” Some distinctions in how the two algorithms operate might explain their
differences. NPAG cycles are generally faster because they add points in a more
straightforward manner, without necessarily checking if those points have been
added before or if they are crucial to improving the solution. This can lead to
quicker iterations but may include less relevant points. In contrast, NPOD evaluates
the likelihood surface more thoroughly, proposing new points that are specifically
aimed at maximizing the objective function or minimizing the negative likelihood.
As aresult, every point added by NPOD is highly relevant to refining the outcome.
We are planning to investigate the conditions under which one algorithm would
consistently be preferable over the other in a future work.

The following procedure is proposed in Yamada et al. [22] for evaluating the
global optimality of the final NPAG distribution and estimating its proximity to the
optimum using the directional derivative D(®, F') defined above in (2) solely during
the last NPAG iteration. As shown in Lindsay [14] and mentioned above in Methods
section, if F* = FML je., NPAG converged to a global maximum of a likelihood
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function, then rsnagz( D(&, F*) = 0. We propose the same evaluation steps for the
€
final NPOD distribution and recommend calculating rgnaé D(&, F) only at the end
S
of the algorithm using deterministic or stochastic optimization methods.

Future Work

In our experience thus far, NPOD converges at a faster rate when compared with
NPAG for a larger population with a given model and prior. In the era of increasingly
larger datasets, NPOD may therefore prove advantageous. However, it is not a
given that NPOD will always outperform NPAG; therefore, future work will include
additional comparisons between NPAG and NPOD to contrast and clarify specific
scenarios when one algorithm should be preferred.

We have also observed that the performance of the NPOD algorithm depends on
the initial grid or prior. The closer it is to the true solution, the faster the convergence
of NPOD. We are planning to explore the ways to improve initial grid point in the
future.

At present, formal analyses of convergence guarantees and algorithmic com-
plexity for both NPAG and NPOD are limited. NPOD, being a gradient-based
approach, benefits from some theoretical convergence guarantees, particularly when
the likelihood surface is smooth and well behaved. Under these conditions, it can
converge more efficiently to the maximum likelihood solution when compared
with the adaptive grid in NPAG. However, the complexity of the models and
datasets, such as in the case of noisy or high-dimensional data, introduces challenges
in predicting convergence behavior. For NPAG, the lack of formal convergence
guarantees is more pronounced, as its heuristic nature can result in variability in
performance depending on the problem being solved. This makes it difficult to
derive generalizable results regarding its runtime or convergence. While NPOD has
shown promising improvements in speed and accuracy, a deeper theoretical analysis,
especially with respect to different types of datasets and models, is something we
aim to explore in future studies.

5 Conclusion

We have developed and demonstrated a new algorithm, NPOD, for non-parametric
parameter estimation with application to population pharmacokinetics. The algo-
rithm was able to estimate the population joint parameter distribution as accurate
as NPAG but requires far fewer cycles to reach convergence. An application of
directional derivates represents an important step forward in both the development
and application of non-parametric approaches in pharmacometrics.
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Appendix

Algorithm 1 Non-parametric Optimal Design (NPOD) algorithm. Input:
(Y, ¢O, a, b, t, Ap, Ar, A, Ay), a, and b are the lists of lower and upper bounds,
respectively, of ®, ¢ is the number of Nelder-Mead iterations; A p is the minimum
distance allowable between points in the estimated F ML Output: (¢, A, [(A, ¢))

1: procedure NPOD(Y, ¢°, a, b, Ap) & Estimate FML given ¥
2 Initialization: ¢ = ¢°, LogLike = —10%°, Ap =102, A = 1074, A, = 1073, n =0
3 while True do

4: Calculate ¥ (¢) > N x K matrix {p(Y;|¢r)}
5: [A(¢), I(A(¢)] <— PDIP(¥(¢)) > for PDIP see [22]
6: ¢ <— CONDENSE(¢, (@), Ay) > Alg. 2
7 [¢p, ¥(¢)] «— REDUCE(¥(¢), ¢) > Alg. 3
8: [A(¢), I(A(¢)] < PDIP(¥(¢)) > PDIP returns G” ( [22])
9: NewLogLike = I(A(¢), $)
10: if | LogLike — NewLogLike |> A then
11: return [@, A, NewLogLike]
12: end if
13: if (n > MAXCYCLES) then
14: return [@, A, NewLogLike]
15: end if
16: ¢ <— Dopt(¢, L, ¥(d),a, b, t, Ap) > Alg. 4
17: n<—n+1
18: LogLike < NewLogLike

19: end while
20: end procedure

Algorithm 2 Condense algorithm. Input: (¢, A, Ay), Output: ¢¢ Note: ¢¢ is
considered a subset of ¢

function CONDENSE(, A, A;)
ind =find (A > (maxA)A; ) > Inequality and max are performed component-wise
¢ = (., ind)
return ¢¢

end function
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Algorithm 3 Reduce algorithm. Input: (¥(¢), ¢), Output: ¢, ¥(¢p) Note: both

v

(¢) and ¢ are subsets of the ones used as input

function REDUCE((¥(¢), ¢))
ny(¢) = norm(\V(¢))
(r, perm) = QR(ny($))
keep =[]
for i..ncol
ratio =rli,i]/norm(r[:, i])
if |[ratio| > le — 8 push(perm[i]) to keep

end for
¢ = plkeep, :]
¥ =y, keep]

return (¥, ¢)

end function

Algorithm 4 Dopt algorithm Input: (¢, A, ¥(¢), a, b, t, Ap), Output: ¢

function DOPT(¢, A, ¥(¢), a, b, t)
fork=1:Kdo
o) = argmaxéGQ(D(E, A, W) > see formula for D in Eq. (6)
for ink = 1 : dimension(¢;) do
new_dist = ) W
dist = min(dist, new_dist)
end for
up = sign(min(¢y — a’))
down = sign(min(b’ — ¢))
if (dist > Ap) A (up > —1) A (down > —1) then
¢ =19, ¢l
end if
end for
return ¢
end function
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Unrolling Deep Learning End-to-End ®)
Method for Phase Retrieval ST

Haiyan Cheng, Cristina Garcia-Cardona @, Weihong Guo, Sara Hahner,
Yuan Liu, Yifei Lou, Michela Marini, and Sui Tang

1 Introduction

In many imaging systems, such as X-ray diffraction, electron microscopy, or
astronomical imaging, only the intensity of the wave can be directly measured, while
the phase information is either lost or inaccessible. Phase retrieval (PR) is a compu-
tational technique employed to recover the phase information of a wave solely from
intensity measurements. This process involves utilizing computational algorithms to
recover the phase information from the recorded magnitude measurements. Phase
retrieval finds applications in various fields, including physics, biology, materials
science, and imaging technologies. For instance, PR is pivotal in coherent diffraction
imaging (CDI) [41], image-based wavefront sensing [45], and radar/sonar sensing
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sectors [26]. It enables researchers to extract valuable information about structures
and properties of samples without requiring specialized phase-sensitive detectors.

In this work, we consider a two-dimensional (2D) object that can be represented
by a (column) vector x € R™", where m x n is the dimension of the underlying
2D object. A physical observation model, denoted by A, yields an idealized
complex-valued observation A(x). We further assume the operator A is linear or
can be approximated as linear. However, the detectors are limited to recording
the magnitude, i.e., y = |A(X)| + €, where | - | represents the element-wise
magnitude, indicative of the photon flux measured by the detectors, and € signifies
the observational noise matrix. PR aims at reconstructing x from the observed data
y, which is a highly ill-posed nonlinear inverse problem. Please refer to Sect. 3.1 for
a more detailed description of the problem setting.

A critical regime within PR is the Fourier phase retrieval [6], where the linear
operator A is related to the Fourier transform. This problem is fundamental in
several fields, including X-ray crystallography [43], astronomy, coherent light
microscopy, quantum state tomography, and remote sensing; please refer to [6] for
more details.

Difficulties of PR The absence of phase information leads to non-unique solutions
of PR. Identifiability, often hindered by intrinsic symmetries such as spatial
translation, conjugate inversion, and constant global phase change (referred to as
trivial ambiguities), exacerbates this challenge. These symmetries, long recognized
in the PR literature, limit claims of uniqueness to modulo these trivial ambiguities.
Consequently, in most applications, recovering any signal from the equivalent
classes is deemed satisfactory. Empirically, it is observed that the complexity of
a PR problem correlates directly with the number of its intrinsic symmetries. This
relationship is particularly noticeable in Fourier PR, where these symmetries are
more prevalent, thus amplifying the challenge.

On the other hand, the oversampling ratio serves as another indicator for
determining the complexity of PR problems. This ratio is defined as

number of (effective) measurements

number of unknown pixels

It contrasts the volume of measurements with the dimensionality of the signal to
be recovered. A higher oversampling ratio implies a computationally less complex
problem, indicating a data-rich environment relative to the signal parameters
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needing estimation. Consequently, t is a vital metric for evaluating and managing
the complexity of PR problems. The oversampling ratio t = 4 typically leads
to a unique solution [3, 7]. Under this condition, the standard phasing algorithms
empirically worked well. For Fourier phase retrieval, using dimension counting,
[42] conjectured that T = 2 uniquely determines a unique phasing solution up to
spatial shift, conjugate inversion, and global phase factor. A numerical verification
of this conjecture is provided by the random phase illumination method [18].

1.1 Literature Review

Numerous algorithms have been developed to tackle various challenges within
the PR paradigms. Regularization, by favoring certain solutions, enhances the
robustness of the recovery process against ambiguities and perturbations. Most
regularization approaches can be formulated as the following optimization problem:

min {L(x. y) + R0}, )

where the first term, L(X, y), enforces consistency with the intensity measurements
y (the data-fidelity term). The second term, R(x), penalizes unrealistic estimates
to promote desirable properties in x, which can be formulated either implicitly or
explicitly. The relevant works can be broadly categorized as follows:

Projection Algorithms Early phase retrieval methods were pioneered by Gerch-
berg and Saxton (GS) [22], who developed an alternating projection approach to
solve a nonlinear least square problem. This technique, which begins with random
initialization, applies alternating time domain and Fourier magnitude constraints,
often converging to a local minimum due to the interplay between convex and
non-convex constraint sets. This tendency hampers the accuracy of the solution,
even in the noiseless setting. Later, Fienup [20] introduced the Hybrid Input-
Output (HIO) algorithm, which incorporates a time-domain correction step into
the Gerchberg-Saxton (GS) algorithm to accelerate the convergence. However, HIO
does not guarantee overall convergence and may occasionally result in local minima.
Nevertheless, HIO and its variants remain widely used in optical phase retrieval, as
explored in [4] and [37].

Gradient-Based Optimization To address the issue of getting stuck in local
minima, gradient-based methods often integrate acceleration strategies, such as
Nesterov acceleration and stochastic gradient descent. These algorithms have
proven to be effective in solving phase retrieval problems [10, 30] with a variety
of applications including ptychography, coded-diffraction imaging, and imaging
from defocus [1, 5]. Key strategies for navigating non-convex landscapes include
convex relaxation methods such as PhaseLift [11], maxcut [50], sketching methods
[53], and phasemax [24]. A notable work in this category is the Wirtinger Flow
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(WF) [10], which begins with an initial guess obtained from a spectral method,
followed by gradient descent. It is proven to achieve the exact phase retrieval (up
to trivial ambiguities) with independent Gaussian measurements, but it is hampered
by high computational complexity. To speed up the process, truncated WF (TWF)
[14] retains the original two-stage framework but improves efficiency through an
adaptive gradient flow, providing a solution in linear time. While WF and TWF
have demonstrated significant empirical success for certain types of phase retrieval
problems that directly involve dealing with non-convex objectives, they come with
limitations related to sensitivity to initialization, observation noise, and the need
for careful parameter tuning. In particular, both WF and TWF can exhibit slow
convergence, especially when the number of measurements is not significantly
larger than the signal dimensionality. Additionally, the need to compute gradients
in each iteration can pose scalability challenges for very large-scale problems, as
the iterative nature of these algorithms can become computationally intensive. A
comprehensive review is provided in [19].

Deep Learning Approach Recent advancements have positioned deep learning
approaches, such as convolutional neural networks (CNNs) [29], graph neural
networks (GNNs) [35], and attention-based transformers [49], as formidable tools
in image analysis and natural language processing. These networks comprise con-
volutional layers that automatically learn hierarchical features from input images.
Deep equilibrium model (DEQ) [2] is another promising trend, where the neural
network can be viewed as “infinitely deep” with converging equilibrium points.
DEQ can then be used to find these points directly via root finding. Gilton et al. [23]
showed promising results when applying the DEQ model to linear inverse problems.
Adapting deep learning methods to phase retrieval is generally challenging, as it
is a nonlinear problem. Some early works begin with a denoising framework. For
example, Plugging-in a Denoiser [12, 34, 39] leverages pre-trained CNNs as implicit
regularizers, harnessing their inherent strength in image denoising. Specifically,
Metzlter et al. [39] adopted the regularization by denoising (RED) approach [46]
to phase retrieval, thus giving rise to the term PRred. Following the notation in (1),
the regularizer in PRred has the form

AT
R(x) = x " (x = D(x)),

where the denoiser D(x) can be arbitrary. PRred [39] utilizes a DnCNNs denoiser
from [54] and employs a fast solver from [25] to address the associated minimization
problem. Similarly, generative prior methods [8, 31, 48] constrain the solution
using a neural network generator via generative adversarial networks (GANS),
ensuring that the solution has an accurate representation. Additionally, Hu et al. [33]
combined a transformer as an encoder and a CNN as a decoder to build a phase
shift network, while a vision transformer (ViT) [16] was adapted for phase retrieval
in ptychography [21], referred to as PtychoDV. Last but not least, the end-to-end
approach represents a more radical shift since it involves training a neural network



Unrolling Deep Learning End-to-End Method for Phase Retrieval 279

to directly approximate the inverse mapping or its proxies. Some pioneer works
[27, 36, 40] have demonstrated promising outcomes.

Unrolling Algorithms Generally, the idea of unrolling [44] is built on iterative
techniques that mimic traditional optimization methods but are structured as a fixed
number of layers in a neural network. In particular, one takes these iterative pro-
cesses and “unrolls” them into a finite sequence of operations, each corresponding to
a layer in a neural network. By treating the iterations as layers, the entire process can
be trained end to end using gradient-based optimization. This approach leverages
the interpretability of classical algorithms while benefiting from the efficiency and
adaptability of deep learning. Specifically for phase retrieval, unrolling networks
are utilized in PtychoDV [21] for ptychography and in [17] for PR from coded
diffraction patterns (CDP).

1.2 Our Contributions

Classical projection methods such as Fienup [20] yield satisfactory results when
there are a sufficient number of clean measurements, i.e., without noise. However,
these methods easily fail when there is noise and there are not enough measure-
ments. To address the ill-posed nature of the PR problem, some approaches rely on
a predefined regularization term, followed by an optimization algorithm to find the
optimal solution. While such regularization terms encode the desired properties of
the solution and are mathematically interpretable, they may only be effective for
specific types of data. On the other hand, deep learning methods such as CNNs
and GNNs, have been successful in many imaging processing tasks, but they often
require a large amount of training data and lack interpretability.

In this chapter, we propose a novel algorithm for recovering phase information
from noisy and mildly oversampled data by extending the work of Manifold and
Graph Integrative Convolution Network (MAGIC) [52]. Originally devised for
CT image reconstruction, MAGIC is applicable to linear inverse problems. In
this chapter, we adapt the MAGIC framework for phase retrieval, a challenging
nonlinear problem. Our success is built upon the alternating direction method
of multipliers (ADMM) [9], which involves two subproblems, each with closed-
form solutions. Following MAGIC, we construct a neural network by unrolling
an optimization-based approach that exploits both local features encoded by a
CNN and nonlocal features encoded by a graph convolutional network (GCN). Our
contribution is threefold:

1. We develop an algorithm unrolling strategy that has built-in mathematical
interpretability.

2. By this means, we make the unrolling of the nonlinear PR problem tractable via
ADMM.



280 H. Cheng et al.

3. We demonstrate that, in some cases, a stand-alone unrolling-based post-
processing network can improve phase retrieval results from some classical
methods such as Fienup.

As a proof-of-concept study, we assess our approach by employing Fourier mea-
surements of masked images. Comparative numerical experiments with traditional
non-learning and learning-based methods reveal better performance in situations
involving noisy measurements.

The rest of the chapter is organized as follows. Section 2 is dedicated to a
brief review of the MAGIC framework. We then detail the proposed algorithms in
Sect. 3, highlighting the adaptation from solving a linear CT problem to a nonlinear
PR problem. We also incorporate a stand-alone enhancement model in Sect. 3 that
utilizes the same network architecture while aiming to improve the image quality
achieved by a traditional PR method. As a proof-of-concept study, Sect.4 shows
numerical experiments of a masked Fourier PR problem. We consider two datasets
(dog and CT images) and two types of masks (binary masks and plus-minus 1
masks) under two settings: noiseless and noisy measurements. An ablation study
is conducted in Sect.4.3 to illustrate the influence of the key ingredients in the
proposed workflow: CNN, GNN, and the improvement over the initial solution.
Lastly, Sect. 5 concludes the chapter and points to some future directions.

2 MAGIC Review

The Manifold and Graph Integrative Convolution Network (MAGIC) [52] frame-
work integrates regularizations with a learning-based method for CT image recon-
struction. Specifically, MAGIC unrolls a gradient descent-based iterative scheme
into a neural network, using a convolutional neural network (CNN) as a regular-
ization term. The algorithm samples points from overlapped patches with a small
size, constructs a graph, and applies a graph neural network (GNN) to extract low-
dimensional nonlocal features. By combining CNN and GNN modules, MAGIC can
capture information at both the pixel level and the topological structure to model the
CT images.

Mathematically, MAGIC is built upon the so-called learned experts’ assessment-
based reconstruction network (LEARN) [13], to minimize the following objective
function:

. 1
X:argm1n§||Ax—y||%+kR(x), 2)
X

where X is an image in a vector form that represents the attenuation coefficients, A
denotes the Radon transform that projects x into the data measurements y, R(-)
denotes a regularization term applied to X, and . > 0 is a trainable weighting
parameter. Note that the first term in (2) is a least squares to measure the data
misfit. Instead of handcrafted regularization form, such as total variation, MAGIC



Unrolling Deep Learning End-to-End Method for Phase Retrieval 281

and LEARN introduce a generalized regularization term, also known as Field of
Expert (FoE) [47], which can be learned using deep learning techniques,

R =Y vi(di(x), 3)

=1

where ¢; and v; can be regarded as some linear convolution operators and nonlinear
activation functions, respectively, to be learned using training datasets, and Ny
denotes the total number of features to be considered.

Convolution and activation functions are fundamental components of CNNs.
Convolution is used to learn features such as horizontal/vertical edges. Activation
functions introduce non-linearity into the network, enabling it to learn complex
patterns and relationships in the data. Different activation functions are used for
different purposes. For instance, a rectified linear unit (ReLU) sets negative values
to zero and passes positive values unchanged to help with faster convergence and
mitigate the vanishing gradient problem. Sigmoid squashes the output between 0
and 1, which is useful for binary classification tasks. Softmax is used in the output
layer of classification models to convert logits into probabilities, with each output
representing the probability of a class.

Incorporating the generalized regularization (3) into the objective function (2)
yields

Ny

1
ﬁ:argmxinzllAX—yH%—i-E (X)), 4)
=1

with a set of weights A; that is associated with each feature. One step of the gradient-
descent algorithm when minimizing (4) leads to

Ny

Xt =x —a | ATAX —y) + Y MgF W g x) | 5)

=1

where ¢ indexes the iteration number, & > 0 is a step size, ¢;" is the adjoint operator

of ¢, and wl/ is the derivative of v;. The last term in (5) filters the image x’ spatially,
which is replaced by a more general three-layer CNN module ® [13], thus leading
to

X =x' —aAT (AX' —y) + ®(x') with ®(x') = @} *0 (@) x0 (@] *X)),  (6)

where {w|, w2, w3} is a set of convolution kernels to be learned, * denotes the
convolution operator, and o (-) is the activation function applied elementwise after
the hidden layers. With this setup, (6) can be viewed as a residual block with
three parts: a skip connection, a data fidelity layer, and a spatial CNN module. By
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specifying the number of iterations, we can unroll (6) into a network with the same
number of layers as the specified iteration count.

Here, the CNN module ®(x’) in (6) is used to extract the local pixel-level
features of an image x’. Consequently, CNN can be considered as a form of local
regularization.

MAGIC also employs nonlocal regularization based on graph convolutional
networks (GCNs), which are defined on the manifold of image patches. Denote a
patch set P(x) as a collection of image patches of x with size s; x s2. For example,
pij(X) represents an image patch with pixel (i, j) at the top left corner of the image
x. We vectorize each image patch as a row vector stack row by row to form a matrix
and denote such linear transform of x as P(x) € RP”*4 where d is the number of
pixels in each patch and p is the number of patches. We construct a graph G(V, E)
with p nodes. We construct edges by using Euclidean distance to find neighbors.
We define the adjacency matrix W as

llvr —vq I3

qu =e ©O s @)

where v,, v, € V are two nodes (patches) in the graph G and ©(V), a function
capturing the “typical” graph distances. Here we follow the original MAGIC
method and use the median square distance between patches as ?(V). Adopting
a renormalization trick, we let W = I + W with the identity matrix / and define

diagonal matrix D with Drr = Z qu.

q
Now, nonlocal topological features from the low-dimensional patch manifold
space are extracted by adding a GCN module W acting on the image patches P (x")
into (6), thus leading to

Xl =x' — AT (AX' —y) + d(X) + V(P (X)), (®)

where W(P(x')) = D~ WD~ 2(D~2WD~1 P(x')®')®!, the GCN, with graph
convolutional kernels ®} € RY*P and ®) € R? *d to-be-trained. In summary,
MAGIC unrolls a fixed number of (8) into a neural network with respect to the
parameters {], @}, @5, O}, ©}} when minimizing a loss function, defined by

Ny
1 A 2
— > lIxi — %3, )
N

i=1

where N, denotes the number of the training samples, Xx; is the predicted reconstruc-
tion from the neural network, and X; is corresponding label or ground-truth image. It
was demonstrated in [52] that the effectiveness of both spatial CNN and topological
GCN components leads to significant improvements compared to using only one of
them.
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3 The Proposed Algorithms

We describe two unrolling-based algorithms: one for phase retrieval and the other
for image enhancement. Adapted from MAGIC to deal with the nonlinear inverse
problem, both approaches share the same network architectures in terms of the
unrolling techniques of an optimization method and two data-driven regularizations
defined by CNN and GCN. As the unrolling framework requires an initial condition,
we investigate the image enhancement model to offer an alternative that directly
improves the image quality of the initial.

3.1 Unrolling-Based Phase Retrieval

We focus on a specific type of PR data that is a collection of Fourier-type
measurements of masked images. The proposed methodology however works for
any kind of PR data. We consider two types of masks in the experiments. One
is called a binary mask in the sense that each mask matrix M) e R™>M1 g 3
diagonal matrix where the diagonal entries are either 1 or O, with 1 at locations
where the intensity of x is preserved and O where it is nullified. The other is called a
plus-minus (PM) mask, where the diagonal entries are either 4+ 1 or — 1, to avoid
completely ignoring some pixels by nullifying them. Let # € C™*™" denote the
2D Fourier transform matrix that acts on x. In this setting, the forward model and
the measurements can be succinctly represented as follows:

7_~M(1) y(l)
/@M(Z) y(z)

A = . c Clmnxmn’ y = . c len’
FM© y®

where ¢ denotes the number of masks.
Given the phaseless data y € R?", we aim to reconstruct the image x € R by
solving the following minimization problem

o1
min = |[|Ax| — ylI3 + AR(x), (10)
xeRM™ 2

where the data fidelity is measured by the least squares, R denotes a regularization
term, and A > 0 is a trainable weighting parameter. As the term |Ax| is not
differentiable, we adopt the alternating direction method of multipliers (ADMM)
[9] to minimize (10). The core idea of ADMM is to introduce auxiliary variables
and decompose the problem into subproblems, each of which is easier to solve.
In particular, we introduce an auxiliary variable z € C“"* and convert (10) to an
equivalent formulation
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1
min§|||z| —y||%+)»R(x) s.t. Ax=1z. (1
X,Z
The corresponding augmented Lagrangian can be expressed by

1 o
Lo,z v) = Szl = yl3 +AR(X) + pRe{(v, Ax — 2)} + 5 IlAx — zll3, (12

where v is a Lagrangian multiplier or so-called dual variable and p is a positive
penalty parameter. ADMM iterates as follows:

x' 1 = argming £, (x, z'; V')
7! = argmin, £,(x' !, z; V') (13)
vitl =y o (AXI+] _ Zt+l)’

where ¢ is an index of the iteration numbers.
We start with a closed-form solution for the z-subproblem in (13), which is
equivalent to

o1 0
min ~||z| -y} + Enﬂxf“ —z+ V3. (14)

zeclmn 2

Let g := Ax'T! + v, The closed form solution for z depends on two inputs, y and
g, which can be given by an operator G, i.e.,

ytolgl g if
g#0
G(y,g>:{iﬂc &l ifg—0 (15)
14+p ’

where c is an arbitrary unit root. The derivation of (15) is based on the Wirtinger
calculus [51] to deal with complex-valued z and find a stationary point of the
objective function in (14).

Then we examine the x-subproblem in (13), which can be equivalently expressed
as

min 7. R(x) + gnﬂx—zf v, (16)

One step of gradient descent for minimizing (16) with respect to x with implicit
regularization' yields

xXtl=x'—q (p(A A" — AL + AV)) + ¢(x') + W (P (X)), 17)

! Implicit used here to denote that there is no assumption of an explicit relation between R(x) and
®(x') or W(P(x)).
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where a > 0 is a step size, A* denotes the complex conjugate of A, and P (x")
is a matrix obtained by collecting image patches from x’ as in (8). To expedite
convergence, we choose to initialize using the results of a classical projection
algorithm such as Fienup to set the value of x.

Though the formula in (17) is defined in a vector form, all the computations can
be implemented in the matrix formulation. We maintain the matrix representations
of x and illustrate the calculation of A*Ax to be the sum of all 2D masks point-wise

multiplied by the matrix version of x.
1

z
2
The calculation of A*z is similar: note z = | is a stacked vector, A*z =
2
z!
72 . )
(MNTF* (MY (MO )| | = Z MYDF*(z/). Its matrix oper-
: j
2

ation is the sum of the following terms: the jth mask pointwise multiplied by the
inverse Fourier transform of the 2D matrix representation of z/.
FMD

FM
Lastly, the calculation of Ax'*! is also efficient: Ax't! = , xi+

FM©
whose matrix representations are the [ copies of Fourier transformation of x/*!
multiplied by [ masks. In summary, the ADMM iterations (13) can be given by

X =x' — a(p(A*Ax' — AL + AV)) + O (x) + U(P(x'))
7! = Gy, Ax'T! 4+ V) (18)
vitl =y L Axt g+l

Unlike a typical ADMM algorithm, which iterates until convergence, our objective
is to determine the trainable parameters, such as those in the CNN and GCN
modules. We iterate through the equations in (18) for a specified number of blocks
(Fig. 1) to construct a neural network as shown in Fig. 2, with the updates of the
ADMM variables as shown in Fig. 3. One can see that neural network is originated
from an iterative algorithm, providing mathematical interpretability of the deep
network.

Next, we describe the training procedure in detail. As the aforementioned neural
network is differentiable with respect to these trainable parameters, we apply the
stochastic gradient descent algorithm to find the optimal solutions. Given training
data {(x;,yi, xl.o)},-eg1 with x; the ith ground-truth image, y; the corresponding PR
data, and x? the initial guess, we adopt the algorithm unrolling scheme [28, 44] and
let each y; go through the iterative scheme outlined in Egs. (18), propagating the
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Fig. 1 MAGIC PR Block: one iteration of the ADMM-based algorithm includes updates for x, z,
and v, as well as the block’s CNN and GCN modules. During training, parameters {1, @y, w3} of
the CNN and {®1, ©;} of the GCN are learned

y ? 1 e ,

PLIMIES — x1 Xk_’ _’xlﬂl — X
PLIREES -z ... Zk — —p zk+1
Vo e — ! vk —> — pktl

Fig. 2 The unrolled network is constructed by the composition of a predetermined number of
MAGIC PR Blocks. The estimated reconstruction X corresponds to the x variable of the last block
in the network

information forward in the unrolled neural network (Fig. 2). To solve for the model
parameters wj,’s, ®,’s in the neural networks and the gradient descent step-size «,
we minimize the supervised mean squared error (MSE) loss function:

1 .
L=+ Z Ix; — %13, (19)

where x; is the i-th given ground-truth image, X; is the output of the unrolled neural
network to the i-th measurement, and N is the size of the training set.
3.2 Unrolling-Based Image Enhancement

In this section, we consider a stand-alone unrolling-based neural network to improve
the quality from image denoising. For example, the input data, denoted by g, could
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y
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Fig. 3 Update of the ADMM variables in the unrolling algorithm (18), with each block repre-
senting one iteration and k blocks stacking a finite number of iterations to build a deep network
architecture

be phase retrieval results obtained by using a handful of iterations of the Fienup
algorithm. This can be treated as a post-processing step that sometimes works better
than the unrolling-based phase retrieval method.

To improve the image quality from the input data g, we consider to minimize the
following energy function

!
min I — g3 + AR(X), (20)

to find a solution x using a regularization function defined by R. We adopt the
same strategies in the proposed PR pipeline, i.e., local and nonlocal regularization
functions described by CNN and GCN, respectively.

Solving the minimization problem (20) using gradient descent, we get

Xt = xt — a((x’ - g)) + o) + W(P(X)). 1)

Adopting the unrolling scheme, we construct a neural network using the iterative
scheme (21) and solve for parameters in the neural network with respect to
MSE (19), where x; is the given i-th ground-truth clean image, X; is the output of
unrolled (21), and N is the size of the training set. Note that the denoising model (21)
inherits the same network architecture, i.e., ®(-) and W (-), as in the PR case (18).
We include this model into an ablation study of the proposed methods, as outlined
in Sect. 4.3.
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4 Numerical Examples

Data Simulation We consider masked Fourier measurements to simulate phaseless
data. Specifically, we start with an image, denoted by x in a vector form, which is
regarded as the underlying ground truth, and three masks of the same dimension
as the image. The justification for using three masks stems from the difficulty
in achieving successful PR under an oversampling ratio of 2, and the theoretical
assurance of a unique PR solution when the oversampling ratio is 4. We multiply
the image with each mask elementwise, take the Fourier transform of each masked
image, and only record the magnitude, leading to vectorized data denoted by y.
As a result, the number of the measurements in y is three times the number of the
ground-truth image in y due to the use of three masks. We also add noise to test
the robustness of our model. We use the same masks for each image in the dataset
before splitting it into the training and testing sets.

Model Architecture For hyperparameters related to CNN and GCN, we adopt
similar strategies as outlined in the original MAGIC paper [52]. For instance, for
the CNN component, we use three convolutional layers, each one with 64 filters
of size 3x3. We also use stride of 1 and padding of 1, but in contrast with the
original paper that uses padding with zeros, we use padding mode with reflecting
conditions, no bias in the convolutional layer and ReLLU activation function after
all the convolutional layers. Therefore, the number of parameters to learn per CNN
component per block is 38,016 (first layer, w’f, 3 x 3 x 1 x 64; second layer, wg,
3 x 3 x 64 x 64; and last layer, wé, 3 x 3 x 64 x 1). For the GCN component, we use
two layers each with 64 neurons. To build the weighted graph, we use Eq. (7) and
patches of size 6 x 6. The patches cover the image with stride 2, which yields a graph
with 3844 vertices (i.e. a vertex per patch) for images of size 128 x 128. Therefore,
the number of parameters to learn per GCN component per block is 4708 (first layer,
(H)]f, 6 x 6 x 1 x 64; last layer, @g, 64 x6x6x1+6x6x1).Inaddition, for each
ADMM block, we learn the parameter of « in Eq. (18 for x'*! update. Briefly, this
corresponds to a model with 42,725 parameters per block. We calculate the graph
Laplacian twice with the first k/2 blocks using graph Laplacian calculated from the
initial x and the last k /2 blocks using an updated one from the x*/? iterate. A larger
k implies more iterations and a deeper model that may not fit in memory or require
greater data to train. In the experiments, we conduct a minimal exploration of the
number of blocks k to use for each problem, running a few iterations for models
with 10, 20, 30, and 50 blocks and greedily selecting the number of blocks yielding
a smaller error. In one case (see sections below), we find that a larger number of
blocks (120) produced better results.

Initialization and Training Setup We employ the Fienup algorithm, performing
50 iterations to obtain the starting point x* in the iteration; see (18). As in the
original MAGIC work, we use the ADAM optimizer and a decaying learning rate.
The learning rate is set to decay by a multiplicative factor of 0.95 after each epoch.
However, to capture the different expected influence of parameters, we group them
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in (i) neural network parameters (i.e., including CNN and GCN components) and
(ii)) ADMM parameters (including «), and we set two different initial learning rates
for these two groups, LRONN and LRg, respectively. Usually we set LR%N < LRg.
We initialize the parameters for CNN and GCN with normal distributions with mean
0 and standard deviation equal to 0.001 or 0.0001, respectively. In most cases, we
initialize the o parameters with 0.5. Nevertheless, we find it convenient to initialize
them to 0.01 for the noisy data cases. We train our models for 50 epochs. During
training, we make sure to clip the o parameters to the range [10~7, 0.9], since they
correspond to gradient descent step sizes. Additionally, we use training, validation,
and testing sets. The validation set is only used to track performance (MSE) and
enact an early-stopping criterion: we stop training if the performance evaluated on
the validation set does not improve for a span of a pre-specified number of epochs.
This span of epochs, usually denoted as patience, was set to 25 in our experiments.
In all cases, we report results over the testing set using the best model, i.e., the
model that during training exhibited the lowest MSE in the validation set. This can
be different from the model obtained in the last training epoch, which in turn can be
obtained in less than 50 epochs if the early-stopping criterion is activated.

Comparison We compare the proposed approach with a classical projection
approach (Fienup [20]), an advanced gradient-based method (TWF [14]), a gradient-
based method (WF), and a deep learning approach (PRred [39]). We use the
MATLAB codes for Fienup, TWF, and WF which are publicly available.? Standard
metrics PSNR and SSIM (both using the dynamic range of the ground truth; see
definitions in [32]) are used to quantitatively evaluate the performance of various
competing methods. Additionally, we present some visual results for qualitative
comparisons.

Datasets We consider two diverse datasets for our experimental study: images that
contain dogs from ImageNet [15] and full-dose CT images [38]. We focus on dog
images with the intention of learning features that are specific to dogs rather than
other classes in ImageNet. We consider clean dog images (without noise) since most
dog images contain fine details of fur and background, making the reconstruction
susceptible to noise. Since CT images are generally piece-wise constant and can
tolerate a certain amount of noise, we investigate both clean and noisy data to
evaluate the robustness of the proposed method in handling noise.

4.1 Experiments on the Dog Dataset

We collect a dataset composed of 600 images of dogs in front of diverse back-
grounds from ImageNet [15]. We resize each image to 128 x 128 pixels and split
the data into 400 images for training, 100 images for validation, and 100 images for

2 https://github.com/tomgoldstein/phasepack-matlab
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testing. In this experiment, we use directly the phaseless simulated measurements—
meaning that no additional noise is added to the measurement data.

We consider two types of masks. One consists of 50% of the value + 1 and 50%
of the value — 1, referred to as a plus-minus (PM) mask. The other is a binary mask
with 80% of value 1 and 20% of value 0. In both cases, the size of the measurements
is triple that of the underlying image. However, the effective oversampling ratio for
the binary mask is 2.4, taking into account the loss of information at locations where
the mask value is 0.

For the PM mask, we train a 30-block unrolled MAGIC architecture, with the
block configuration described before. This corresponds to a model with 1,281,750
parameters. We use a batch size of 64 and initial learning rates of LRONN = 0.01
and LRg = 0.0001. For the binary mask, we train a 120-block unrolled MAGIC
architecture, with the block configuration described before. This corresponds to a
model with 5,127,000 parameters. We use a batch size of 32 and initial learning
rates of LR%N = 0.01 and LRY = 0.0001.

The results of the dog data are presented in Tables 1 and 2 for PSNR and
SSIM, respectively. One can see that when there is no noise and PM mask is used,
Fienup performs the best, with TWF the second best. For the two deep learning-
based approaches, the proposed one is better than PRred and almost matches the
performance of WE. On the other hand, in the case of binary masks, Fienup and
TWEF still perform well, although not as good as in the case of PM mask. In contrast,
the WF method has a bad performance and is easily beaten by the proposed method.
For the two deep learning-based approaches, the proposed one is, again, better than
PRred.

Figures 4, 5, and 6 present visual results of the image reconstruction from
phaseless data for the PM mask. Figures 7, 8, and 9 present visual results of the
image reconstruction from phaseless data for the binary mask. Fienup and TWF
achieve exact recovery of the underlying image for the PM mask, as expected due
to the theoretical guarantees provided by an oversampling ratio of 3 in the PM case.
However, these two methods lack a mechanism to fill in the missing information
when binary masks are employed, causing dead pixels at the locations where the

Table 1 PSNR comparison on the clean dog dataset (without noise). Mean values over 100 testing
images are reported with standard deviation in parenthesis
Fienup TWF WF PRred Proposed
PM mask 83.31(1.95) |60.55(3.63) |3544(6.03) | 15.88(3.43) |33.32(3.07)
Binary mask | 25.19(1.44) |26.76(1.84) |13.57 (1.20) |8.98(1.73) 23.65 (2.50)

Table 2 SSIM comparison on the clean dog dataset (without noise). Mean values over 100
testing images are reported with standard deviation in the parenthesis

Fienup TWF WF PRred Proposed
PM mask 1.00 (0.00) 1.00 (0.00) 0.92 (0.15) 0.51 (0.10) 0.90 (0.07)
Binary mask 0.80 (0.05) 0.89 (0.04) 0.21 (0.03) 0.10 (0.02) 0.72 (0.09)
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Fig. 4 Results for dog dataset with the PM mask. From left to right: ground truth, Fienup (PSNR,
81.84 dB; SSIM, 0.99), TWF (PSNR, 60.00 dB; SSIM, 0.99), WF (PSNR, 43.80 dB; SSIM, 0.99),
PRred (PSNR, 13.51 dB; SSIM, 0.47), proposed (PSNR, 35.01 dB; SSIM, 0.94)

Fig. 5 Results for dog dataset with the PM mask. From left to right: ground truth, Fienup (PSNR,
90.59 dB; SSIM, 1.00), TWF (PSNR, 63.75 dB; SSIM, 0.99), WF (PSNR, 35.95 dB; SSIM, 0.93),
PRred (PSNR, 26.06 dB; SSIM, 0.65), proposed (PSNR, 40.70 dB; SSIM, 0.97)

Fig. 6 Results for dog dataset with the PM mask. From left to right: ground truth, Fienup (PSNR,
80.92 dB; SSIM, 0.99), TWF (PSNR, 55.54 dB; SSIM, 0.99), WF (PSNR, 36.53 dB; SSIM, 0.97),
PRred (PSNR, 10.98 dB; SSIM, 0.47), proposed (PSNR, 30.02 dB; SSIM, 0.89)

Fig. 7 Results for dog dataset with the binary mask. From left to right: ground truth, Fienup
(PSNR, 28.29 dB; SSIM, 0.77), TWF (PSNR, 30.91 dB; SSIM, 0.95), WF (PSNR, 15.81 dB;
SSIM, 0.22), PRred (PSNR, 12.71 dB; SSIM, 0.20), proposed (PSNR, 30.31 dB; SSIM, 0.87)

mask entry takes the value of 0. This loss of information impacts the performance of
algorithms like Fienup and TWF and severely affects the reconstruction on the WF
case. Additionally, our experimental setup falls outside the assumptions under which
the theoretical guarantees for classical methods are typically established, which may
explain the observed issues in this specific context. PRred relies on an image prior
to guiding the image reconstruction but does not employ any information about the
measurement operator. Results are noisy for the PM mask case and very distorted
for the binary mask. The proposed approach utilizes both local and nonlocal features
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Fig. 8 Results for dog dataset with the binary mask. From left to right: ground truth, Fienup
(PSNR, 28.40 dB; SSIM, 0.87), TWF (PSNR, 30.42 dB; SSIM, 0.93), WF (PSNR, 16.89 dB;
SSIM, 0.30), PRred (PSNR, 13.55 dB; SSIM, 0.16), proposed (PSNR, 28.88 dB; SSIM, 0.88)

Fig. 9 Results for dog dataset with the binary mask. From left to right: ground truth, Fienup
(PSNR, 26.13 dB; SSIM, 0.82), TWF (PSNR, 27.32 dB; SSIM, 0.88), WF (PSNR, 14.69 dB;
SSIM, 0.24), PRred (PSNR, 10.62 dB; SSIM, 0.13), proposed (PSNR, 26.51 dB; SSIM, 0.82)

discovered by CNN and GCN for image reconstruction. While it produces metrics
that are lower than Fienup and TWF, the corresponding visual results are appealing
but still suffer from similar dead pixel artifacts than classical methods.

4.2 Experiments on the CT Dataset

The CT dataset contains a collection of CT images from ten different patients [38].
In our experiments, we use full-dose CT images from ten patients to simulate data
for phase retrieval. We select eight patients for the training and validation sets and
reserve two patients for testing. From the 8 training/validation patients, we randomly
select 400 images to train the unrolling network and 100 images for validation.
From the 2 reserved testing patients, we randomly select 100 images for testing.
We consider both clean CT and noisy CT, with the latter simulated by adding
Gaussian noise with mean 0 and standard deviation of 0.04 (i.e., about 4%) in
the measurement domain (magnitude data). In other words, we add noise to each
component of the vectorized data y, clipping negative values to 107>, to guarantee
positive measurements. This corresponds to about 22 dB PSNR and 5.3 dB SNR,
between original y and corrupted signal y,, in the measurement domain. Although
this seems like a mild noise level, it is enough to severely affect the performance of
classical methods.

For the clean CT, we train a 20-block unrolled MAGIC architecture, with the
block configuration described before. This corresponds to a model with 854,500
parameters. We set a batch size of 128 and initial learning rates of LRONN = 0.001
and LRg = 0.0001. For the noisy CT, we train a ten-block unrolled MAGIC
architecture, but we modify the CNN component to include more layers and filters.
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Table 3 PSNR comparison using the CT dataset (standard deviation is provided in parenthesis)

Fienup TWF WF PRred Proposed
Clean CT | 88.09 (1.24) |64.63(2.73) | 40.96 (6.72) 13.29 (3.02) | 38.60 (1.63)
Noisy CT | 12.10 (0.91) 11.78 (0.90) 11.33 (0.90) 12.61 (1.54) | 22.98 (0.69)

Table 4 SSIM comparison using the CT dataset (standard deviation is provided in parenthesis)

Fienup TWF WF PRred Proposed
Clean CT 1.00 (0.00) 1.00 (0.00) 0.92 (0.15) 0.31 (0.05) 0.93 (0.02)
Noisy CT 0.08 (0.02) 0.08 (0.02) 0.07 (0.01) 0.16 (0.03) 0.40 (0.03)

Fig. 10 Results for CT dataset. From left to right: ground truth, Fienup (PSNR, 87.13 dB; SSIM,
0.99), TWF (PSNR, 61.19 dB; SSIM, 0.99), WF (PSNR, 39.11 dB; SSIM, 0.94), PRred (PSNR,
11.62 dB; SSIM, 0.31), proposed (PSNR, 39.94 dB; SSIM, 0.95)

We use 5 convolutional layers, each one with 128 filters of size 3x3. We also use a
stride of 1 and padding of 1, padding mode with reflecting conditions, no bias in the
convolutional layer, and ReLU activation function in all the layers. Therefore, the
number of parameters to learn per CNN component per block is 444,672 (first layer,
wll‘, 3 x 3 x 1 x 128; second, third, and fourth layers (wé, w”g, and wﬁ, respectively),
3 x 3 x 128 x 128 (each); and last layer, wls‘, 3 x 3 x 128 x 1). The other layers
remain as before (i.e., ©}, © corresponds to 4708 parameters per GCN component
per block and 1 « parameter per block). Thus, this corresponds to a model with
449,381 per block, for a total of 4,493,810 parameters. We use a batch size of 64
and initial learning rates of LRONN = 0.1 and LRY = 0.0001.

The PSNR and SSIM values of the reconstructed images are reported in Tables 3
and 4. One can see the same pattern in clean CT as in the dog data under the
PM mask, albeit, the proposed method’s performance is improved, probably due
to the higher homogeneity of the CT dataset. However, in the presence of noise, the
performance of Fienup, TWF, and WF drops dramatically, resulting in significantly
poorer results compared to the proposed approach. Considering learning-based
methods, our approach largely outperforms PRred.

We present CT image results for phase retrieval without noise in Figs. 10, 11,
and 12 and for phase retrieval with noise in Figs. 13, 14, and 15. In the noise-free
case, Fienup and TWF achieve the perfect reconstruction with no visual difference
from the ground truth and are nearly followed by WF. PRred exhibits noisy results,
whereas the proposed approach generates very good visual results with SSIMs
that are very close to WF. In Figs. 13, 14, and 15, when the noise is present, it
appears that noise propagates throughout the entire images recovered by Fienup,
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Fig. 11 Results for CT dataset. From left to right: ground truth, Fienup (PSNR, 86.85 dB; SSIM,
0.99), TWF (PSNR, 63.58 dB; SSIM, 0.99), WF (PSNR, 43.56 dB; SSIM, 0.98), PRred (PSNR,
11.57 dB; SSIM, 0.30), proposed (PSNR, 38.43 dB; SSIM, 0.94)

Fig. 12 Results for CT dataset. From left to right: ground truth, Fienup (PSNR, 91.46 dB; SSIM,
1.00), TWF (PSNR, 66.53 dB; SSIM, 0.99), WF (PSNR, 47.32 dB; SSIM, 0.99), PRred (PSNR,
18.98 dB; SSIM, 0.41), proposed (PSNR, 42.32 dB; SSIM, 0.96)

Fig. 13 Results for CT dataset for measurements with additive Gaussian noise. From left to right:
ground truth, Fienup (PSNR, 12.37 dB; SSIM, 0.12), TWF (PSNR, 12.25 dB; SSIM, 0.12), WF
(PSNR, 11.84 dB; SSIM, 0.11), PRred (PSNR, 12.96 dB; SSIM, 0.25), proposed (PSNR, 22.52
dB; SSIM, 0.47)

Fig. 14 Results for CT dataset for measurements with additive Gaussian noise. From left to right:
ground truth, Fienup (PSNR, 13.34 dB; SSIM, 0.07), TWF (PSNR, 13.13 dB; SSIM, 0.06), WF
(PSNR, 12.69 dB; SSIM, 0.05), PRred (PSNR, 16.83 dB; SSIM, 0.16), proposed (PSNR, 24.19
dB; SSIM, 0.38)

TWE, and WF, resulting in poor reconstruction performance. PRred is able to reduce
the amount of noise, overpassing the performance of the classical methods. The
proposed approach produces the best visual result for phase retrieval from noisy
data among all the methods compared.
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Fig. 15 Results for CT dataset for measurements with additive Gaussian noise. From left to right:
ground truth, Fienup (PSNR, 14.29 dB; SSIM, 0.09), TWF (PSNR, 14.02 dB; SSIM, 0.08), WF
(PSNR, 13.34 dB; SSIM, 0.07), PRred (PSNR, 14.50 dB; SSIM, 0.16), proposed (PSNR, 24.87
dB; SSIM, 0.42)

4.3 Ablation Study of MAGIC-Based Approach

We provide an ablation study of the proposed MAGIC-based approach for phase
retrieval based on the noisy CT dataset. In the training stage, we have the option
to exclude either the CNN component (i.e., no CNN) or the GCN component (i.e.,
no GCN) in order to investigate the influence of each component on the overall
performance. As the proposed workflow (18) requires an initial condition x°, we
additionally incorporate an experimental study on a post-processing enhancement
module, aiming to improve the image quality by learning the CNN and GCN
components, as elaborated in Sect.3.2. We refer to this approach as the simpler
denoising method.

We carry out four experiments: the first one employs our complete approach;
the second uses the simpler enhancement formulation, i.e., only enhances the
initial solution (which is computed via a handful of iterations of Fienup); the third
experiment does not use graph-based regularization; and the fourth omits the CNN-
based regularization. We denote these experiments as full-model, only-denoise,
no-GCN, and no-CNN, respectively.

In terms of parameters, the full-model has 449,381 parameters per block
as explained before (444,672 parameters per CNN component per block, 4708
parameters per GNN component per block, and one parameter of o per block); the
only-denoise has the same number of parameters per block as full-model; the no-
GCN has 444,673 parameters per block (444,672 parameters per CNN component
per block and one parameter of « per block); and the no-CNN has 4709 parameters
per block (4708 parameters per GCN component per block and one « parameter per
block).

In all cases, we set a batch size of 64, initial learning rates of LRONN = 0.1 and
LRY = 0.0001, and we initialize & to 0.01. As in the other cases, we train our
models for 50 epochs using the ADAM optimizer with a decaying learning rate (set
to decay by a multiplicative factor of 0.95 after each epoch). During training, we clip
the o parameters to the range [10~7, 0.9] along with an early-stopping criterion. We
report results estimated over the testing set using the best model.

We compare all the MAGIC-inspired variants in terms of PSNR and SSIM in
Table 5 and show visual results in Figs. 16, 17, and 18. From these results, it is clear



296 H. Cheng et al.

Table 5 Ablation study of MAGIC-inspired variants on noisy CT dataset (standard deviation is
provided in parenthesis)

Full-Model Only-Denoise No-GCN No-CNN
PSNR [dB] 22.98 (0.69) 24.44 (0.77) 24.08 (0.70) 18.10 (0.86)
SSIM 0.40 (0.03) 0.59 (0.03) 0.45 (0.03) 0.25 (0.04)
Number of parameters 4,493,810 4,493,810 4,446,730 47,090

Fig. 16 Results for CT dataset for measurements with additive Gaussian noise. From left to right:
ground truth, full model (PSNR, 22.52 dB; SSIM, 0.47), only denoise (PSNR, 23.44 dB; SSIM,
0.63), no GNN (PSNR, 23.38 dB; SSIM, 0.51), no CNN (PSNR, 18.69 dB; SSIM, 0.35)

Fig. 17 Results for CT dataset for measurements with additive Gaussian noise. From left to right:
ground truth, full model (PSNR, 24.19 dB; SSIM, 0.38), only denoise (PSNR, 25.99 dB; SSIM,
0.62), no GNN (PSNR, 25.31 dB; SSIM, 0.43), no CNN (PSNR, 19.60 dB; SSIM, 0.24)

Fig. 18 Results for CT dataset for measurements with additive Gaussian noise. From left to right:
ground truth, full model (PSNR, 24.87 dB; SSIM, 0.42), only denoise (PSNR, 26.62 dB; SSIM,
0.64), no GNN (PSNR, 26.11 dB; SSIM, 0.48), no CNN (PSNR, 20.12 dB; SSIM, 0.25)

that removing the CNN component, as in no-CNN, leads to a significant degradation
in performance. This implies that the local features learned by CNN are more crucial
than the nonlocal features learned by GCN. We also observe that the only-denoise
model outperforms the proposed unrolling-based PR one, exhibiting the best metrics
over all the methods. Nevertheless, the only-denoise visual results tend to be blurry.
This variant may also have a more limited scope due to its high dependency on
the initial condition. The no-GCN model yields better metrics than the full-model,
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reducing a bit more of the noise and capturing somewhat better the structure than
the full-model without as much blurring as only-denoise. Note that we experiment
with several hyperparameter configurations.? Although we do not claim the optimal
configuration is guaranteed, in most cases, the resulting reconstructions follow the
same trend, which are reported here. However, some configurations lead to unstable
training (with loss reduction only in early epochs) or progress much more slowly
than others. A more rigorous exploration of the hyperparameter configuration is
out of the scope of this work. Overall, using the local operator helps reduce blurry
artifacts in the reconstruction (as the only-denoise model). However, balancing this
against the local and nonlocal smoothing components (CNN or GCN) is challenging
within the additive context of x’*! update in Eq.(18). This may be even more
problematic when training with limited or noisy measurement data.

5 Conclusion and Future Work

We proposed an unrolling-based deep learning approach for phase retrieval. While
the proposed method is applicable in a general sense, this chapter specifically
focused on phase retrieval from Fourier measurements of masked images. We
adopt data adaptive local and nonlocal regularization based on CNN and GCN.
The proposed algorithm outperforms state-of-the-art methods in recovering phase
information from noisy measurements. Future work includes the extension to
general PR settings and more realistic PR applications.

The exploration of deep learning methods for phase retrieval is still ongoing,
particularly in understanding their performance in noiseless scenarios and when
the number of measurements is small—conditions where most classical methods
tend to fail. While deep learning methods have shown great potential, especially in
large-scale problems, realizing this potential often requires careful parameter tuning
and significant engineering efforts, such as collecting more data or better balancing
parameter initialization and learning rate initialization and decay. We believe that
with further numerical studies and optimizations, deep learning approaches can
achieve performance levels comparable to classic methods, such as Fienup, WF,
and TWF, in noiseless cases; however, more research is needed to fully validate
this.
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Performance Analysis of MFCC and )
wav2vec on Stuttering Data ST

Venera Adanova and Maksat Atagoziev

1 Introduction

Over the last decade, speech recognition systems have evolved dramatically. Thanks
to advances in machine and deep learning, we can witness automatic recognition
systems (ASR) such as Alexa, Siri, or Google with astonishing performance.
However, these systems are trained on fluent speech and fail to recognize speech
with disorders, such as stuttering.

Stuttering, aka stammering, is a complex speech disorder that negatively affects
the communication ability of 1% of the population. Persons who stutter (PWS) often
know what they want to say; however, the speech is interrupted by involuntary
pauses and word or sound repetitions. Identification of stuttering in a speech is a
challenging problem involving multiple disciplines such as pathology, psychology,
acoustics, and signal processing.

The majority of studies conducted on stuttering data aim to detect and iden-
tify the dysfluency types in audio recordings. These types of dysfluency are
generally defined as blocks, prolongations, sound/word/phrase repetitions, and
interjections [15, 19]. Blocks are defined as involuntary pauses before words.
Prolongations are elongated syllable, like I am s[sssJory. Repetitions involve sound,
word, or phrase repetitions. For example, I made [made] dinner represents a word
repetition. In order to avoid above-defined stuttering types, a person who stutters
learns to use filler words like “um, uh, you know, etc.” These filler words are
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known as interjections. Note that the dysfluency types might be named differently
in different studies.

The ability to differentiate between stuttering types enables improvements in the
design of assistive speech technologies. For instance, speech recognition software
could be optimized to handle prolongations differently from repetitions. Knowing
the type of dysfluency allows developers to fine-tune how technology interacts with
stuttered speech.

It would also be very useful for speech therapists. Currently, speech therapists
record audio of their patients while they speak and then manually annotate the
stuttering types observed in the speech. Based on the frequency of stuttering
types, the severity of speech disorder is identified. The improvements in patient’s
speech after the therapy are also identified by the same process. This manual
intervention limits treatment to the confines of the therapist’s office. Automatic
detection and identification ability can significantly enhance treatment strategies
by providing real-time, objective analysis of speech patterns. Automated systems
can quickly identify and categorize dysfluencies, allowing speech therapists to track
progress more precisely and adjust interventions dynamically based on detailed
data. This automation also enables the development of personalized therapy tools,
such as mobile apps that provide instant feedback, and improves speech recognition
technologies by making them more adaptive to dysfluent speech. Additionally,
automatic detection can accelerate research by providing large-scale, consistent data
for studying stuttering.

Though ASR systems have evolved, studies involving stuttering detection and
identification are scarce. The main reason for the deficiency of studies in stuttered
speech is the lack of data. Many studies in this field use in-house datasets, which are
small, manually labelled datasets. These types of datasets are not publicly available.
Some publicly available datasets, such as UCLASS, are not labelled. Even if the
datasets are publicly available and labeled, it is highly imbalanced where more than
half of the dataset contains fluent data and the other half is shared among different
dysfluency types. Just like any speech-related problem, detecting stuttering requires
lots of data for accurate learning.

Typically, works conducted on stuttering detection and identification are done
based on some datasets, either in-house or public, learn to classify between
fluent and dysfluent speech (stuttering detection), and distinguish dysfluency types
(identification).

The works that use in-house datasets [1, 8, 9, 11, 17] typically use small self-
labeled data, which is not shared publicly.

There is only a handful number of publicly available stuttering datasets. The very
first and also the smallest one is the UCLASS dataset [10]. It contains 457 audio
recordings of monologues, conversations, and readings, and only small amount of
them has transcriptions. The dataset is not labeled according to dysfluency types.

The FluencyBank dataset [18] contains audio and video files with transcriptions
for the interviews conducted for 32 adults and children who stutter. However, the
dataset is not labeled.
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The scarcity of labeled data led to the creation of synthetic dataset, LibriStutter
[13], which consists of 50 speakers (approximately 20 hours). The dataset was
generated by injecting random stuttering to LibriSpeech dataset, which consists of
fluent speech. The audio signals were segmented into four-second windows, and
for every window, either one of the stuttering events, as sound, word, and phrase
repetitions, prolongations, and interjections, was injected or left untouched.

Bayerl et al. [4] suggest their own dataset, namely, Kassel State of Fluency
(KSoF), which consists of 5500 clips of stuttered speech in German. The clips were
labeled with the six stuttering event types: blocks, prolongations, sound/word/phrase
repetitions, interjections, and speech modifications. The last type is therapy specific
and indicates whether the speaker’s speech is modified after the therapy. The dataset
also has some metadata, like the gender of a speaker, therapy status, type of
microphone used, etc.

The largest dataset, Stuttering Events in Podcasts (SEP-28k), was released
recently by Lea et al. [15]. SEP-28k is the first publicly available annotated dataset.
It contains about 28,000 3-second clips from podcast recordings. The SEP28k
corpus also has 4144 3-second annotated clips from the FluencyBank dataset.
Bayerl et al. [6] subsequently introduced an extended SEP-28k, which contains also
the gender and speaker information. Along with the extended data, they proposed
possible partitioning ways of data into train and test set.

Typically, studies [2, 14, 20] choose Mel-frequency cepstral coefficients (MFCC)
as the feature representation for audio clips. Lately, some of the studies [6, 7] pro-
posed using features extracted from pretrained wav2vec 2.0 [3] network. Wav2vec
network is learned on a large amount of fluent speech, takes raw data as an input,
and produces a feature vector describing each audio data.

In this work, we perform our experiments on the subset of SEP28k dataset and
compare predictive powers of MFCC and wav2vec feature representations. We use
simple Siamese network having a single task model, which learns to differentiate
between stuttering types, and then gradually convert the model into multitask learner
with multiple heads. We then observe improvements that these transformations
bring into the classification task.

2 Dataset

In our study, we utilize a subset of the SEP28k dataset. The audio recordings
were sourced from eight different shows, with each episode being segmented
into 3-second clips. The dataset comprises a total of 28,177 clips, equivalent to
approximately 23.5 hours of audio. Each clip was annotated by three annotators,
with annotations categorized into two types: stuttering and non-stuttering. Stuttering
types encompass various dysfluency forms such as prolongation, block, interjection,
and sound/word repetition, as well as instances where no stuttering occurred.
Non-stuttering types include unintelligible speech, natural pauses, uncertainty,
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background music, and poor audio quality. Our primary focus lies on analyzing
the stuttering types within the dataset.

While SEP28k is the only available large dataset, it is indeed a very challenging
one. One of the challenges comes from the fact that it is very imbalanced. More
than half of the data contains fluent speech, and approximately 10% is given for
a particular dysfluency type. Second, each clip might have several annotations.
Thus, a single clip might contain both prolongation and block dysfluency types
while being also annotated by one of the annotators as a fluent speech. Lastly, it
is also imbalanced in terms of speaker. Thus, host speech dominates 60% of the
data. Also, the distribution of shows is imbalanced. The number of clips for one of
the shows, Women Who Stutter, form 33% of overall clips. Considering that Women
Who Stutter and He Stutters share the same host (Pamela Mertz), a large amount of
clips is dominated by the speech of a single person.

The labels given by annotators can be misleading. Williams and Kent [21]
reported on the results of a study where college students listen to a recording of
an adult speaker imitating various types of dysfluency. On one occasion, they were
instructed to mark all “stuttered” interruptions on a transcript of the recording, and
on another presentation of the same recording, they were told to mark all “normal”
interruptions. It was observed that people tend to hear what they were instructed to
listen for. Hence, those interruptions that were marked as stuttered under one set of
instructions were marked as normal interruptions under the other. The authors called
this phenomena as “confusion.” Based on this study, we decided to narrow the size
of our dataset by including only the annotations that were agreed upon all three
annotators. We construct a smaller subset from SEP28k, which we call confidence
list. It consists of clips that were assigned to the same type by all three annotators.
However, the interjection type never was annotated alone, as it also belongs to no
stuttered word type. Hence, we also include the clips for which three annotators
selected both no stuttered words and interjections. Moreover, the clips where all
three selected both no stuttered words and natural pause are also included as fluent
speech. We also form confidence list for FluencyBank. However, only dysfluency
typed clips were included to the dataset, as the percentage of fluent clips already
form the large portion of the dataset. There are overall 3901 clips in our dataset, and
the distribution of different types is illustrated in Fig. 1.

3 Proposed Framework

Given the audio clips, we initially extract their MFCCs and wav2vec representa-
tions. The extracted MFCCs and wav2vecs are further fed to our baseline model,
by training which we learn new embeddings (features) for the clips. The baseline
model that we use to extract embeddings is the Siamese network with contrastive
loss shown in Fig. 3 (shaded area). The choice of this network is not random. It was
shown in [12] that Siamese networks learn well under the scenarios with a small
number of representatives from each class. This is indeed the case for our data.
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Fig. 1 The distribution of stuttering types in our dataset. Observe that fluent data form 65% of the
dataset
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Fig. 2 The architecture of our subnetwork

There are two inputs to the network and two identical subnetworks that share
the weights. For each pair, the two subnetworks produce embeddings that are then
used to compute the Euclidean distance between a pair of inputs. The main goal of
the network is not to learn to classify different stuttering types but to differentiate
between them.

The subnetwork consists of three blocks. Each block contains a convolutional
layer followed by max pooling and dropout layers. The last layer does global
averaging, which returns the desired 64 x 1 dimensional vector. The details on input
and output dimensions are illustrated in Fig. 2.

As a loss function for the baseline model, we use contrastive loss, which is
defined as the following:

Lbasetine = y - d* + (1 — y) - max(margin — d, 0)* (1)
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Fig. 3 Proposed framework. The model within the yellow box is the baseline model. An example
of converting the baseline model to MTL by adding two classification heads is illustrated. The
first classification head learns to categorize stuttering types; the second head learns to differentiate
between different shows

where y is a true label, 1 if the audio pairs are of the same class and 0 otherwise,
and d is the Euclidean distance between the outputs of twin network embeddings.
Margin is 1.

Our baseline model does a single-task learning (STL). Adding additional aux-
iliary heads to the network can increase the generalization power of the model
[5, 20, 22]. During our experiments, we extend the model to do multitask learning
(MTL). Thus, we add a classification head to the model so that the model can also
learn to classify between the six stuttering types. In our other experiment, we add
another classification head, which also forces the network to differentiate between
different shows. A Siamese network along with possible additional auxiliary
classification heads is shown in Fig. 3, where each of the classification heads is fed
with the new features computed for the first input of the baseline model. For both of
these classification heads, we use sparse categorical cross-entropy loss function.

Hence, the overall loss of an MTL model is given by:

L = Apaseline * Lbaseline + )Vauxiliary . Lauxiliary (2)
As was mentioned before, our model learns new features (embeddings) for the

audio data, which are subsequently fed to machine learning models for classification
purposes.

4 Experimental Results

4.1 Features

We first compute MFCC and wav2vec features for every audio clip, which are then
fed to our models. All clips are read with the sampling frequency of 16,000.The
MEFCC features are computed using speechpy library, using the frame length of
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0.025, frame stride of 0.01, and number of filters of 40. For every 3-second-long
clip, using these parameters, we produce 297 x40 features. wav2vec features are
obtained from the last layer of wav2vec network, which produces 149 x 768 features.

4.2 Data Augmentation

The data is highly imbalanced, so we produce new samples using augmentation
techniques. The augmented data is used only during the training process. Since
fluent speech already takes up to 65% of the data, we only augmented the clips
with dysfluency labels.

Data augmentation is done using audiomentations library. For every dysfluent
clips in the training set, we add Gaussian noise with a minimum amplitude of 0.001
and a maximum amplitude of 0.015, time stretch up/down to 25%, and shift pitch
up/down 4 semitones.

4.3 Data Splitting

The data is divided into three: train, validation, and test sets. We experiment with
two different splitting techniques. In the first split type, which we call frequency
split, the train set contains clips of 10 most frequent speakers, plus the dysfluency
clips from FluencyBank, which gives us overall 2434 clips. What is left is divided
between validation and test sets. Thus, validation set consists of 734 clips of next
most-frequent speakers, and the test set contains 733 clips of less-frequent speakers.
The second split type is just a random split, where 20% of the dataset is given to
both validation and test sets by random assignment.

4.4 Training

We train four different models: baseline model, baseline model with stuttering
classification head, baseline model with stuttering and show classification heads,
and baseline model with stuttering, show, and binary classification heads. We call
them BM, BSM, BSSM, and BSSBM, respectively. The latter three are MTL
models.

We use Adam optimizer with learning_rate = 0.001, and the batch size is 8. A
larger batch size could be used for MFCC features, but for wav2vec, it is impossible
due to its size and our GPU limitations. Hence, we kept the batch size equally small
for both kinds of features. We use the early stopping technique with a patience of
5, monitoring the loss function on the validation set. The number of epochs is kept
100 for both representations. In our experiments, early stopping was triggered after
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around 10 epochs for MFCC feature for all model types. For wav2vec features, it
was triggered after around 30 epochs.

For the first MTL model, the weights of losses are equal; thus, Apgserine = 0.5,
and Agyrering = 0.5. For the second MTL model, we pay less importance to the
show classification head as it is used more like regularization; hence, the weights are
distributed as Apgserine = 0.4, Astusrering = 0.4, and Agpoy = 0.2. Lastly, the fourth
model classification heads are distributed as Apaserine = 0.3, Asrurrering = 0.3,
Ashow = 0.1, and Apjnary = 0.3.

4.5 Results

After training the aforementioned four models, we extract new features from the
data and perform classification using K-nearest neighbor (KNN) with k= 7. The
choice of a large k is to ensure the stability of classification results. The reported
results illustrate the performance of KNN on test data, unless otherwise stated. We
consider different classification scenarios. First, we consider how KNN classifies all
types: dysfluent plus fluent speech. Second, we observe how it handles the binary
case: when we combine all dysfluent types into one class and label them as the
non-fluent class and observe the performance of the model on fluent versus non-
fluent classification. Lastly, we consider only dysfluent types and observe how KNN
performs when fluent speech is excluded.

F1 score results for the classification of all stuttering types, when the frequency
split is used, are given in Table 1. Observe that the results are the worst for the block
type. This is because it has the fewest observations. It is natural to have high results
for the fluent type as 65% of data consists of fluent speech. Note that while MFCC
has better prediction power on the interjection type, wav2vec is better in predicting
prolongations.

Table 2 shows F1 scores for the random split case. The classification results are
much better for prolongations and sound and word repetitions for this case. Note
that while in frequency split case the maximum F1 score for prolongations is 0.28

Table 1 F1 score for stuttering classification for frequency split. (P, Prolongation; B, block;
SR, sound repetition; WR, word repetition; I, interjection; F, fluent; BM, baseline model; BSM,
baseline with stuttering classification head; BSSM, BSM with show classification head; BSSBM,
BSSM with binary classification head)

F1 Score

MFCC/wav2vec
Model P B SR WR I F
BM 0.11/0.08 0.04/0.00 0.06/0.03 0.08/0.13 0.19/0.15 0.69/0.74
BSM 0.28/0.17 0.23/0.04 0.16/0.13 0.13/0.12 0.38/0.20 0.77/0.71

BSSM 0.24/0.24 0.00/0.08 0.10/0.07 0.10/0.13 0.39/0.15 0.80/0.72
BSSBM 0.26/0.32 0.00/0.04 0.06/0.12 0.15/0.14 0.32/0.22 0.77/0.78
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Table 2 F1 score for stuttering classification for random split. (P, Prolongation; B, block; SR,
sound repetition; WR, word repetition; I, interjection; F, fluent; BM, baseline model; BSM,
baseline with stuttering classification head; BSSM, BSM with show classification head; BSSBM,
BSSM with binary classification head)

F1 Score

MFCC/wav2vec
Model P B SR WR I F
BM 0.19/0.19 0.04/0.04 0.09/0.21 0.06/0.16 0.15/0.18 0.69/0.74
BSM 0.34/0.43 0.17/0.04 0.19/0.27 0.19/0.19 0.37/0.24 0.77/0.74

BSSM 0.34/0.43 0.10/0.16 0.09/0.21 0.12/0.23 0.35/0.26 0.75/0.77
BSSBM 0.34/0.25 0.11/0.11 0.10/0.18 0.17/0.15 0.34/0.23 0.74/0.70

Table 3 Accuracy results for

Accuracy
?:;gi\gcc and wav2vec Model | MFCC |/ | wav2vec
BM 0.49 / 10.55
BSM 0.62 / 10.57
BSSM | 0.57 / 10.61
BSSBM | 0.57 /1052
Table 4 F1 score for binary F1-Score
classification MECC/wav2vec
Model Fluent Non-fluent
BM 0.66/0.73 | 0.43/0.49

BSM 0.77/0.73 | 0.51/0.51
BSSM | 0.74/0.76 | 0.52/0.51
BSSBM | 0.72/0.68 | 0.47/0.46

for all model and feature types, in the random split case, it improves up to 0.43.
Since the classification results for the random split are better, we will proceed with
the random split data in our further analysis. MFCC produces the best classification
results for all disfluency types when BSM model is used. For wav2vec, the best
results are obtained for the BSSM model. This is also true for accuracy results, as
shown in Table 3.

When the embeddings from the models are used to perform binary classification,
i.e., fluent versus all dysfluency types, the results are slightly better for MFCC
representations for both fluent and non-fluent types in MTL models, as shown in
Table 4. The STL model gives better results with wav2vec.

Table 5 shows the F1 scores when only the embeddings of dysfluent types
are classified. In this case, the fluent type was discarded. Again, we observe that
MFCC representations perform well in predicting the interjection type and wav2vec
representations are better at predicting prolongations. Sound and word repetitions
are better predicted with MFCC, and for block types, both are equally poor.

To visualize the embeddings learned by the models, we use the t-stochastic
neighborhood embedding technique (tSNE) introduced by van der Maaten and
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Table 5 F1 score for dysfluency type classification. (P, Prolongation; B, block; SR, sound
repetition; WR, word repetition; I, interjection; BM, baseline model; BSM, baseline with stuttering
classification head; BSSM, BSM with show classification head; BSSBM, BSSM with binary
classification head)

F1 Score

MFCC/wav2vec
Model P B SR WR I
BM 0.28/0.35 0.05/0.06 0.36/0.26 0.28/0.36 0.42/0.35
BSM 0.45/0.62 0.18/0.15 0.45/0.43 0.46/0.32 0.54/0.50
BSSM 0.43/0.55 0.19/0.23 0.24/0.24 0.48/0.41 0.61/0.49
BSSBM 0.48/0.39 0.15/0.12 0.24/0.43 0.43/0.28 0.60/0.45

(a) (b) (©) (d)

Fig. 4 tSNE results of the embeddings extracted for the training set from different models learnt
using MFCCs. (a) BM, (b) BSM, (¢) BSSM, (d) BSSBM

(a) (b) (© (d)

Fig. 5 tSNE results of the embeddings extracted for the training set from different models learnt
using wav2vecs. (a) BM, (b) BSM, (¢) BSSM, (d) BSSBM

Hinton [16]. The train set embeddings are reduced to two dimensions and are
colored according to their stuttering type. The embeddings learned for the training
data with MFCCs as feature representation are illustrated in Fig. 4. Observe that the
STL model (Fig. 4a) is not able to learn the stuttering categories. When the stuttering
classification head is included in the network, it begins to learn the embeddings that
represent different stuttering types (Fig.4b). However, as we increase the number
of auxiliary classification heads, the clusters start to merge due to the regularization
introduced by the extra classification heads (Fig. 4d).

The train set embeddings with wav2vec results are shown in Fig. 5. Observe that
in BSSBM model, the cluster boundaries start to fade. This is also clear form of
the classification results on training set given in Table 6. We can see a significant
performance decrease with the extra classification head, especially for wav2vec
results.
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Table 6 F1 score for stuttering classification of training set. (P, Prolongation; B, block; SR, sound
repetition; WR, word repetition; I, interjection; F, fluent; BM, baseline model; BSM, baseline with
stuttering classification head; BSSM, BSM with show classification head; BSSBM, BSSM with
binary classification head)

F1 Score

MFCC/wav2vec
Model P B SR WR 1 F
BM 0.60/0.61 0.50/0.48 0.45/0.53 0.55/0.57 0.63/0.66 0.71/0.79
BSM 0.79/0.71 0.63/0.52 0.60/0.63 0.61/0.58 0.78/0.65 0.81/0.80
BSSM 0.76/0.73 0.57/0.52 0.59/0.61 0.63/0.61 0.78/0.69 0.80/0.82
BSSBM 0.74/0.62 0.62/0.52 0.58/0.48 0.63/0.57 0.77/0.58 0.81/0.75
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Fig. 6 tSNE results of the embeddings extracted for the test set from different models learnt using
MEFCCs. (a) BM, (b) BSM, (¢) BSSM, (d) BSSBM. The observations are colored based on the
stuttering type
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Fig. 7 tSNE results of the embeddings extracted for the test set from different models learnt using
MFCCs. (a) BM, (b) BSM, (¢) BSSM, (d) BSSBM. The observations are colored based on the
show type

While for the training data the embeddings form clusters according to the
stuttering types, the same cannot be said for the test data. Observe the tSNE results
for the embeddings extracted for the test set shown in Fig. 6. No clusters can be
observed, just a magenta class, which represents the fluent class, covering all over
the space. However, if we color the observations in Fig. 6 according to the show
that they were taken from, then we can see some patterns of clustering as shown
in Fig 7. Somehow, the test data is greatly influenced by the show type rather than
the stuttering type. Seems like during training the data, our models also capture the
specifics of the shows, like gender of a speaker, music on the background, etc.

For comparison of our stuttering identification results, we refer to the results
presented by [20]. In this work, the authors investigate how multitask learning
(MTL) and adversarial learning (ADV) models perform on the stuttering detection
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Table 7 Comparison of stuttering classification results of our models with the models in [20].
(P, Prolongation; B, block; R, average of sound repetition and word Repetition; I, interjection;
F, fluent; MTL, multitask learning; ADV, adversarial learning; BSM, baseline with stuttering
classification head; BSSM, BSM with show classification head)

F1 Score

Model Representation P B R I F

MTL [20] MFCC 0.36 0.21 0.34 0.54 0.67
ADV [20] MEFCC 0.37 0.20 0.35 0.58 0.66
BSM MFCC 0.34 0.17 0.19 0.37 0.77
BSM wav2vec 0.43 0.04 0.23 0.24 0.74
BSSM MFCC 0.34 0.10 0.11 0.35 0.75
BSSM wav2vec 0.43 0.16 0.22 0.26 0.77

problem. Their models are evaluated on the SEP-28k dataset. Recall that in our
experiments, we use only a small fraction of the original dataset, as we included
only those clips for which all annotators agreed on the annotation. The work in
[20] used almost the entire dataset with some cleaning. The clips are represented
using MFCCs. Since the work combined sound repetitions with word repetitions
and considered them as a single repetition type, we report the average results for
these two under one repetition type. The results are given in Table 7. Our models,
built on a smaller dataset, perform better in classifying prolongations and fluent

types.

5 Discussion

The SEP-28k dataset, as discussed earlier, is a challenging dataset. It is highly
imbalanced, with more than 60% of the dataset consisting of fluent speech, while
the remainder is distributed among disfluent types. As suggested by Lea et al. [15],
interjections are the easiest type to recognize, which is also evident from our results.
Blocks are difficult to detect because the gasp for breath or pause is often inaudible
and may require visual accompaniment. Additionally, there are very few samples of
blocks. The results shown in Table 7 illustrate how challenging this type is. Sound
repetitions are also difficult to detect because syllables can vary in duration, count,
style, and articulation. However, since the percentage of speech with repetitions is
much higher than that of blocks, the identification results for repetitions are much
better.

Obviously, we need more labeled data to train models with high performance.
SEP-28k is not a small dataset. However, its annotations are unreliable for most of
the audio clips. The curators of SEP-28k [15] reported inter-annotator agreement
measurements for different disfluency types. The results show that word repetitions,
interjections, sound repetitions, and no disfluencies are more consistent (0.62, 0.57,
0.40, 0.39), while blocks and prolongations had only fair or slight agreement (0.25,
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0.11). This unreliability is also reflected in Table 7. Although the work in [20] used
almost the entire SEP-28k dataset, their performance results for block types are
not significantly better than ours. Furthermore, the identification of prolongations is
better with our models.

6 Summary and Conclusion

In this work, we performed our experiments on a subset of the SEP-28k dataset
and compared the predictive powers of MFCC and wav2vec feature representations.
The performance of both feature representations was observed to be almost the
same, with MFCC having a slight edge. We found that wav2vec performs better on
prolongations, sound repetitions, and word repetitions. While wav2vec generally is
slightly inferior to MFCC, it also has the disadvantage of being computationally
expensive. Its large size requires more memory and makes it slower to train.
Therefore, MFCC appears to be a better option.

We also observed that although our models have learned embeddings to represent
different stuttering types, they do not generalize well. When visualizing the test data
embeddings, no distinct clusters according to stuttering type are apparent. However,
when we color the visualization according to show types, some groups become
noticeable. We believe this issue arises from additional data in the audio clips, such
as the speaker’s gender and background music. Therefore, techniques to suppress
metadata in the dataset should be developed.

Competing Interests This study was funded by TEDU BAP Grant No. T-22-B2010-90108.
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Active Learning for Reducing Gender )
Gaps in Undergraduate Computing and Qe
Data Science

Philip S. Chodrow ), Harlin Lee (%, Natalie Lao, and Vincent Monardo

1 Introduction

This report describes the experience of two instructors (Philip Chodrow and Harlin
Lee, the first and second authors) of the course “PIC 16A: Python Programming
with Applications” at the University of California, Los Angeles, in the period
20202022, as well as our efforts to measure and assess the success of our course
design. We joined UCLA as Hedrick Visiting Assistant Adjunct Professors of
Mathematics, Chodrow in 2020 and Lee in 2021. For both of us, this was our
first academic position after completing our PhDs, and PIC 16A was our first
opportunity to teach a course as instructor of record. The Program in Computing
(PIC) of the UCLA Department of Mathematics offers a range of courses in applied
computing for students who are not majoring in computer science or engineering
disciplines. Students who take a prescribed selection of PIC courses, as well as
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several computing-oriented courses in their major, can add a “Specialization in
Computing” to their bachelor’s degree. At the time in which Chodrow and Lee
taught in the PIC program, common majors of enrolled students included cognitive
science, neuroscience, economics, applied mathematics, and biology.

PIC 16A: Python Programming with Applications requires only a single pre-
requisite course in introductory programming in C 4 +. Because of this, PIC 16A
is a very common choice for PIC students to take as a second or third course in
computing. Due to enrollment pressures, the majority of students in PIC 16A during
the period in which we taught it were juniors and seniors. PIC 16A has been (and
continues to be) offered many times by many instructors at UCLA. Offerings of
the course prior to Chodrow’s arrival in 2020 primarily focused on Python coding
constructs, including relatively little content related to data science or machine
learning.

In preparation for his first offering, Chodrow administered an informal entrance
survey approximately one week before the beginning of the fall 2020 term. This
entrance survey indicated significant discomfort and discouragement with program-
ming among many students, with this discomfort appearing especially prevalent
among female students. Chodrow’s initial design of PIC 16A therefore reflected
an explicit ambition to increase overall confidence and interest in computing and to
narrow gender gaps along these axes. Chodrow approached this ambition through
both content and format decisions. In choosing course content, he hypothesized
that reorienting much of the course around data science and machine learning
would connect more effectively to student interests and help hesitant students gain
confidence. In the course format, Chodrow decided to emphasize active learning,
project-based activities, and learning communities of practice, all with the aspiration
of promoting growth mindset.

Chodrow offered PIC 16A a total of four times across four UCLA 10-week
terms: Fall 202X, Winter 202X, and Spring 202X. In winter 2022, Lee designed
a version of PIC 16A, which adopted several of Chodrow’s content choices and
format interventions while also implementing changes to the course format (Fig. 1).
This report describes our experience teaching this course, as well as what we
learned from a series of entrance and exit surveys, which we administered in
three different terms. Chodrow administered surveys in winter 2021 (W21) and
spring 2021 (S21), while Lee administered surveys in fall 2022 (F22). In Sect. 2
we describe our curriculum, our format decisions, and their rationale. We also

Chodrow teaches PIC 16A. Lee teaches PIC 16A.
f 1 — T~
F20 w21 s21 Fo1 | w22 | s22 || F22 |
N |
t
Chodrow administers surveys. Lee administers survey.

Fig. 1 Timeline of PIC 16A offerings by Chodrow and Lee. Three boxes colored with dark blue
and dark green are the three course offerings discussed in this chapter. Lee did not teach PIC 16A
in S22
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note (Sect.2.3) the most important differences between Chodrow’s and Lee’s
respective implementations. In Sect. 3, we describe the survey instruments that we
administered in each term, the results of which we describe in Sect. 4. We close in
Sect. 5 with reflections on our findings and how our experience teaching PIC 16A
continues to inform our pedagogy.

2 Course Design

The course Program in Computing: Python with Applications I (PIC 16A) is a
quarter-long (10-week) course in Python programming and data science at the
University of California, Los Angeles (UCLA). UCLA is a large, flagship university
in the public University of California system. As of fall 2024, 22% of UCLA
undergraduate students are Hispanic, 6.5% are Black, and 35.1% are Asian or
Pacific Islander.! Women comprise 60% of the undergraduate student body.

2.1 Content

PIC 16A has a single prerequisite: one course in C4++ programming, in which
students are introduced to fundamental programming constructs like variables,
data types, control flow, functions, and object-oriented programming. In the first
3-4 weeks of the course, PIC 16A reintroduces and reinforces these concepts
in Python. The remainder of the course is primarily dedicated to data science
applications in Python. The core sequence includes numerical programming, data
visualization, tabular data, exploratory data analysis, and machine learning. Under
the broad heading of machine learning, students studied data acquisition, data
cleaning, feature selection, cross-validation, model training, model evaluation, and
basic auditing. The primary software for this course sequence included the numpy,
matplotlib, pandas, and scikit-learn packages for Python (Table 1).

A major feature of the data science sequence is a sustained series of lectures
and activities using the Palmer Penguins dataset [7]. Through this series, students
clean the data, visualize various features, implement several approaches to feature
selection, apply classification and clustering algorithms, and assess the performance
of their models using confusion matrices and decision regions. This series also
provides a smooth segue into a cumulative project, which serves as the primary
summative assessment for the course. In Chodrow’s W21 and S21 offerings,
this cumulative project involved further development and synthesis of a complete

! Figures from https://www.ucla.edu/about/facts-and-figures as accessed on September 5, 2024.


https://www.ucla.edu/about/facts-and-figures
https://www.ucla.edu/about/facts-and-figures
https://www.ucla.edu/about/facts-and-figures
https://www.ucla.edu/about/facts-and-figures
https://www.ucla.edu/about/facts-and-figures
https://www.ucla.edu/about/facts-and-figures
https://www.ucla.edu/about/facts-and-figures
https://www.ucla.edu/about/facts-and-figures

320 P. S. Chodrow et al.

Table 1 PIC 16A data science and machine learning modules in weeks 4 through 9. First three
weeks cover standard programming concepts including object-oriented programming

Data science topics Data Tools
File I/O Tabular, Text urllib, csv
Matrix and array operation Numerical numpy
Image processing Image numpy
Data visualization Tabular matplotlib
Project management Code git, command line
Data wrangling Tabular pandas
Machine learning
Overview Tabular
Supervised learning Tabular, Image scikit-learn
Overfitting Tabular, Numerical
Clustering Tabular
ML Ethics

analysis for the Palmer Penguins dataset, while in Lee’s F22 offering, the cumulative
project was open and proposed by the students. Lee’s project assignment also
encouraged students to learn about best practices for code management, collabo-
ration, and communication via git and GitHub.

2.2 Organization
2.2.1 Basics

The weekly course format included five contact hours: three 50-minute Lecture
periods and two 50-minute Discussion (lab) periods.2 In class and on assignments,
students interacted with Python via the Jupyter Notebook app provided by the
Anaconda Python distribution. Videoconferencing via Zoom was used for many
remote Lecture periods and remote office hours, depending on UCLA policy at the
time. Typical sections of PIC 16A contained 50-70 students and were staffed by one
instructor and either one or two graduate teaching assistants (TAs).

Although our emphasis here is not on remote learning methodologies, it should
be noted that initial development of this course offering took place during the fall
term of 2020 at the height of the COVID-19 pandemic.

2Qur capitalization convention is that Lecture and Discussion refer to specific weekly class
periods, while the uncapitalized “lecture” describes any content presentation by the instructor.



Active Learning for Reducing Gender Gaps 321

2.2.2 Learning Communities of Practice

PIC 16A was initially developed for an online environment during the height
of the COVID-19 pandemic. Forming a cohesive learning community [1] for
a large class via remote instruction appeared challenging. In order to promote
student belonging and form functional support networks, the course design instead
encouraged small learning communities of practice [20]. These communities of
practice were groups of three, which worked together on Discussion activities as
described below. Chodrow assigned students to groups based on their responses
in an informal non-anonymous pre-course entrance survey, which described their
interests and confidence in computing as well as their prior experience.’ Based on
advice from a more experienced colleague, Chodrow tried to create groups that
had similar interests (e.g., data science, software development) but varying levels
of confidence or experience; the intention was that more confident students would,
with structure, support the experience of less confident students. Chodrow also made
an effort to avoid groups in which a single female student would work with two
male students; this was aimed against the risk of men dominating a conversation
to the exclusion of the single female group member. Groups therefore contained
either zero, two, or three female students, but never exactly one. On the other hand,
Lee’s groups were assigned randomly. Groups were persistent throughout the term
except in rare cases of conflict or strong dysfunction between group members. These
groups worked twice weekly on Discussion activities and also worked together on
an end-of-semester data science project in Chodrow’s sections.

2.2.3 Active Learning

Active learning—as opposed to traditional lecture-based formats—is known to
improve student performance and narrow achievement gaps [2, 6, 12, 19]. For this
reason, our design of PIC 16A emphasizes the Discussion period, rather than the
Lecture period, as centers of the student learning experience. In a typical Discussion
section, students worked in groups of three on a scaffolded Jupyter notebook. This
notebook usually began with several exercises that helped students reinforce their
learning at the “Remember” and “Understand” stages of Bloom’s taxonomy [11].
Progressive exercises in the notebook encouraged students to the higher “Apply”
and “Analyze” stages. See Fig. 2 for an example.

During the Discussion period, students were typically supported by both graduate
teaching assistants (TAs) and undergraduate learning assistants (LAs). LAs are
undergraduate students who receive training in inclusive pedagogy through UCLA’s
Center for Education Innovation and Learning in the Sciences. Most LAs had taken a
prior offering of PIC 16A. LAs act as near-peer mentors [ 18], with their primary role
being to encourage equitable participation among all group members and to help

3 This survey was distinct from the more formal, anonymous entrance survey described in Sect. 3.
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[Discussion 5: Prime Numbers ) After lecture on functions
Group Members and Roles

« Group Member 1 (Role) Same groups of 3

« Group Member 2 (Role)

* o e (Rl for the quarter

Introduction

In this Discussion activity, our focus will be on writing some efficient Python functions for checking whether numbers are prime.

§1. Test Primes

First, write a function called is_prime(n) that tests whether an integer n is prime. Do so by checking whether i divides n for every positive integer i < n.
Remember that @ and 1 are not prime. You should return True if the input is prime, and False otherwise.

Note: i divides n iff n % i == 0.

‘Check that your function works by checking 9973 (prime) and 9977 (not prime).

Solve small

# write is_prime(n) here
problems

§2. Test Primes

{'You may remember from math class that it's not necessary to check allnumbers i < n to tell whether n is prime. In fact, it suffices to check only numbers i such
thati < \/F (why?). Write a new function called fast_is_prime(n) that takes advantage of this fact.

Check your function using the same tests as above. Gradually increasing in

 Hint: You can get square root of 2 by running the folowing code: com pIeX|ty

Fig. 2 Example of active learning employed in PIC 16A Discussions. Students work on work-
sheets like this in small groups, which builds learning communities that are especially critical in
large institutions post-pandemic

stuck groups find their way to the next part of the assignment. The instructor was
not usually present during Discussion sections, although in some terms, Chodrow
“swapped” with his TA and managed one of the two weekly Discussion periods,
while the TA managed one of the optional Lecture periods.

Within each three-person group, students took on one of three roles inspired
by the pair-programming paradigm. As a learning methodology, pair-programming
may offer modest benefits for student learning and may offer a particular learning
benefit for female students [8]. For the three-person groups of PIC 16A, three
roles were used: a Driver who writes code and makes low-level implementation
decisions, a Proposer who guides the Driver at a high level, and a Reviewer who
gives feedback on the solutions that the Proposer and Driver have crafted. Roles
rotated each Discussion day, ensuring that each group member inhabited each
role with approximately equal frequency. This put a lower bound on the extent to
which students could withhold participation in their groups. Attendance in these
Discussion periods was mandatory; failure to attend would result in failure to get
credit for the Discussion assignment unless the student received explicit permission
from the instructor to complete the assignment independently in response to an
emergency.

Lecture delivery also emphasized student activity and engagement. In the W21
and S21 offerings of PIC 16A described here, lecture content was delivered via pre-
recorded videos, which students watched asynchronously, outside of the scheduled
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Lecture period. Students could then choose whether to attend* scheduled Lecture
periods, which typically included a mix of question-and-answer, supplementary
topics, and support on current assignments.

In the F22 offering, lectures were delivered in-person during scheduled Lecture
periods. In all cases, the most common lecture format was live coding in a notebook.
Students were encouraged to download the notebook prior to class and code along
with the instructor throughout the Lecture period in order to build experience and
muscle memory writing common code constructs. The lectures were recorded and
uploaded to a class Web site afterward. We note that in both versions, lecture
attendance was not mandatory.

2.2.4 Nurturing Growth Mindset

Some students described themselves using fixed-mindset language in the initial
entrance survey, ascribing to themselves intrinsically less ability to excel at pro-
gramming when compared to their peers. Growth mindset, in which students view
their ability to achieve as malleable and able to be improved, is the opposite of fixed
mindset [5]. Growth mindset is known to promote learning, especially among lower-
achieving students [21]. Several studies have suggested that project-based learning
experiences, in which students grapple with multi-part challenges motivated by real-
world problems, can promote growth mindset [9, 17], although a formal causal
link remains elusive [10]. In order to nurture growth mindset, most substantive
assignments from the course constitute scaffolded mini-projects, with a satisfying
product or insight waiting for the student upon completion (Table 2).

In one example of a Discussion activity from the Palmer Penguins sequence,
students begin by writing a function to efficiently compute aggregated summary

Table 2 Example topics Weeks | Topic Assignment examples
from homework and
Discussi PP 1-3 Data structures Markov language models
iscussion activities in :
different stages of PIC 16A Iteration PageRank
4-6 Array programming | Image manipulation
Data wrangling Data visualization
7-10 | Machine learning Logistic regression
Impact and bias Reproducing [14]

4 Chodrow was explicit with students that the primary purpose of the scheduled Lecture period
was to provide a space for students to ask questions and receive support. As a result, many students
who were confident in the material or who did not desire additional course engagement chose
not to attend these sessions; typical attendance rates were around 20%—40%. This approach in
part reflected departmental policy, which prohibited instructors from requiring attendance at both
Lecture and Discussion sections. Chodrow’s choice to prioritize the active learning Discussion
sections therefore necessarily de-emphasized attendance during scheduled Lecture.
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statistics from the Palmer penguins data using the pandas package. In the following
part, they use this function to explore the data and search for features that seem to
distinguish different species of penguins. Next, they use findings from these tables to
manually implement a shallow, axis-aligned decision tree using if-statements. They
then evaluate this decision tree against the data. By the time students complete the
activity, they have used data manipulation and basic control flow in order to explore
the idea of prediction. This activity leads to an upcoming introduction of machine
learning algorithms that automate the process of fitting predictors to data.

2.3 Implementation Differences

The implementations of the PIC 16A model by Chodrow (W21 and S21) and by
Lee (F22) shared the above common features. There were, however, important
differences in these implementations as well. Three such differences were especially
large and offer important context for our findings in the following section.

2.3.1 Delivery

Chodrow’s offerings of PIC 16A in W21 and S21 were fully remote, with all course
activities taking place in Zoom meetings. In contrast, Lee’s offering in F22 was fully
in-person, with no remote instruction per pandemic-related departmental policy.

In Chodrow’s offerings, all students completed the same cumulative project using
Palmer Penguins, while Lee’s students were permitted to choose their own project
topic. The Palmer Penguins project was still provided as an option, and students
with lower confidence who sought more guidance and scaffolding were encouraged
to take that route. While it was not required that the projects had to be about data
science and machine learning, fifteen out of seventeen student groups chose to
do so. Of these fifteen, seven groups worked on classification, three on clustering
(including two on Palmer Penguins), three on regression, and two on data analysis
and visualization. The remaining two worked on building a scientific tool and an
interactive game. Based on feedback from her W22 section students (not included
in this study), Lee’s students in F22 were also allowed to choose their own project
partners as opposed to working with their discussion groups.

2.3.2 Disruption

The W21 and S21 offerings by Chodrow took place during the height of the COVID-
19 pandemic in the USA. Although this was a difficult time for students and
faculty alike, these offerings were not significantly disrupted beyond the necessity
of ongoing remote instruction. The class was largely able to follow its course as
intended by the instructor. In contrast, Lee’s F22 offering was disrupted by a strike
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among graduate students across the UC system demanding a living wage. Because
graduate TAs were the primary staffing for Discussion sections, the last month of
Discussion sections was cancelled. The cancelled sections included many of the
activities in the data science sequence.

2.3.3 Instructor Identity

Our expressed identities may also have played roles in student perceptions of the
course. Chodrow is a white man whose first language is English, while Lee is a
Korean woman whose first language is Korean and who speaks English fluently as
a second language. Student evaluations of teaching (SETs) are known to show bias
against female instructors [3], with some additional evidence of intersectional bias
against women of color [4]. Although the questions in our entrance and exit surveys
are not SETs as they do not ask students to evaluate teaching, these questions do
ask students to reflect on the depth of their learning and their experience in various
aspects of the course. It is possible that student biases in response to the different
identities of the instructors may have played a role in their responses.

3 Methods

As described above, we designed PIC 16A with the hypothesis that social, active
learning and project-based learning would help increase confidence and interest
in computing while reducing gender gaps. In this section, we describe how we
assessed the effectiveness of our designs using entrance and exit surveys that we
collected during the course. Students completed entrance surveys during the first
two weeks of each course and completed exit surveys during the final week of
classes and the final exam period. On the survey, we asked questions related to
comfort social learning environments; confidence with respect to programming;
and interest in programming and machine learning. Students were incentivized to
complete these surveys through assignments that conferred participation credit or
extra credit, typically on the order of 0.25% toward their final average in the course.
We emphasize that the initial purpose of these surveys was to inform future course
improvement, rather than to perform formal evaluation or produce publishable work.
We decided to write this article using this data after the described course offerings
were complete. We especially note that we do not support the practice of using
grades to incentivize student participation in research studies, and would not have
done so had we planned to write this report from the outset. Additionally, because
the surveys were initially intended to inform course improvement, the questions
were designed by each instructor primarily in response to their pedagogical interests.
As aresult, the survey questions are similar but not identical across the three course
offerings. Our data collection was retroactively considered by Institutional Review
Boards at our present institutions (Middlebury College and UNC Chapel Hill),
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Table 3 Counts of student respondents by gender to each entrance and exit survey in the three
studied course offerings of PIC 16A. A small number of self-identified nonbinary students are not
shown due to identifiability concerns

Term Instructor Gender Entrance Exit
w21 Chodrow F 35 31
M 36 32
S21 Chodrow F 31 25
M 25 17
F22 Lee F 34 22
M 29 17

which both determined that the publication of this report with the collected data did
not constitute human subjects research and therefore did not require IRB approval.

Our surveys yielded response rates ranging between 80% and 95%, with
generally lower response rates in exit surveys. Table 3 shows the number of students
responding to each survey. Although small numbers of nonbinary students also
participated in class and took the entrance and exit surveys, we exclude them from
reporting due to identifiability concerns.

We collected both entrance and exit surveys through UCLA’s learning manage-
ment system (LMS). In Chodrow’s W21 and S21 offerings, the LMS used was a
Moodle-based app called Common Collaborative Learning Environment (CCLE).
In W21 and S21, students were asked to respond to a series of statements on a four-
point scale: “1: Strongly Disagree”; “2: Disagree”; “3: Agree”; and “4: Strongly
Agree.” These statements related to students’ interest, comfort, and confidence in
programming. Full text of each statement is displayed in Tables 4, 5 and 6. For
the purposes of analysis, both “3: Agree,” and “4: Strongly Agree,” responses are
considered to indicate agreement with prompts.

In Lee’s F22 offering, the LMS used was Canvas (CCLE was decommissioned
during the 2022-2023 academic year). Students were asked to respond to a series
of prompts on a 5-point scale. Some prompts were statements, where students
were asked to rate their level of agreement with the statement, for example, “1:
Disagree a lot”; “2: Disagree a little”; “3: Neither agree nor disagree”; “4: Agree
a little”; and “5: Agree a lot.” Others were questions, where students were asked
to rate their level of interest, ranging from “1: Not at all interested”; “2: Not very
interested”; “3: Neutral”’; “4: Somewhat interested””; and “5: Very interested.” Lastly,
when asked about the effectiveness of having learning partners, the choices were “1:
Hindered a lot”; “2: Hindered a little”; “3: Neither helped nor hindered”; “4: Helped
a little”; and “5: Helped a lot.” Unlike in the previous offerings, this survey round
included neutral responses. In analysis, only responses at levels “4” and “5” were
considered to demonstrate agreement or interest. Lee’s design also included several
prompts, posed only in the exit survey, related to confidence and student learning
from working with partners. The prompts for each offering are shown in Tables 4, 5,
and 6 in Sect. 4.
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4 Results

Table 4 summarizes survey findings for Chodrow’s W21 and S21 sections. We
show the proportion of responses indicating agreement (“3, Agree,” or “4, Strongly
Agree”) for each question, term, survey round, and gender. There are 14 questions
asked in both terms and two additional questions that were asked only in S21.
Segmenting by gender and term, we have a total of 60 pairs of entrance and exit
survey responses. To test for the significance of changes in agreement rates, we
used a Mann-Whitney U test, a nonparametric test for difference of distributions.
We did two sets of such tests. In the first set, we tested the null hypothesis that
the distribution of responses in the exit survey was the same as that of the entrance
survey, with bolded proportions indicating that this hypothesis was rejected.” Of
the 60 pairs of entrance and exit surveys, 32 showed a significant difference in
the distribution of responses at the 95% confidence level. All of these significant
differences show increased rates of agreement from entrance to exit surveys. Most
of the significant changes relate confidence in programming and computational
thinking and comfort in classroom settings, with fewer significant changes related
to career confidence or connections between programming and other interests. The
smaller number of changes in interests may be due in part to the already-high rates
of agreement on these questions on the entrance survey.

We additionally tested the null hypothesis that the distribution of responses of
female and male students were the same, on each of the entrance and exit surveys
separately. Again, this was done using the Mann-Whitney U test. We considered
a gender gap to be present on a given question if the null hypothesis is rejected.
We mark the presence of a gap on the entrance and exit surveys in the final two
columns of Table 4. We consider a gap to have closed if a significant difference on
the entrance survey is no longer significant on the exit survey; we consider a gap
to have opened if a significant difference on the exit survey is not present on the
entrance survey; and we consider a gap to have persisted if a significant difference
is present on both surveys. Of the 30 total questions across both terms, we observed
six gaps that closed, 3 gaps that opened, and 3 gaps that persisted. In each of the
gaps that opened, agreement rates increased among both groups, with an increase
for male students that left their agreement rates at 94% or above.

Table 5 shows the same hypothesis-testing approach for Lee’s F22 offering.
Eight questions were asked at both entrance and exit surveys, leading to 16 pairs of
responses to be tested via the Mann-Whitney U test. One of them rejected the null
hypothesis that the entrance and exit survey responses have the same distributions
at p < 0.05. This supports the alternative hypothesis that the female students’
self-perceived, “ability to explain machine learning and data science concepts to
[...] peers” have changed after the quarter. We repeat the gender gap testing on
F22 responses as well. We observed gender gaps in four out of eight questions at

5 We emphasize that, although an agreement rate is shown, the hypothesis test is performed on the
full, uncompressed distribution of responses.
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Table 4 Summary hypothesis testing for W21 and S21. We show the proportion of students
who agreed (3, “Agree,” or 4, “Strongly Agree”) on each question. Bold values in the first
two “Exit” columns indicate a statistically significant difference in the distribution of responses
between entrance and exit surveys at the 95% confidence level among students of the specified
gender. We also show significance levels for difference in distribution on the entrance and exit
surveys. A 1 indicates the presence of a statistically significant gap. A gender gap has closed if a
significant difference on the entrance survey is no longer significant on the exit survey. The final
two questions were asked only in S21

Female Male Gap
Question Term | Entrance | Exit | Entrance | Exit Entrance | Exit
I usually feel comfortable W21 | 46% 90% | 69% 91%
asking questions in class. S21 | 29% %% | 56% 949% |1
I usually feel comfortable W21 | 66% 97% | 69% 91%
attending office hours. S21 | 65% 100% | 72% 94%
I usually feel comfortable W21 | 66% 94% | 75% 97 %

asking for help from my peers. |21 | 68% 88% | 72% 949%
I usually feel comfortable when | W21 | 54% 94% | 81% 100% | 1

explaining my thought process | S21 | 52% 76% | 76% 24% |1 1
to others.

I usually feel comfortable W21 | 71% 94% | 72% 94 %

working in groups. S21 | 58% 88% | 72% 88%

I usually feel comfortable W21 | 63% 97% | 86% 97 %

writing about how my code S21 | 74% 84% | 76% 94% 1
works.

Other people can learn from W21 80 % 90% | 83% 97 %

how T approach problems. S21 |71% 76% |80 % 94% |1 1
I can usually understand what W21 | 51% 90% | 69% 94% |1

task a program achieves by S21 | 61% 100% | 76% 100 %

reading the code.

Computer programming is fun. | W21 | 86% 97% | 89% 100 %
S21 | 74% 92% | 88% 88%

I can see connections between | W21 | 69% 87% | 92% 94% |1

programming and my hobbies. |§21 |71% 76% | 88% 949%

I can see connections between | W21 | 91% 100% | 94% 100% |1

programming and my academic |S21 | 97% 9%6% | 96% 88%

interests.

I can see connections between | W21 | 89% 97% | 97% 97% |1

programming and my long-term | S21 | 87% 80 % |92% 94%

career goals.

If I wanted to, I could W21 |60 % 81% | 83% 88% |1 1

eventually have a career that S21 | 77% 2% | 84% 82%

involved programming.

If I wanted to, I could eventually | W21 | 66% 87% | 83% 94% 1
have a career that involved data | S21 |81% 2% | 92% 88%
science or machine learning.

(continued)
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Table 4 (continued)

Question Term

I can often improve code by | S21
removing inefficiencies
redundancies.

I am able to solve problems | S21
that interest me using
programming.

Female Male
Entrance | Exit | Entrance
58% 84% | 48%
39% 68% | 60 %

Exit
88 %

94 %

329

Gap
Entrance | Exit

Table S Summary hypothesis testing for F22. We show the proportion of students who agreed
(4, “Agree/Somewhat interested,” or 5, “Strongly Agree/Very interested”) on each question
for display purposes only. Bold values in the first two “Exit” columns indicate a statistically
significant difference in the distribution of responses between entrance and exit surveys at the
95% confidence level among students of the specified gender. We also show significance levels
for difference in distribution on the entrance and exit surveys. A 1 indicates the presence of a
statistically significant gap. A gender gap has closed if a significant difference on the entrance
survey is no longer significant on the exit survey

Question

How interested are you in machine
learning and data science from a
career/work perspective?

How interested are you in machine
learning and data science from a
personal/hobby perspective?

How interested are you in
understanding machine learning
and data science theory?

I have the ability to explain
machine learning and data science
concepts to my peers.

I have the ability to implement
machine learning and data science
projects.

I have the ability to learn machine
learning and data science concepts.
I like machine learning and data
science.

I think machine learning and data
science is interesting.

Term
F22

F22

F22

F22

F22

F22

F22

F22

Female

Entrance | Exit

26%

24%

15%

3%

18%

18%

24%

41%

Male
24% | 45%
31% | 45%
10 % | 41%
14% | 5%
10 % | 27%
28% | 64%
17% | 41%
62% | 68%

Entrance | Exit

47%

29%

29%

35%

35%

53%

50 %

1%

Gap
Entrance | Exit
1

1

1
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Table 6 Exit only questions for F22. We show the proportion of students who agreed—4,
“Agree/Helped a little,” or 5 “Strongly Agree/Helped a lot”—on each question

Female | Male | Both
Question Term | Exit Exit | Exit

How would you describe your final project partners’ impacton | F22 | 93% 80% | 88%
your learning?

During discussions, how would you generally describe your F22 | 96% 88% | 93%
partners’ impact on your learning?

I will be able to complete a machine learning or data science F22 | 67% 69% | 67%
project (of a similar level and scale to projects from this class)

on my own.

I am proud of what I was able to accomplish in my final project. |F22 | 81% 81% | 81%
I feel that I was successful in this class. F22 | 89% 63% | 79%

entrance surveys, all of which closed at exit surveys. These four questions were
about the students’ interest in machine learning and data science and their self-
perceived ability to learn related concepts.

Several questions were asked only in the exit survey (Table 6). These questions
asked students about their confidence and about the effectiveness of partners in
supporting their learning. Four out of five exit-only prompts elicited stronger
positive response from female students than male students. The greatest observed
difference between male and female students on exit-only prompts was in response
to the prompt, “I feel that I was successful in this class.”

The decrease in agreement rates for the career-oriented confidence questions in
S21 and a few interest questions in F22 for male students is a concerning observation
about which we regrettably do not have follow-up data.

5 Discussion

Our quantitative results show mixed evidence regarding the effectiveness of our
interventions with respect to our goal of reducing gender gaps in data science and
computing. We observed a number of closed or narrowed gender gaps along axes
of intellectual confidence, interest, and comfort in a social classroom environment.
There were different patterns across the sections; Chodrow’s W21 section tended to
have greater improvements for female students than did his S21 section, resulting in
more closed gaps. Lee’s F22 section showed several gender gaps closing, although
in several cases this was due to a decrease in interest or enthusiasm among male
students (who also tended to feel that they were less successful in the class than
their female peers). As noted in Sect. 2.3, this offering was severely disrupted by a
graduate student strike, resulting in the cancellation of many Discussion activities in
the section of the course focusing on data science techniques. We hypothesize that
this disruption contributed to reduced interest and enthusiasm among this section.
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Furthermore, as alluded to in Sect. 2.3, the difference in instructor identities could
have been a confounding variable as well.

We take our findings to reflect partial success toward the overall course aim
of reducing gender gaps in undergraduate data science and computing, especially
relating to intellectual confidence, interest, and comfort in social classroom envi-
ronments. We additionally hypothesize that these findings partially reflect the
project-based Discussion and homework activities, in which students repeatedly
experience the feeling of achieving a meaningful, satisfying task through their
programming efforts.

Analytical Limitations

We also acknowledge several limitations to our analysis. The lack of a comparison
group makes it difficult to rule out alternative mechanisms that may promote student
comfort, including natural acclimatization during the course, instructor persona,
and current events such as the COVID-19 pandemic, the US election, or ongoing
protests concerning police violence against Black Americans. We also note that our
analysis does not include any consideration of student performance in the class; it is
possible that students who built high levels of confidence and interest in the course
may not have in fact demonstrated the greatest learning of the course material. A
related consideration is course attendance. Chodrow’s offerings especially allowed
students to choose whether or not to attend scheduled Lecture periods in order to
access additional practice, content, and support. Chodrow did not track attendance
during the scheduled lecture periods. Although attendance at the scheduled Lecture
periods may be reasonably expected to impact student attitude and performance,
we unfortunately do not have data with which to support this. As noted previously,
differences in delivery model, course environment, and instructor identity may have
contributed to differences in results between W21 and S21 on the one hand and F22
on the other.

Another important caveat in our analysis relates to students who chose to drop
PIC 16A. As shown in Table 3, there were fewer exit survey respondents than
entrance survey respondents in all sections, reflecting in part the handful of students
who drop the course after the entrance survey is conducted. If, as seems likely,
the population of students who dropped tended to have lower rates of confidence,
interest, or comfort with the course design, then our descriptions of entrance-to-exit
survey improvements may be artificially inflated.

Reflections and Future Work
We take our findings to offer tentative support to the idea the interventions we
implemented in PIC 16A can help increase student comfort in social learning
environments, intellectual confidence in programming, and interest in data science
and computing while (in some cases) narrowing gender gaps along these axes.
Especially in light of the limitations described above, we consider this evidence
to be promising but ultimately inconclusive.

As noted above, PIC 16A was for each of us our very first opportunity to
teach as an instructor of record. At the time we designed the course, neither of
us were experienced in course design, active learning techniques, or evidence-based
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pedagogy broadly construed. The design we describe reflects our well-intentioned
hypotheses about how to implement active, project-based, and social learning
experiences for students, but there is much of which we were not aware. For
example, in the time that we designed PIC 16A, we were not aware of the Peer
Instruction protocol [13] or its successful deployment in many computing courses
[16]. As another important point, we note a specific aspect that was missing from our
efforts to encourage growth mindset. As emphasized in [15], an important catalyst
for growth mindset is metacognition, the reflection of students on the process of their
own learning. Our course design offered students a few opportunities to reflect on
their learning, including several free-response questions on mid-semester surveys
and a group contributions statement as part of final projects. With the benefit of
hindsight and experience, however, we also feel that we missed several opportunities
to encourage a sustained practice of metacognition as part of our course designs. It
would have been especially efficient to implement structured reflective writing as
part of the lab submission process, which we largely did not do.

Since our time teaching PIC 16A, we have moved on to different institutions in
which we continue to grow as instructors. Several of the core ideas from our design
of PIC 16A live on in our pedagogical practice.

Chodrow I am now a faculty in computer science at Middlebury College, a
selective small liberal arts school in Vermont. My teaching portfolio includes
introductory discrete mathematics, machine learning, and network science. My
encouraging experience with PIC 16A informed many of my course designs at
Middlebury. My offering of introduction to computing emphasizes collaborative
and active group work, including both a weekly lab and one day a week of in-
class practice time. My offering of discrete mathematics is fully flipped. This course
also includes a weekly lab that emphasizes applications. This course emphasizes
metacognition through standards-based learning, reflection prompts on lab assign-
ments, and a structured revision process for assignments. My offering of machine
learning is fully project-based and also emphasizes interactive computing in Jupyter
notebooks. This course also emphasizes reflection through writing prompts at
regular intervals in the course, as well as a portfolio-based assessment process.
Because I am offering many of these courses for the first time at the time of writing,
I haven’t yet administered surveys for these courses of the kind I administered for
PIC 16A. That said, my interest in data-informed course design remains strong. [ am
especially interested in incorporating discussion of the social impacts of computing
technologies into his classrooms and in studying whether such discussions are
experienced differently by students with different identities.

Lee Since 2023, I have been a faculty at the University of North Carolina at Chapel
Hill, School of Data Science and Society. I am teaching a large undergraduate
class on introduction to data science, which assumes no prerequisites in math or
programming beyond high school algebra. Based on the positive feedback from
PIC 16A, I have adapted the weekly format (i.e., in-person Lectures + group-based
Discussions) and final group project to this brand-new course. This class emphasizes
statistics and non-technical aspects of data science (e.g., data storytelling, data life
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cycle) more compared to PIC 16A, but we make best effort to still teach those
concepts using active learning and project-based learning. At the time of writing
this reflection, this course is being offered for the first time, so it has a lot of room
for improvement, but I was able to start from a solid baseline. I am grateful for the
UCLA colleagues, students, TAs, and LAs who made the PIC 16A experience a
relative success.
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1 Introduction

The kinds of problems mathematics and data science can be used to solve are
extremely varied, running the gamut from theoretical with no foreseen applications
to those that are immediately applicable to important real-world phenomena like
climate change, epidemiology, and social networks. There is a rapidly growing body
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of work using tools from the mathematical sciences to analyze the mathematical
sciences itself that has recently been described as the “mathematics of mathematics”
or “MetaMath” [6]. This term was chosen as an allusion to the broader field of
“science of science” [11] or “SciSci” that uses scientific and mathematical tools to
analyze science as a whole as well as its individual disciplines.

In this chapter, we present a contribution to the mathematics of mathematics to
introduce readers to the kinds of questions that can be asked and the types of tools
and techniques that can be used in the emerging MetaMath field. We are inspired
by the work of Wapman, Zhang, Larremore, and Clauset [37] published in Nature
in 2022 that quantified hierarchy in faculty hiring and retention in a wide array
of academic disciplines in the United States by analyzing a very large dataset of
nearly 300,000 faculty members in over 10,000 departments at almost 400 PhD-
granting institutions from 2011 to 2020. The research we present here builds on and
leverages the ideas and analyses presented in Wapman et al. [37] but focuses on
specific disciplines in the mathematical sciences that are available in their dataset
[36], namely, mathematics, statistics, and operations research. This results in a
dataset that includes nearly 10,000 faculty members in well over 200 departments
that granted PhDs in the mathematical sciences from 2011 to 2020.

Using mathematical tools from network science [15], Wapman et al. produced a
“prestige ranking” for every department at every PhD-granting institution in their
dataset and quantified hierarchy in faculty hiring and retention in a large number
of academic disciplines. In particular, Wapman et al. constructed a directed graph
of PhD-granting departments with an edge from department A to department B
corresponding to a faculty member who earned a PhD at department A being hired
into department B. Unlike other rankings like those published by U.S. News & World
Report that purport to assign prestige based on an arbitrary selection of attributes,
Wapman et al.’s prestige rankings are based upon the characteristics of their directed
graph of departments. It is assumed that “prestigious” departments will prefer to
hire faculty from other “prestigious” departments, and then the overall hierarchy
of departments is inferred from the topology of the network using the SpringRank
algorithm [9]. We will refer to the definition of prestige from Wapman et al. [37] as
“Wapman-prestige.”

We utilize Wapman’s quantification of prestige to produce a definition of “elite,”
which we will use to help us quantify and document gender-based inequality in the
mathematical sciences at PhD-granting institutions in the United States. We define
“elite” institutions as those that are within the top quartile as defined by Wapman-
prestige.

Because of the nature of the dataset [36], which contains gender data but not
other demographic data (and in particular no data on race or ethnicity), we are
only able to conduct analyses using gender and not other identity characteristics.
However, by combining this dataset with publicly available data from the National
Science Foundation (NSF) on awards made by the Division of Mathematical
Sciences (DMS) [27], which is the primary funder of mathematical sciences
research in the United States, we can conduct a MetaMath-related investigation
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of relationships among the variables of percentage of women in a mathematics
department, Wapman-prestige, and NSF DMS funding.

Our thesis is that we can quantify and document inequality in mathematical
sciences departments at PhD-granting institutions in the United States. Specifically,
in this chapter, we will address the following research questions:

¢ RQI: What is the relationship between the percentage of women in a mathemat-
ical sciences department and that department’s Wapman-prestige?

¢ RQ2: What is the relationship between Wapman-prestige and funding received
from the National Science Foundation’s Division of Mathematical Sciences?

¢ RQ3: What is the relationship between the percentage of women in a mathe-
matics department and funding received from the National Science Foundation’s
Division of Mathematical Sciences?

The rest of this chapter is organized as follows. In Sect.2, we provide some
examples of recent research that uses data science and mathematics to analyze
the mathematics and science communities. We describe the data and methods used
in our research in Sect. 3. Specifically, in this section, we describe the processing
of the Wapman et al. data and the NSF funding data that is required so that we
can investigate our research questions that support the thesis of this chapter, i.e.,
that gender-based inequality exists (and can be documented and quantified) in the
mathematical sciences in the United States. We provide details about the statistical
data analysis performed to establish the existence of quantifiable relationships
between our variables of interest, gender percentage of faculty in mathematical
sciences departments at PhD-granting institutions, amount of funding received from
NSF from 2011 to 2020, and departmental Wapman-prestige. The results of the data
analysis and discussion of these results are given in Sects.4 and 5, respectively.
We end the chapter by discussing in Sect. 6 some limitations of the work presented
here and recognizing that there is a lot more work that can (and should) be done to
quantify and document inequality in the mathematical sciences.

2 Existing Work on Inequality and Hierarchy in
Mathematics

In this section, we provide a short survey of selected recent work that uses tools,
topics, and techniques from mathematics and data science to describe, document,
and discuss inequality in the mathematical sciences. We organize our summary of
the literature in this area into three topics: (1) analysis of the (lack of) diversity
in the mathematical sciences; (2) existence of hierarchy in mathematics and other
academic disciplines; and (3) evidence of inequality in the mathematical sciences.
For a longer survey of the areas discussed here, as well as the broader field of the
mathematics of mathematics, we refer the reader to the recent paper by Buckmire et
al. [6].
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2.1 The Demographics and Diversity of the Mathematics
Commupnity

It is well documented that women are underrepresented at all levels in the mathe-
matics community and that their representation declines as they progress through
the academic system [22]. Women made up approximately 42.6% of recipients of
bachelor’s degrees in mathematics between 2013 and 2018 [3]. However, only 29%
of doctorate recipients in mathematical sciences were women (in 2017-2018) [12].
Women were 28% of hires in doctoral-granting mathematical sciences departments
in 2019 [14].

Similarly, underrepresentation in the mathematical sciences based on race and
ethnicity is profound and persistent [23]. For example, from 2013 to 2018, the racial
and ethnic makeup of undergraduate math graduates ranged from 64.9% White,
7.5% Latino/Hispanic, and 5.0% Black to 52.5% White, 9.9% Latino/Hispanic, and
4.2% Black [3]. Between 1993 and 2002, less than 5% of those who earned doctoral
degrees in mathematics were Black, Latino/Hispanic, or Indigenous, even though
those communities made up a quarter of the general population of the United States
at that time [17].

Vitulli [35] examined the representation of women being hired by mathematics
departments, based upon data from annual surveys conducted by the American
Mathematical Society (AMS). Prior to 2012,' the AMS reported this data by
dividing departments into three groups based on the reputational rankings in
the 1995 (or previously, 1982) National Research Council report on doctoral
departments [24, 25]. Group I contained the highest rated 25.9% of the departments.
Group II was the next highest 30.3%, while Group III contained the remaining
departments. Vitulli found that from 1991 to 2011, 20.5% of the faculty hired
by Group I departments were women, while 26.3% of the faculty hired by the
remaining departments were women.

We acknowledge that the research discussed in this section is just a small sample
of the literature analyzing the demographics and diversity of the mathematical
sciences community.

2.2 The Existence of Hierarchy in Mathematics and Science

Recently, researchers have used available data on faculty positions at institutions
of higher education in the United States to document the existence of hierarchies
in faculty-hiring networks in academia. These hierarchical structures [15] in
mathematics and science demonstrate that some institutions have greater influence

' The AMS changed how they report this data in 2012, as the newest National Research Council
report no longer provided a total ordering of departments, instead reporting multiple measures for
each department.
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on faculty hiring than others [21]; this is the essential characteristic of what we
call Wapman-prestige. Institutions nearer the top of the hierarchy that are “more
prestigious” (i.e., they have greater Wapman-prestige) are more likely to have
graduating doctoral students go on to obtain faculty positions at institutions that
are “less prestigious” and lower in the hierarchy. Clauset et al. [8] demonstrated
the existence of hierarchy in faculty hiring in a study involving departments in
computer science, business, and history. Wapman et al. [37] expanded this analysis
to cover 295,089 faculty in 10,612 departments at 368 PhD-granting institutions
and all academic disciplines for the years 2011-2020. FitzGerald et al. [10]
complements Wapman et al.’s research and partially replicated their results by
using data from the Mathematics Genealogy Project to restrict their analysis to
mathematics faculty. These results confirm that hierarchies exist in faculty-hiring
networks in the mathematical sciences.

2.3 Evidence of Inequality in Mathematics and Science

There are multiple research articles that use quantitative tools and techniques to
analyze and highlight examples of inequality in the mathematics community. Topaz
et al. [34] analyzed the editorial boards of 435 mathematical science journals and
found that women accounted for a mere 8.9% of editorial positions. Editorial
positions play important gatekeeping roles and represent status in the mathemat-
ics community, so the underrepresentation of women in this area demonstrates
inequality based on gender in the area of power over knowledge production.
Brisbin and Whitcher [2] found that women are underrepresented as authors among
papers in the mathematical sciences uploaded to the arXiv preprint repository
and that there are certain subfields (particularly concentrated within “pure” or
theoretical mathematics) with even larger discrepancies. Researchers have analyzed
data describing different aspects of academic activity and demonstrated myriad
ways that gender can negatively mediate opportunity for advancement, participation,
and achievement in science and mathematics [16, 18, 30, 33]. Schlenker [32]
notes that fields with applications to the social or physical sciences such as
numerical analysis, mathematical modeling, or statistics (i.e., fields seen as being
in applied mathematics) seem to be viewed by some as having low status in the
wider mathematical community. A large study investigating class backgrounds in
academia by Morgan et al. [19] found that faculty are much more likely than the
general population to have a parent with a PhD, with the effect being even more
pronounced at institutions in the top quintile of U.S. News & World Report rankings.
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3 Data and Methods

In this section, we will describe the data and explain the methodology used to obtain
our results. Our data and code are publicly available at [4]. We utilized two datasets,
one sourced from Wapman et al. [36] and the second from awards made by the
Division of Mathematical Sciences (DMS) at the US National Science Foundation
(NSF) between 2011 and 2020 [26].

The Wapman et al. dataset required some nuance to interpret. The dataset
consisted of a census of tenured or tenure-track faculty employed at all PhD-
granting institutions in the United States from the years 2011-2020. Faculty were
only included in this sample if they were employed in the majority of the years
under review. This dataset is centered on departments, rather than on faculty, and
these departments are each assigned to a field such as “Mathematics.” In particular,
a department may be accounted for in multiple fields; a “Department of Mathematics
and Statistics” would have its faculty included twice, in the fields of “Mathematics”
and “Statistics.”

Because our goal is to quantify and document inequality in the mathematics
community as a whole, we choose to define the mathematical sciences as broadly
as possible (see [S]). This choice results in a reduction of Wapman et al.’s original
dataset of 295,089 faculty in all academic disciplines offering PhDs in the United
States to 9814 faculty that are distributed among the fields of mathematics, statistics,
or operations research (Table 1). We adopt the convention of capitalizing these three
terms when referring to these fields present in the data throughout the rest of this
chapter.

In our analysis, we incorporate the department prestige rankings from Wapman
et al. [36], which we refer to as Wapman-prestige. Because of the way these are
computed (a department has greater Wapman-prestige if its PhD graduates are
hired by departments that have greater Wapman-prestige), some departments do
not have a Wapman-prestige ranking. This could happen if the department does
not have a PhD program in one of the three fields of mathematics, statistics, or
operations research (recall the Wapman dataset began with institutions that grant
PhDs) or if none of its PhD graduates were hired by departments with Wapman-
prestige rankings. In mathematics, for example, there are 223 departments listed, but
only 161 of these have a Wapman-prestige ranking. Departments without Wapman-
prestige rankings were not included in the data analyses involving Wapman-prestige
below but were included in the analysis of NSF funding later in the chapter. Figure 1

Table 1 Faculty present in the Wapman et al. dataset in the fields of mathematics, statistics, and
operations research

Field Departments Faculty members Percentage of women
Mathematics 223 7328 16.8%
Statistics 122 2576 20.9%

Operations Research 51 1034 19.3%
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Fig. 1 Flow diagram depicting number of organizations and institutions used for data analysis

displays the various sizes of the datasets used in our analysis in this chapter that are
also presented in Table 1.

Since the Group I departments—in the groupings used by the AMS historically
to divide departments by perceived quality (see Sect. 2.1 above)—constituted about
25% of departments, in our analysis, we consider the upper quartile (in terms of
Wapman-prestige rankings) as “elite” departments and compare this group to the
remaining 75% of departments, which we refer to as “non-elite.”

Unfortunately, the Wapman et al. dataset only included gender as a binary
variable (male/female). In fact, gender is self-reported for a small percentage (6%)
of faculty in their initial dataset. They then attempted to infer the gender of the
remaining faculty based on their names and the use of software that claims to assign
gender based on names relatively accurately; ultimately, binary gender was ascribed
to a total of 85% of the faculty listed in their dataset. We include only these faculty
who were ascribed a binary gender in our analyses, which eliminates roughly 15%
of the total due to the inability to accurately ascribe a gender to these data entries.

We separately obtained data from the NSF publicly accessible database about
awards made by the Division of Mathematical Sciences (DMS) in the Directorate
of Mathematical and Physical Sciences (MPS) from 2011 to 2020 [26]. These data
were aggregated by institution. Since the institution names in the Wapman et al.
dataset typically did not match the formal organization names listed by the NSF,
we manually aligned these in order to compare the two datasets. On average, DMS
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awarded $235 million per year toward achieving its mission to support “a wide
range of research in mathematics and statistics aimed at developing and exploring
the properties and applications of mathematical structures” [27]. We removed from
this dataset awards made to individuals (e.g., fellowships for post-docs and graduate
students) as well as awards through the Mathematical Sciences Research Institutes
program, which support research institutes separate from mathematics departments
(though most, but not all, are hosted at PhD-granting institutions with mathematics
departments).

Of the awards to institutions, 80% were matched to the departments of interest
in the following analysis. The NSF, and DMS in particular, is the primary source
of funding for mathematics research in the United States [27]. While some
mathematicians (such as several authors of this chapter) receive funding from NSF
divisions other than DMS and directorates other than MPS (e.g., the Division of
Undergraduate Education and the Directorate for STEM Education) as well as from
other federal agencies (e.g., the National Institutes of Health), we consider DMS
funding a reasonable measure for overall financial support of mathematics by the
federal government.

There are two major caveats to our use of the NSF DMS funding data. First,
NSF awards are made to institutions rather than specifically to departments, which
is the unit of analysis provided by the Wapman et al. data. Second, since faculty in
Statistics and Operations Research typically have more varied sources of funding,
we only considered the field of mathematics in our analyses of funding discussed
below.

4 Results

In this section, we present the results of our research into the distribution of faculty
and funding at mathematical sciences PhD-granting institutions in the United States.
In Fig.2, the percentage of women in the fields of mathematics, statistics, and
operations research from 2011 to 2020 is given. We note that the percentage of
women in mathematics lags behind operations research and statistics throughout
the time period of the dataset, mirroring the lower percentage of women that
earn PhDs in mathematics versus the other two fields [12]. We further note the
percentage of women in mathematics, statistics, and operations research is far below
the percentage of women in Academia as a whole for the time period covered by the
dataset.

Next, we computed the percentages of faculty in each department inferred to be
women and plotted these according to Wapman-prestige rank in the fields of math-
ematics, statistics, and operations research in Fig. 3. To compute this percentage,
we used as a denominator the total number of faculty in a department for which
a gender was inferred, in effect removing from our sample any faculty members
whose gender could not be inferred. In Fig. 3, the blue circles are clustered in the
lower-left corner of all three subfigures; this corresponds to the data demonstrating
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research. Color and shape distinguish the upper quartile of Wapman-prestige (blue circles) from
the lower three quartiles (orange squares)

that elite departments (in the top quartile of Wapman-prestige) also have a low
percentage of women (below 20% for mathematics).

In order to address RQ1, we then considered the elite institutions as a group and
calculated the percentage of faculty at these institutions that are women (Table 2);
in each case, we see that the percentage of women among these elite institutions
is lower than among non-elite institutions. A chi-squared test for each field was
conducted, finding only the difference in mathematics to be significant (p < 0.001).
We also conducted a Kendall tau test to determine if there is an association between
the percentage of women and Wapman-prestige rank of mathematics departments;
we found a significant negative association between Wapman-prestige rank and rank
by percentage of women (r = —0.23, p < 0.001). In other words, higher Wapman-
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Table 2 The percentage of faculty at elite and non-elite institutions who are women in each field

Percentage of women Percentage of women
Field among elite institutions among non-elite institutions
Mathematics 12.5% 18.1%
Statistics 21.3% 21.6%
Operations research 17.0% 18.7%
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Fig. 4 Average annual grant funding for mathematics departments by the prestige rank of the
department, displayed by total funding to the department (a) and on a per capita basis accounting
for the varying number of faculty in each department (b)

prestige of a Mathematics department is associated with having a lower percentage
of women.

To address RQ2, we explored the distribution of DMS funding to the 161
mathematics departments with Wapman-prestige rankings from 2011 to 2020. The
elite institutions (i.e., the upper quartile by Wapman-prestige) were awarded in
aggregate $119M per year in grant funding, while the non-elite institutions, of which
there are three times as many, were awarded only $70M in aggregate of NSF money
per year. We plotted this funding by Wapman-prestige of each department in Fig. 4
on both a total and per-faculty basis.

We also computed the total amount of funding received by elite (top quartile
by Wapman-prestige) and non-elite (lower three quartiles by Wapman-prestige)
departments over the time period in question. Elite departments received 64.7% of
the total funding in our dataset, compared to 35.3% for the non-elite departments
(despite these being thrice as numerous). Here we also conducted a Kendall tau
test, finding a significant positive relationship between Wapman-prestige and DMS
funding (z = 0.68, p < 0.001). In addition, we conducted a Kendall tau test for a
relationship between Wapman-prestige and DMS funding per faculty to account for
variance in department sizes; this was also significant (z = 0.70, p < 0.001 ). In
other words, higher Wapman-prestige is associated with more DMS funding.
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Another metric that can be used to quantify inequality in NSF DMS funding
received by mathematics departments in the United States is the Gini coefficient,
a well-known measure of inequality often used to characterize wealth inequality
on a scale from 0 to 1. A uniform distribution of wealth would result in a Gini
coefficient value of 0, and a case where one individual holds all the wealth would
result in a Gini coefficient of 1. The Gini coefficient of NSF DMS funding for the
mathematics departments in our dataset is 0.63. For more information on the Gini
coefficient, refer to [20].

We also analyzed the full DMS-funded portfolio (excluding fellowships given to
people instead of institutions) to avoid a possible sampling effect due to our focus
on PhD-granting institutions. In this more comprehensive dataset, the top 20% hold
86.1% of all DMS funding. The Gini coefficient of this distribution is 0.80. Thus,
the larger set of all DMS funding recipients demonstrates greater inequality than the
subset of PhD-granting institutions.

To address RQ3, we plotted the annual grant funding received by mathematics
departments against the percentage of women in those departments in Fig.5. We
note an interesting effect in Fig. 5, where none of the 29 departments (which are all
non-elite with respect to Wapman-prestige) with at least 25% women received more
than $1.1M in average annual funding from the DMS. We conducted a Kendall
tau test to determine if there is an association between annual funding received
from DMS and the percentage of women in mathematics departments and found a
significant negative relationship (r = —0.22, p < 0.001).

In addition, we conducted a Kendall tau test for a relationship between DMS
funding per faculty and percentage of women to account for variance in department
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sizes; this was also significant (t = —0.21, p < 0.001 ). In other words, a higher
percentage of women in a mathematics department is associated with less annual
DMS funding.

5 Discussion

In this section, we shall discuss the results presented above, which demonstrate that
gender-based inequalities exist in faculty composition with respect to gender and the
distribution of federal funding to mathematical sciences PhD-granting institutions
in the United States.

5.1 Gender-Based Inequality in the Mathematical Sciences

The data shows that almost all PhD-granting institutions have mathematics depart-
ments that are composed of faculty that are disproportionately male. In fact, not
a single mathematics department represented in this dataset was majority women.
We found that the underrepresentation of women is more pronounced among elite
mathematics departments (recall that we defined “elite” departments as those in
the upper quartile of departments in the prestige ranking generated by Wapman et
al.). We believe in the fundamental principle that mathematical talent is distributed
equally among all groups of people who do mathematics. In the context of this
chapter, we therefore assume an equal distribution of mathematical talent among
men and women. Under that assumption, the results presented here highlight the
idea that even if mathematical talent is evenly distributed, the opportunities to
deploy, use, and leverage that talent in a mathematical sciences department in a
PhD-granting institution are not.

Our analysis of NSF DMS funding identifies inequality in the amount of finan-
cial support for mathematics PhD-granting departments depending on Wapman-
prestige. Pareto models, also popularized as the “20/80” economic model, predict
that approximately 80% of assets are held, gained, or earned by only 20% of the
population being studied [29]. We found that in the elite institutions, the top 25% in
our dataset by Wapman-prestige ranking garnered 65% of the total funds given to
the subset of PhD-granting institutions with a Wapman-prestige ranking. When we
examine all NSF DMS funding, the top 20% of awardees receive 86% of all funds,
with a Gini coefficient of 0.8. This result demonstrates a larger inequality than the
classic “20/80” proportion.
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5.2 Inequity = Inequality + Power

We argue here that the gender-based inequalities presented earlier in this chapter
are in part due to underlying mechanisms and societal processes in the institutions
and systems present in the mathematical sciences in the United States. We draw on
Hasty et al.’s anthropological definition of inequity as “the unequal distribution of
resources due to an unjust power imbalance. It is a type of inequality caused by
this unequal distribution, often as a result of injustices against historically excluded
groups of people” [13].

Earlier in this chapter, we quantified and documented the “unequal distribution
of resources” from the NSF awarded to mathematics departments at PhD-granting
institutions in the United States. Now we examine the underlying mechanisms that
result in these unequal allocations. The procedures and policies that NSF uses to
determine which principal investigators and which institutions receive funding may
actually reinforce inequity in the mathematical sciences [1]. NSF uses a process
they call merit review, where anonymous reviewers are asked to read, rate, and
review funding proposals submitted to the agency. Analysis of panel decisions in
science funding in the Netherlands indicated that gender-based bias was moderated
by a two-stage review system [1]. In this system, the first stage of reviews is a filter
pass in which reviews favored proposals led by men; however, the second-stage final
reviews resulted in equal funding. A 2020 analysis of NSF funding by division noted
that submission rates by women to the MPS (Mathematical and Physical Sciences)
directorate were increasing but were still one of the lowest in the agency, on par with
the CISE (Computer and Information Science and Engineering) directorate [30].
Rissler et al. also note that the submission rate discrepancy cannot be explained
by the proportion of women at institutions of various Carnegie classification types
alone. However, our results suggest that considering the Carnegie “Very High
Research Activity” institutions as a single group is too coarse and that important
differences in gender representation among these institutions exist and are mediated
by Wapman-prestige (see Sect. 4).

The NSF merit review process incorporates mechanisms that favor institutional
prestige. NSF panels are instructed to assess the “intellectual merit” and “broader
impacts” of all proposals under five elements [28]. Two of these elements in
particular may bolster inequity in the mathematical sciences. First, reviewers are
asked, “How well qualified is the individual, team, or organization?”’ This question is
likely to skew reviewers toward considering institutional reputations since the infor-
mation provided about qualifications typically includes individuals’ institutional
affiliation(s). Second, reviewers are asked, “Are there adequate resources available
to the PI (either at the home organization or through collaborations) to carry out the
proposed activities?” This second question is especially likely to skew reviewers to
more positively rate proposals from well-resourced institutions.

The cliché “The rich get richer” is a colloquial distillation of how systems dis-
proportionately allocate resources towards prestige. Prestigious and well-resourced
institutions often provide their faculty with significant advantages in the grant
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award process. For example, well-resourced universities often have significant funds
internally for pilot projects that strengthen submissions to NSF. They have grant
departments that assist in the writing and administration of grants, funded by high
indirect cost rates. They also have research support teams devoted to data gathering
and processing, as well as communications teams devoted to disseminating the
results. We also note that expectations in obtaining grant funds vary widely between
departments and institutions and are often higher at the elite institutions (those in the
top quartile using Wapman-prestige) in our dataset. This likely affects the number
of proposals that are submitted by different institutions along with how well they
are reviewed.

In short, the effect we are seeing in the unequal allocation of resources in the
mathematical sciences community via NSF DMS funding is likely a result of a
complicated collection of processes that reinforce and exacerbate the status quo.
Hasty’s definition of inequity applied to gender-based inequity in the mathematical
sciences in the United States requires us to both document gender-based inequalities
and find evidence that those inequalities are the result of gender-based injustice.
In addition to the processes of gender bias in NSF proposal reviews and how
institutional prestige biases the merit review process, we also note the long history
of erasure, injustice, and exclusion of women from mathematics [31]. We therefore
argue that we have not only quantified and documented gender-based inequalities
in the mathematical sciences but have also shown the existence of gender-based
inequity in the mathematical sciences.

5.3 Limitations

There are a number of limitations that accompany the research presented in this
chapter that we want to highlight below. The primary limitation is that there is
a paucity of publicly available, comprehensive, self-reported demographic data
about the mathematics community. The data we used was part of a dataset shared
publicly by Wapman et al. [36] after they had processed it, and the raw data was
not available to us. Their methodology of determining Wapman-prestige means
that only PhD-granting departments are represented in the prestige data; a large
number of faculty in the mathematical sciences who are at community colleges and
predominantly undergraduate institutions are not included. Additionally, because of
the way disciplines in the mathematical sciences are defined in the Wapman et al.
dataset, faculty who are in “Mathematics and Statistics” departments are counted in
“Mathematics” and again in “Statistics.”

We reiterate here that the dataset [36] consisted of tenured and tenure-track
faculty who were in the same department for at least 5 of the years between 2011
and 2020. As a result, we do not have an accurate count of department sizes (which,
in any event, vary over time) to fully rule this out as a confounding factor. However,
we did examine funding per faculty member in our analysis above to approximately
account for this.
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Another important limitation is the way gender is ascribed to individuals in the
Wapman et al. dataset. Recall that this dataset included gender, but only a small
percentage were determined by the individuals themselves, with the rest inferred
based on names. While we acknowledge this practice is common, there are multiple
issues with name-based gender inference. There is some degree of selection bias in
which names can be ascribed to a particular (binary) gender; we note, again, that in
the dataset used here, 15% of entries were omitted due to an inability to confidently
ascribe them a gender. Furthermore, the reduction of gender to a binary erases the
experiences of gender-diverse mathematical scientists from this work.

We also lament the lack of race/ethnicity in the data; there are important
questions to be answered about the interaction of race/ethnicity and inequity in
the mathematical sciences. However, Chen et al. [7] explores systemic mecha-
nisms exhaustively in their article “Systemic racial disparities in funding rates at
the National Science Foundation.” This study thoroughly addresses the systemic
reinforcing of racial bias within panels and funding distribution decisions of the NSF
specifically. Chen et al. also note that a gender analysis alone masks intersectional
issues. They point to a study of NIH grants that found that women of color were
funded at lower rates than white women [30] and points out the lack of data
availability to further investigate this at NSF. A similar argument can be made about
the absence of available data about LGBTQ+ identity. The Wapman et al. dataset is
limited to only tenured or tenure-track faculty. Without comprehensive demographic
data, an intersectional analysis involving multiple identity characteristics is not
possible. As discussed below, we hope other researchers will collect or generate
additional data that can be used to address important outstanding questions about
the mathematical sciences discipline.

6 Future Directions

There are many other directions in which the research presented here could be
extended in the future. It is important to study the questions addressed in this chapter
with respect to other dimensions of diversity, particularly marginalized social
identities such as race/ethnicity, sexual orientation, national origin, and disability
status, among others. This future work should be done in a way that allows analysis
using intersections of multiple identity characteristics.

The addition of geographic location to the analysis of the gender diversity of
PhD-granting institutions as well as of the distribution of federal funding is a
possible direction of future research.

Another future direction is to expand this work to a wider range of institu-
tions and faculty appointments. A study encompassing all types of institutions,
and particularly community colleges, minority-serving institutions, and primarily
undergraduate institutions, is necessary. Additionally, future work should investigate
related questions about all types of faculty employed at these institutions, especially
the increasing percentage of non-tenure track faculty.
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This work’s primary goal has been to quantify and document gender-based
inequalities in the mathematical sciences. Future work could involve developing
mathematical models that are informed by existing data documenting inequal-
ity in the mathematical sciences in order to examine, expose, and explicate
the mechanisms that create and maintain this imbalance. For example, the data
[3, 12, 14] showing the underrepresentation of women in new hires versus their
underrepresentation in tenure-stream positions in PhD-granting institutions raises
some interesting questions that could also be addressed in future research.

We conclude by inviting interested researchers to join us in the ongoing
MetaMath project to use mathematics and data science to analyze the mathematical
sciences discipline itself in order to promote social justice and enhance equity in the
mathematical sciences.
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Appendix A WiSDM 2023:
Projects and Participants

WiSDM is a “Women in Data Science and Mathematics” Research Collaboration
Workshop that is intended to take place every two years with the goal of bringing
together, for one-week, women at all stages of their careers, from graduate students
to senior researchers, to collaborate on problems in data science. WiSDM 2017
and WiSDM 2019 workshops were held at the Institute for Computational and
Experimental Research in Mathematics (ICERM), Brown University. After a hiatus
due to the COVID-19 pandemic, the workshops were reinitiated in 2023, when
WiSDM 2023 was held at the Institute for Pure & Applied Mathematics (IPAM), on
the campus of the University of California, Los Angeles, during August 7-11. This
third edition was organized by top researchers in diverse fields of mathematics and
included 42 participants. A summary of the projects in WiSDM 2023, together with
a list of project leads with current affiliations and participants with their affiliations
at the time of the workshop, is included next.
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354 Appendix A WiSDM 2023: Projects and Participants
A.1 WiSDM 2023 Organizing Committee

Andrea Bertozzi: University of California, Los Angeles
Kathryn Leonard: Occidental College

Deanna Needell: University of California, Los Angeles
Linda Ness: Rutgers University

A.2 Project Descriptions

A.2.1 Optimizing NLP Embedding Techniques for Embedded
Systems

Description Text embeddings are a way of transforming language into numerical
representations that can be used in deep learning architectures for language trans-
lation and generation, text summarization, and sentiment analysis for a plethora of
natural language processing (NLP) use cases. In NLP, embeddings are typically
generated to represent semantic relationships between words or phrases; however,
the size of the embedding is usually limited by the temporal and computational
constraints imposed by model training and inferencing requirements. Embedded
systems, i.e., programmable devices used to perform specific tasks in computation-
ally limited remote environments, typically impose the most stringent computational
resources with the goal of optimizing output for a specific task. More and more,
embedded systems applications call for online NLP tasks to build a common
operating picture in tactical environments. The goal of this project is to generate
a representative number of embedded use cases that require on-board NLP and
to outline prescriptive methods for optimal text embedding generation that will
fulfill the requirements of the embedded system while meeting or exceeding the
processing limitations imposed by the computational constraints of each use case.

Leads: Karolyn Babalola (Booz Allen Hamilton)

Participants: Sanchita Ghosh (Texas Tech University), Arnaja Mitra (The Univer-
sity of Texas at Dallas), Chathurangi Pathiravasan (John Hopkins University), and
Jing Qin (University of Kentucky)

A.2.2 Geometric Signatures of (Hierarchical) Data

Description Building trees to represent or to fit distances is a critical component of
phylogenetic analysis, metric embeddings, approximation algorithms, and computa-
tional biology. It is, however, a challenging problem; indeed, many of the tree fitting
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problem formulations are hard (in a formal sense). Much of the previous algorithmic
work has focused on generic metric spaces (i.e., those with no a priori constraints).
These spaces do not capture the nature of datasets, especially those datasets that
capture some sense of hierarchy. This project will explore two types of geometric
signatures of (hierarchical) data and graphs, delta-hyperbolicity and average delta-
hyperbolicity. We will compute these quantities for a variety of important test
datasets and devise faster, approximate algorithms along the way.

Leads: Anna Gilbert (Yale University)

Participants: Katarzyna Jankiewicz (University of California, Santa Cruz), Man-
asa Kesapragada (University of California, Santa Cruz), Marzieh Khodaei (Florida
State University), Anna Konstorum (Institute for Defense Analysis), and Nazia
Riasat (North Dakota State University)

A.2.3 Dimension Reduction and Machine Learning for
Tensors

Description Data is now not only everywhere but in such vast quantities that it
makes computing quite challenging and often impossible. Moreover, the structure
of data is often complicated and multi-modal. For this reason, the algebraic tensor
structure has become important in data science and computational methods. There
are several tensor dimension reduction techniques that do not require the tensor to
be transformed to a vector or matrix, and these can be used for machine learning and
reconstruction tasks. In this project, we will study these techniques and develop new
methods that work in the dimension reduced space directly. Applications range from
imaging to medicine, and we will apply our approaches to both real and synthetic
problems.

Leads: Deanna Needell (University of California, Los Angeles), with Jamie
Haddock (Harvey Mudd College)

Participants: Alejandra Castillo (Oregon State University), Iryna Hartsock (Uni-
versity of Florida), Paulina Hoyos Restrepo (The University of Texas at Austin),
Lara Kassab (University of California, Los Angeles), Alona Kryshchenko (Califor-
nia State University Channel Islands), Kamila Larripa (California State Polytechnic
University, Humboldt), Shambhavi Suryanarayanan (Princeton University), and
Karamatou Yacoubou Dijma (Wellesley College)
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A.2.4 Graph-Based Active Learning

Description This project will be about semi-supervised active learning using a
graph approach. Graph-based machine learning algorithms use pairwise compar-
isons between pieces of data to construct a similarity graph. This project will focus
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