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Preface 

This special issue of Advances in Data Science, part of the Association for Women 
in Mathematics (AWM) Springer Series, offers a diverse collection of papers 
in data science. Data science is a cross-disciplinary field relying on statistics, 
computer science, and mathematics that is driven by problems from a wide range 
of disciplines. This volume aims to make more visible the role of theoretical and 
applied mathematics in data science. 

Some contributions are products of the collaborations initiated during the third 
“Women in Data Science and Mathematics” (WiSDM) Research Workshop that 
took place between August 7 to August 11, 2023, at the Institute for Pure & Applied 
Mathematics, a National Science Foundation math institute at the University of 
California, Los Angeles. The goal of WiSDM is to bring small interdisciplinary 
teams to work on real-world problems and focused open research questions for a 
one-week workshop. Participants typically range from senior researchers to early 
graduate students, collaborating as equals and building relationships centered on 
shared research interests and complementary technical skills. This third edition con-
gregated six different groups and generated six contributions to the proceedings.1 

However, works included in the collection go beyond the WiSDM workshop. 
Calls for contributions were extended to a network of WiSDM affiliates, a vibrant 
group of previous workshop participants that is growing with each WiSDM edition, 
and to a wider mathematical community composed by past participants’ institutions. 
Ten additional submissions were collected, representing a diversity of research 
advancements in applied mathematics. 

Note that all the works were subjected to a single-blind peer-review process 
where two to three experts reviewed the submission and provided recommendations 
for the authors to improve their manuscript. We take this opportunity to thank the 
anonymous reviewers for their constructive feedback and their valuable suggestions.

1 For further details about the projects and participants in WiSDM 2023 please refer to 
Appendix “Appendix A WiSDM 2023: Projects and Participants”. 
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Overall, we hope that this volume will constitute a useful resource for researchers 
working in data science and applied mathematics. The in-depth discussions included 
about complex data problems and cutting-edge methodologies from mathematics, 
statistics, and computer science will help researchers to keep up with state-of-the-art 
tools in data analysis. Furthermore, the interdisciplinary nature of the contributions, 
some showcasing applications to real-world problems, will promote collaborations 
among different fields and inspire novel practical demonstrations of the presented 
research. Additionally, since the final papers are the result of collaborations between 
researchers with different level of expertise, such as graduate students, post-doctoral 
fellows, and junior and senior faculty members, we expect that this volume will 
be accessible and particularly beneficial to junior researchers, providing insights, 
guidance, and motivation to tackle new data science projects. 

Chapter Summary 

These proceedings cover a broad array of theory and applications illustrating the 
wide use of tensor decompositions, graph-based algorithms, dimension reduction 
techniques, and mathematically constrained machine learning. Works range from 
early research results, to new algorithms inspired by related fields, to objective 
evaluation of published methods. It also includes promising theoretical develop-
ments as well as novel application of techniques to practical problems. A special 
section highlighting how data science tools can be used to examine aspects of higher 
education concludes the volume. 

Part I: Matrix and Tensor Methods 

Part I includes novel contributions in the areas of tensor and matrix methods. 
Essential to both chapters is the exploitation of the problem structure to produce 
more efficient algorithms. 

Chapter “Randomized Iterative Methods for Tensor Regression Under the t-
product” develops new algorithms that generalize iterative methods for matrix-
vector regression problems to the tensor regime. Tensor representations naturally 
arise when dealing with complex multi-modal data (e.g., multidimensional arrays 
such as video with spatial and time dimensions). This chapter presents a compre-
hensive survey of iterative methods for tensor regression (under the t-product) and 
arrives at novel insights by extending variants of the Kaczmarz and Gauss-Seidel 
methods to tensor regression settings. Results demonstrate the empirical efficacy 
and accuracy of tensor methods while interesting follow-up theoretical directions 
are delineated. 

Chapter “Matrix exponentials: Lie-Trotter-Suzuki fractal decomposition, Gauss 
Runge-Kutta polynomial formulation, and compressible features” compares two
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existing numerical approaches for efficient computation of the matrix exponential. 
The matrix exponential is an important component when performing numerical 
simulation of science or engineering time-dependent systems. The methods assume 
that the system matrix can be expressed as the sum of two simple structured 
matrices, specifically a diagonal matrix and a low-rank matrix, but use different 
solution decompositions, yielding distinct numerical formulations and achieving 
different levels of performance. 

Part II: Graph Algorithms 

Part II contains contributions related to graph methods. These range from new 
theoretical definitions of graph properties, to new problem formulations based on 
graph regularizations or graph representations, to algorithms for making graph-
based computations more efficient. 

Chapter “An exploration of graph distances, graph curvature, and applications 
to network analysis” evaluates how notions of graph curvature induced by different 
definitions of distance on a graph correlate with graph centrality measures. The 
motivation behind the study is to investigate if some of these graph curvature 
definitions are able to capture analogous intuitions from the continuous space, 
where geometrical curvature characterizes how much the space differs from a flat 
Euclidean space. The correlations computed in synthetic and real-world graphs 
constitute a first step toward a better understanding of curvature on graphs, which 
may prove fruitful for advancing new analysis tools. 

Chapter “Time-Varying Graph Signal Recovery Using High-Order Smoothness 
and Adaptive Low-rankness” proposes two new algorithms for recovering signals 
in a graph, specifically time-varying signals. These are useful descriptions for 
problems such as predicting sea surface temperatures, i.e., problems involving 
time-series with given additional relationships among them, e.g., geographical 
locations, which often can be represented via graphs. The proposed methods 
combine high-order temporal smoothness and graph structures, and include a novel 
low-rank regularization. A generalized recovery framework that encompasses the 
new methods, as well as methods previously published, is presented too. 

Chapter “Graph-Directed Topic Models of Text Documents” develops a new 
topic modeling formulation that incorporates a graph-based regularization term. 
A text document in a corpus can be represented via a bag-of-words model that 
captures the distribution of corpus words in the document. However, extracting 
knowledge requires more than representing individual documents. Topic modeling 
is a methodology used to summarize the corpus in terms of topics, i.e., documents 
are linear combinations of topics, where each topic corresponds to a specific word 
distribution. Typically, a sparsity constraint is used. This work demonstrates how a 
similarity graph between documents can be used as an alternative regularization. 

Chapter “Linear independent component analysis in Wasserstein space” intro-
duces a framework for performing independent component analysis, i.e., identifying
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the set of independent random variables from observations of the (linearly) mixed 
components, when the observations consist of probability measures or point-clouds, 
not vectors in an Euclidean space. The framework proposed uses a Wasserstein-
based graph Laplacian. The work studies under which theoretical conditions the 
eigenvectors of this Laplacian approximate the independent components and shows 
preliminary results for data that is isometric and almost isometric to Euclidean data. 

Chapter “Faster HodgeRank Approximation Algorithm for Statistical Ranking 
and User Recommendation Problems” proposes a new algorithm to accelerate the 
solution of the problem of statistical ranking on graphs. A ranking algorithm tries 
to order entities by a given measure (e.g., preference, votes, etc.). The HodgeRank 
algorithm is able to compute a global ranking from datasets with incomplete or 
inconsistent scores, and is based on pairwise differences represented as edge flows 
on a graph. This work develops a new method to run the HodgeRank algorithm 
on smaller subgroups, to improve the scalability when the number of entities to be 
ranked increases. 

Chapter “A Comparison Study of Graph Laplacian Computation” compares 
existing approaches for accelerating the numerical computation of the eigende-
composition of a graph Laplacian matrix. In data analysis, the eigendecomposition 
of the graph Laplacian can be used to solve clustering or classification problems. 
However, the methods become computationally demanding when the size of the 
data, and consequently the size of the graph, is large. The methods evaluated are 
based on different approximated eigendecompositions that only use a subsample 
of the dataset, reducing their computational burden. This work performs extensive 
numerical comparisons and reports trade-offs incurred by the different methods. 

Part III: Dimensionality Reduction 

Part III focuses on novel developments on dimensionality reduction for improving 
the efficiency on different data analysis tasks or for decreasing the complexity of 
neural network model representations so that they can be deployed in resource-
limited settings. 

Chapter “Supervised Dimension Reduction via Local Gradient Elongation” pro-
poses a novel geometric approach to perform nonlinear supervised dimensionality 
reduction, i.e., obtain a low-dimensional representation of the input data features via 
embeddings guided by the response variable (label). The method developed uses a 
new metric that elongates the standard Euclidean distance in the direction of the 
(univariate) label gradient. Also, it is able to consider different supervision levels 
in the proposed local metric, i.e., different weights between feature distance and 
label gradient. Demonstrations focus on visualization (of embedded features) and 
prediction (of output variables to new input data) tasks, for synthetic datasets and 
for real-world data from biology. 

Chapter “Reducing NLP Model Embeddings for Deployment in Embedded 
Systems” aims to reduce the number of parameters required to represent natural
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language processing (NLP) models while maintaining a tolerable level of per-
formance. NLP models often involve a large number of parameters (hundreds 
of millions to billions) which makes for a problematic deployment in resource-
limited environments (e.g., embedded systems such as field-programmable gate 
arrays FPGAs). This work applies dimensionality reduction methods to the token 
embedding layer of the BERT model, a state-of-the-art large language model, to 
produce new embedding vectors that maximize the variance of its components in a 
smaller vector space. 

Part IV: Data Analysis and Machine Learning 

Part IV demonstrates how tailored data analysis and machine learning algorithms 
can improve applications in road safety, pharmacokinetics, inverse problems in 
imaging, and speech recognition. 

Chapter “Automated extraction of roadside slope from aerial LiDAR data in rural 
North Carolina” devises a new Python-based, open-source, computational pipeline 
for processing aerial LiDAR data with the goal of calculating slope grades adjacent 
to roads on rural North Carolina. The slope of the roadside terrain is a significant 
component in crash prediction but this data is scarce, particularly in rural regions 
where physical surveys are impractical. LiDAR is a compelling alternative since 
it has widespread availability, allowing for cost-effective and large-scale hazard 
assessments. The processing pipeline includes roadway segmentation, road segment 
identification, and linear regression fitting. 

Chapter “A non-parametric optimal design algorithm for population pharma-
cokinetics” describes how the non-parametric estimation of the joint distribution 
of the model parameters, from model observations, can be accelerated by using 
directional derivatives of the log-likelihood function. This is a principled approach 
that replaces the ad-hoc exploration of previous methods, allowing for less time 
spent evaluating nonrelevant points and yielding a significant boost in computation 
speed. Pharmacokinetics modeling aims to describe the evolution of the amount of 
drug on a subject, given different conditions of elimination rate, input dose, apparent 
distribution volume, etc. By reducing computation time, this approach may enable 
faster therapeutic decisions. 

Chapter “Unrolling Deep Learning End-to-End Method for Phase Retrieval” 
proposes a deep learning framework for the phase retrieval problem. The approach 
unfolds an iterative algorithm used for regularized optimization, specifically an 
alternating direction method of multipliers (ADMM) formulation, into a feed-
forward network structure, yielding a framework that is interpretable and more 
amenable to theoretical analysis. A convolutional neural network and a graph 
convolutional network are learned as part of the unfolded structure, in order 
to incorporate local and non-local smoothing regularizations. Recovering phase 
information from intensity data is crucial in fields like coherent diffraction imaging 
and crystallography.
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Chapter “Performance Analysis of MFCC and wav2vec on Stuttering Data” 
develops machine learning models based on a Siamese neural network to accurately 
identify types of dysfluency in speech. Scarcity of labeled data and inconsistency of 
labels make it difficult to train accurate models and improve assistive technologies 
for individuals with speech disorders. The approach focuses on evaluating different 
feature representations for audio clips and on adding auxiliary classification tasks 
to increase the generalization power of the model. Different settings are compared: 
a single task to identify if the audio pairs provided belong to the same class, and 
multitask configurations including classification of the six stuttering types and/or 
binary classification of normal vs. stuttering. 

Part V: Data Science and Higher Education 

Part V illustrates how data analysis tools can be used to assess gender disparities in 
STEM, and in some cases, serve as guidance for adjustments that may be beneficial 
on different stages of the higher education pipeline. 

Chapter “Active Learning for Reducing Gender Gaps in Undergraduate Com-
puting and Data Science” reports two instructors’ attempt to increase female 
students’ confidence in computing via active learning and collaborative project-
based learning. The efforts focused on adapting the course design from a purely 
introductory programming material to a more diverse offering including data science 
and machine learning related topics. Surveys were administered during different 
terms to assess change in student perceptions. The findings from the survey analysis 
partially align with research suggesting that early educational interventions can 
enhance comfort and interest in STEM for women. 

Chapter “Quantifying and Documenting Gender-Based Inequalities in the Math-
ematical Sciences in the United States” examines gender inequality at the institu-
tional level within US PhD-granting math departments, where structural barriers 
may exist in funding and hiring practices. The analysis is based on public data, 
coming from a census of tenured or tenure-track faculty employed at PhD-
granting institutions in the United States and from the National Science Foundation, 
and focuses on estimating quantitative relations between department’s gender 
composition, the funding received, and the department’s perceived prestige. This 
work illustrates the usefulness of data science tools for diagnosing issues in the 
mathematical sciences itself. 

Together, these studies highlight that while classroom-level interventions can 
boost early interest and confidence, broader institutional changes are needed to 
support long-term gender equity in STEM. 

Los Alamos, NM, USA Cristina Garcia-Cardona 
Chapel Hill, NC, USA Harlin Lee 
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Randomized Iterative Methods for 
Tensor Regression Under the t-Product 

Alejandra Castillo , Jamie Haddock , Iryna Hartsock , 
Paulina Hoyos , Lara Kassab , Alona Kryshchenko , 
Kamila Larripa , Deanna Needell , Shambhavi Suryanarayanan , 
and Karamatou Yacoubou Djima 

1 Introduction 

The extreme challenges of modern data analysis can be caused not just by the size 
of data sets but also by the inherent complexity of this data. Often, this data is mul-
timodal, with modes representing measurements along different dimensions, e.g., 
spatial and temporal dimensions of video data or word and document dimensions of 
text corpora data. Such data is naturally formatted as a tensor, a multidimensional 
array, or, in other words, a higher-order generalization of a matrix. In a tensor, the 
number of dimensions (or modes) is called the order of the tensor; the higher the 
tensor order, the higher the complexity. Because the development of data analytic 
methods for tensor data is far behind that for matrices, practitioners must frequently 
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first transform their tensor data and apply inadequate matrix-based methods that 
ignore the natural, unified structure of the data as tensor. 

Many data analytic problems in the realm of tensors come with a unique set of 
challenges not encountered for analogous tasks for matrix (lower-order tensor) data. 
For example, the notion of tensor rank is not uniquely defined [33], unlike the rank 
of matrices. Further, the various definitions of tensor rank are not computable in 
polynomial time [27], as opposed to the case of matrices. The landscape is far more 
complex for tensor data; computations with tensor data often remain challenging 
even when their matrix counterparts can be taught in introductory linear algebra 
courses. 

Solving large-scale systems of linear equations or linear regressions is one of the 
most commonly encountered problems across the data-rich sciences. This problem 
arises in machine learning, as subroutines of several optimization methods [7], in 
medical imaging [18, 26], in sensor networks [61], and in statistical analysis, to 
name only a few. In the matrix-vector and matrix-matrix regime, this problem is 
very well-understood with many highly efficient methods with provable guarantees 
in the literature. For example, the Kaczmarz method and the Gauss-Seidel method 
are popular and memory-efficient iterative methods that have been well-studied. 
Iterative methods are algorithms that begin with an approximation to the solution 
x(0)

. and then provide a series of improved approximations that converge to the 
solution set. If a system of equations is large, iterative methods are advantageous 
because they allow control of round-off error in contrast to elimination methods, 
such as Gaussian elimination. Additionally, if one can make an accurate initial 
guess (e.g., based on the physical context of the problem), this can lead to faster 
convergence than seen in elimination methods. 

Recently, iterative methods have been proposed for a variety of tensor linear 
systems and regression problems [10, 39, 67]. Tensor regression problems arise 
organically in settings in which the model inputs or outputs are naturally formulated 
as a multidimensional tensor array, and the tensor product governs the dependence 
structure between input and output tensors. Examples include weather and climate 
forecasting, age estimation from medical imaging data or other biomarker informa-
tion, and many others; see [36] for more details and an excellent survey of tensor 
regression models. In this paper, we will be concerned with tensor regression under 
the tensor t-product. Iterative methods for tensor regression can be applied for a 
variety of deblurring [31], denoising [43], and dictionary representation-learning 
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imaging application [50]; each of these can be formulated as a possibly regularized 
tensor regression problem: 

. min
X∈X ‖B−AX‖2

F + �(X) (1) 

where A ∈ Rm×n×p
. is the measurement operator or dictionary, B ∈ Rm×l×p

. 

represents the measurements or data, X ∈ X ⊂ Rn×l×p
. is the signal of interest, 

AX. is the t-product between A., and X. [32] defined in Sect. 2, and �. is a choice of 
regularizer. 

1.1 Contributions 

Our main contributions in this paper are twofold. The first main contribution is to 
provide a survey of the growing area of literature dedicated to iterative methods for 
tensor regression and related problems. This survey is presented in Sect. 3. Our  
second main contribution is to provide new generalizations of iterative methods 
for matrix-vector regression problems to the tensor regime. We first generalize 
the randomized Gauss-Seidel method [34] to tensor linear systems and explore its 
application to consistent systems; see Sect. 4.1. We additionally consider the regime 
in which the linear system is defined by an operator with a given factorization 
and generalize the randomized Kaczmarz variant of [41] to the tensor linear 
system regime; see Sect. 4.2. Finally, we consider tensor linear systems that may 
be corrupted by adversarial perturbations and generalize the quantile randomized 
Kaczmarz method of [22] to the tensor regime; see Sect. 4.3. These three new 
directions are important to explore as the complexity of tensor linear systems 
demands methods tailored to new settings, such as systems defined by “wide" 
operators, systems defined by operators with known factorization, or systems with 
measurements perturbed by corruption. Existing methods in the literature are not yet 
amenable to such domains; our work provides initial methods that can tackle these 
challenging tensor systems. 

We note that our work, and much of the work dealing with iterative methods for 
tensor linear regression, parallels and generalizes the literature dealing with iterative 
methods for matrix-vector linear regression. To help illustrate the parallels in the 
literature, we provide Table 1 and include citations to some relevant literature that 
has motivated our work. 

Table 1 Related literature summary 

Factorized system Column-action Corruption-robust 

Matrix-vector [41] [34] [22] 

Tensor-tensor (t-product) This paper
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1.2 Organization 

We begin with the necessary background, definitions, and notation in Sect. 2. In  
Sect. 3, we present our first main contribution, a survey of iterative methods for 
tensor regression and related problems. In Sect. 4, we present our second main 
contribution, our proposed new iterative methods for tensor regression problems 
in a variety of challenging settings. In Sect. 4.1, we generalize the randomized 
Gauss-Seidel method to the tensor setting and present initial numerical experiments 
illustrating the behavior of the method on systems of a variety of sizes. In Sect. 4.2, 
we generalize the RK-RK method of [41] to tensor linear systems defined with 
factorized operator and present initial numerical experiments illustrating the method 
on a variety of factorized operators. In Sect. 4.3, we present the generalization 
of the quantile randomized Kaczmarz method of [22] to the regime of tensor 
linear systems possibly corrupted adversarily and experiment with this method on 
synthetic corrupted systems. We end with some illustrative numerical experiments 
applying these methods to a simple tensor linear system formulation of the video 
deconvolution problem in Sect. 5. Finally, we present some conclusions and 
discussion of future directions in Sect. 6. 

2 Background and Notation 

2.1 Notation 

We use boldfaced lowercase Latin letters (e.g., x .) to denote vectors, boldfaced 
uppercase Latin letters (e.g., A.) to denote matrices, and boldfaced uppercase 
calligraphic Latin letters (e.g., A.) to denote higher-order tensors. We use lightfaced 
lowercase Latin and Roman letters (e.g., q and β .) to denote scalars. We let [m]. 
denote the set {1, 2, · · · ,m}.. We utilize “MATLAB" notation; e.g., Ai: . is the ith 
row of matrix A. andA:j : . is the j th column-slice of tensor A.. We use  A∗

. to denote 
the conjugate transpose of the tensor A ∈ Cm×n×p

., which is obtained by taking 
the conjugate transpose of each of the frontal slices and then reversing the order of 
transposed frontal slices 2 through p. 

The notation ‖v‖. denotes the Euclidean norm of a vector v . and ‖ · ‖F . the 
Frobenius norm of any tensor input. Throughout, we denote by σmin(A). the smallest 

singular values of the matrix A. (i.e., the smallest eigenvalue of the matrix
√

A�A.). 
We use A ⊗ B . to denote the Kronecker product of matrices A. and B ..
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2.2 Background on Kaczmarz Methods 

Before we begin our survey of iterative methods for tensor regression, we remind 
the reader of one of the most popular and well-studied iterative methods for 
matrix-vector and matrix-matrix regression: the Kaczmarz method. The Kaczmarz 
algorithm aims to find a solution x . of a system of equations Ax = b., where A. 

is an m × n. matrix, x . is a vector of unknowns, and b . is a vector of constants. 
The algorithm iteratively updates the approximation by selecting one equation at 
a time and projecting the current approximation onto the hyperplane defined by 
that equation. This process continues until convergence is reached or a maximum 
number of iterations is reached. The update is defined by 

.x(k) = x(k−1) + bik − Aik :x(k−1)

‖Aik :‖2 A�
ik :, (2) 

where Aik : . is the selected ik .th row of A. and bik . is the selected ik .th entry of b . 

at iteration k. The Kaczmarz method is particularly useful when the system of 
equations is large and sparse, meaning that most entries in the matrix A. are zero. 
It allows for efficient computation by updating the solution one equation at a time, 
making it suitable for problems with a large number of equations. 

In [66], the authors introduced a randomized variant of the Kaczmarz method 
where the probability that the ith row of A. is sampled in the kth iteration 
is ‖Ai:‖2/‖A‖2

F .. The authors showed that for a consistent system with unique 
solution x∗

., the randomized Kaczmarz (RK) method converges at least linearly in 
expectation with the guarantee: 

.E‖x(k) − x∗‖2 ≤
(

1 − σ 2
min(A)

‖A‖2
F

)k

‖x(0) − x∗‖2. (3) 

Many variants and extensions followed, including convergence analyses for incon-
sistent and random linear systems [9, 46], connections to other popular iterative 
algorithms [13, 40, 47, 53, 54], block approaches [48, 55], acceleration and par-
allelization strategies [14, 35, 44, 45], and techniques for reducing noise and 
corruption [21, 81]. Lastly, it is worth noting that there is a clear relationship 
between row-action methods like randomized Kaczmarz and column-action meth-
ods like Gauss-Siedel. It is often the case, however, that when row-action methods 
are more efficient (i.e., the system is over-determined), the methods do not guarantee 
convergence to the least-squares solution without modification, and vice versa for 
column-action methods, which do not converge to the least-norm solution in the 
under-determined case. While not the focus of this paper, the interested reader can 
refer to [25] for a thorough discussion of this relationship and trade-off.
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2.3 Background on Tensor t-Product Algebra 

Before we may discuss the generalization of the Kaczmarz method, and other 
iterative methods, to the tensor regression regime, we require some definitions and 
will discuss the tensor t-product. The first definition is the block-circulant matrix of 
a tensor T., bcirc(T).. For T ∈ Rm×n×p

., we denote by bcirc(T)∈ Rmp×np
. the matrix 

. bcirc(T) =

⎡

⎢⎢⎢
⎣

T0 Tp−1 Tp−2 · · · T1

T1 T0 Tp−1 · · · T2
... · · · ...

Tp−1 Tp−2 Tp−3 · · · T0

⎤

⎥⎥⎥
⎦

We use Tk . to denote the kth frontal slice of T. (i.e., Tk := T::k . is a m × n. matrix). 
Additionally, the t-product is defined in terms of tensor fiber transformation by 

the discrete Fourier transform (DFT). The discrete Fourier transform (DFT) matrix 
of size p × p . is defined as 

. Fp = 1√
p

⎡

⎢⎢⎢⎢⎢
⎣

1 1 1 · · · 1
1 ω ω2 · · · ωp−1

1 ω2 ω4 · · · ω2(p−1)

...
...

...
. . .

...

1 ωp−1 ω2(p−1) · · · ω(p−1)(p−1)

⎤

⎥⎥⎥⎥⎥
⎦

where ω = e
− 2πi

p . is the principal p .-th root of unity. 
The tensor t-product [32] of tensors T ∈ Rm×n×p

. and S ∈ Rn×l×p
. is the tensor 

TS. of dimension m × l × p . given by 

.(TS)[2] := (F ∗
p ⊗ In×n)T̂(Fp ⊗ In×n)S[2], (4) 

where 

. S[2] :=
⎡

⎢
⎣

S1
...

Sp

⎤

⎥
⎦ ∈ Rnp×l

is the unfolding of S. along its second mode, and 

.̂T := (Fp ⊗ Im×m)bcirc(T)(F ∗
p ⊗ In×n) = diag

(
T̂1, . . . , T̂p

)
(5) 

is the circular discrete Fourier transform (DFT) of T. with the p × p . DFT matrix 
Fp ..
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As with matrix-vector linear system iterative methods, the row space and range 
of a given tensor are important concepts for defining and analyzing tensor linear 
system iterative methods. The row space of A. is defined as 

. R(A) = {ATY : Y ∈ Rm×k×p}

If p, k = 1., then R(A). coincides with the row space of the m × n. matrix A.. A  
related space is the k-range space of tensor A., which is defined as 

. rangek(A) = {AY : Y ∈ Rm×k×p}.

Finally, we note that the definition of the t-product implies that a tensor linear 
system may be reformulated as an equivalent linear system. 

Fact 1 The tensor linear system 

. AX = B

is equivalent to the matrix-matrix linear system 

. bcirc(A)X[2] = B[2];

that is, solutions to the tensor linear system, X., after unfolding, X[2] ., are solutions 
to the matrix linear system and vice versa. 

We will exploit this fact to compare iterative methods for tensor linear systems to 
their counterpart iterative methods for matrix linear systems. We note that the data 
in a single row slice of the tensor system AX = B. is distributed among a block 
of rows of the equivalent matricized system bcirc(A)X[2] = B[2] .. Row-slice-action 
methods on the tensor system AX = B. are equivalent to carefully constructed 
row-block-action methods on the matricized system bcirc(A)X[2] = B[2] ..  In the  
matrix setting, there has been interest in understanding and solving structured linear 
regression problems defined with block-circulant matrices [4]. It is also pertinent to 
note that block circulant matrices naturally pop up in many applications including 
computer vision, vibration analysis [51], and time series analysis [52]. 

3 Survey of Related Work for Tensor Regression 

In this section, we survey existing literature on methods and models for tensor 
regression. This survey is certainly not exhaustive and is focused on iterative 
methods for tensor regression and related problems under the t-product. The t-
product was defined in the foundational work [32] as the product between two 
three-order tensors. The authors subsequently derived formulations of the associated 
tensor identity, inverse, pseudoinverse, and transpose and extended orthogonal
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matrix factorizations such as the SVD and QR factorizations to tensors. The t-
product has gained significant traction and is now being applied in dictionary 
learning [50, 64, 76], low-rank tensor completion [62, 77, 78, 80], low-rank tensor 
recovery [10], facial recognition [23, 74], and neural networks [49, 71]. The t-
product-based decompositions have been shown to be more efficient than their 
equivalent matrix formulations in many multimodal settings [38, 78]. 

3.1 Consistent Tensor Linear Systems 

In [39], A. Ma and D. Molitor proposed the generalization of the randomized Kacz-
marz method for tensor linear systems defined under the t-product, called tensor 
randomized Kaczmarz (TRK). This method begins with an initial approximation 
X(0)

. to the solution X∗
. to the tensor linear systemAX = B. and iteratively samples 

a row slice of the system defined byAik :: . and Bik :: . and projects the previous iterate 
onto the space of solutions to this sampled subsystem. The pseudocode is provided 
in Algorithm 1. The authors prove that this method converges at least linearly in 
expectation to the unique solution X∗

. of the system. 

Algorithm 1 Tensor Randomized Kaczmarz (TRK) [39] 
1: procedure TRK(A, B,  K) 
2: X(0) = 0 
3: for k = 1,  .  .  .  ,  K  do 
4: Sample ik ∈ [m]. 
5: X(k) = X(k−1) −A∗

ik ::(Aik ::A∗
ik ::)

−1(Aik ::X(k−1) − Bi k ::) 
6: end for 
7: return X(K) 

8: end pr ocedure

Further, the authors observed that, while the TRK method can equivalently be 
viewed as a block Kaczmarz method applied to a matrix-matrix system for a specific 
choice of blocks, a naive application of the block Kaczmarz method would give 
us weaker theoretical guarantees than the one that TRK provides. This highlights 
the advantage of exploiting the intrinsic structure of the data by using row-slice or 
column-slice-action-based updates over their matrix counterparts. 

In [3], W. Bao, F. Zhang, W. Li, Q. Wang, and Y. Gao compute the least 
Frobenius-norm solution for consistent tensor linear systems of the form 

.AX = B, (6) 

where A ∈ Rm×n×p
., X ∈ Rn×l×p

., and B ∈ Rm×l×p
.. The authors propose the 

tensor randomized average Kaczmarz (TRAK) method, which is pseudoinverse- and 
inverse-free and offers a speed-up over the TRK method for solving tensor linear
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systems (6); see Algorithm 2 for the pseudocode of the TRAK method. The authors 
prove that the iterates X(k)

. converge at least linearly in expectation to the unique 
least Frobenius-norm solution X∗ = A†B.. 

Algorithm 2 Tensor Randomized Average Kaczmarz (TRAK) [3] 
1: procedure TRAK(A, B, K, stepsize α  >  0, partition {Ji}s i=1 of [m]) 
2: X(0) ∈ rangel(AT ) 
3: for k = 1,  .  .  .  ,  K  do 
4: Sample ik ∈ [s] with probability ‖AJik

::‖2 
F /‖A‖2 

F . 

5: X(k) = X(k−1) − α

‖AJik ::‖
2 
F 
(AJik

::)T (Ai k ::X(k−1) − Bik ::) 

6: end for return X(K) 

7: end p rocedure

In [68], L. Tang, Y. Yu, Y. Zhang, and H. Li. consider the consistent tensor linear 
equation: 

.AXB = C (7) 

for given third-order tensors A ∈ Rm×r×p
., B ∈ Rs×n×p

., and C ∈ Rm×n×p
.. 

They propose the tensor regular sketch-and-project method, TESP for short. In this 
approach, one takes the point that is closest to the current iteration X(k)

. and solves 
a sketched version of the original tensor equation (7) as the next iteration X(k+1)

. 

as described in Algorithm 3. It is shown that the iterates X(k)
. converge linearly in 

expectation to a solution X�
. of the systemAX�B = C.. 

Algorithm 3 Tensor Regular Sketch-and-Project Algorithm (TESP) [68] 
1: procedure TESP(A,B, C, K) 
2: X(0) ∈ Rr×s×p 

3: for k = 1,  .  .  .  ,  K  do 
4: Sample independent copies S ∼ DS and V ∼ DV 
5: Compute E = S(STAM−1ATS)†ST and G = V(VTBTN−1BV)†VT 

6: X(k) = X(k−1) −M−1AT E(AX(k−1)B− C)GBT N−1 

7: end for return X(K) 

8: end pro cedure

3.2 Inconsistent Tensor Linear Systems 

In [31], M. Kilmer, K. Braman, N. Hao, and R. Hoover generalize a number 
of linear algebraic algorithms to the t-product tensor algebra. They define the 
conjugate gradient method for this regime and illustrate a number of applications
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for this method, including image deconvolution. The pseudocode for this method 
is provided in Algorithm 4. This method can, of course, be applied to consistent 
linear systems defined by positive definite operators and is additionally appropriate 
for arbitrary (inconsistent) tensor systems by passing to the normal equations, 
A�AX = A�B.. 

Algorithm 4 Tensor Conjugate Gradient (TCG) [31] 
1: procedure TCG(A, B,  K) 
2: X(0) = 0 �A assumed positive definite 
3: R = B 
4: P = R 
5: for k = 1,  .  .  .  ,  K  do 
6: R′ = R 
7: C = (P�AP)−1R�R 
8: X(k) = X(k−1) + PC 
9: R = R′ −APC 

10: D = ((R′)�R′)−1 R�R 
11: P = R+ PD 
12: end for 
13: return X(K) 

14: end pr ocedure

In [28], G.-X. Huang and S.-Y. Zhong propose an extended variant of TRK, 
which they refer to as the tensor randomized extended Kaczmarz (TREK) method; 
see Algorithm 5 for the method pseudocode. The authors prove that the iterates 
converge at least linearly in expectation to the solution of the unperturbed tensor 
system. 

Algorithm 5 Tensor Randomized Extended Kaczmarz (TREK) [28] 
1: procedure TREK(A, B,  K) 
2: X(0) = 0 
3: Z(0) = B 
4: for k = 1,  .  .  .  ,  K  do 
5: Sample jk ∈ [n] 
6: Z(k) = Z(k−1) −A:jk :(A∗:jk :A:jk :)†A∗:jk :Z

(k−1) 

7: Sample ik ∈ [m]. 
8: X(k) = X(k−1) −A∗

ik ::(Aik ::A∗
ik ::)

†(Aik ::X(k−1) − Bik :: +Z(k) 
ik ::) 

9: end for 
10: return X(K) 

11: end procedure
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3.3 Convex Optimization over Linear System Constraints 

In [10], X. Chen and J. Qin study how to recover X. in the consistent and under-
determined systemAX = B., whereA ∈ Rm×n×p,X ∈ Rn×l×p

., and B ∈ Rm×l×p
., 

by solving the minimization: 

. argmin
X∈Rn×l×p

f (X), s.t. AX = B, (8) 

where f is an αf .-strongly convex function. To solve this linear constrained 
minimization problem, they propose a general regularized Kaczmarz tensor algo-
rithm, which involves random projections onto the solution space of individual 
equations, and a gradient calculation on the convex conjugate function of f , f ∗

.. 
The pseudocode for their method is given in Algorithm 6. The authors prove 
Algorithm 6 enjoys a linear convergence rate in expectation if the objective function 
f is αf . strongly convex and admissible. We note that the authors additionally 
provide a deterministic algorithm, but we do not present this algorithm in detail. 
They additionally consider a variety of problems and applications, including sparse 
and low-rank recovery and image deconvolution or deblurring. 

Algorithm 6 Tensor Randomized Regularized Kaczmarz (TRRK) [10] 
1: procedure TRRK(A,B,  K,  tolerance tol, stepsize t) 
2: Z(0) ∈ R(A) 
3: X(0) = ∇f ∗(Z(0) ) 
4: for k = 1,  .  .  .  ,  K  do 
5: Sample i(k) with probability ‖A(i(k))‖2 

F /‖A‖2 
F . 

6: Z(k) = Z(k−1) + tA(i(k))T B(i(k))−A(i(k))X(k−1)

‖A(i(k))‖2 
F 

7: X(k) = ∇f ∗(Z(k−1) ) 
8: If ‖X(k) − X(k−1)‖F /‖X(k−1)‖F <  tol, return X(k−1). 
9: end for return X(K) 

10: end p rocedure

In [12], Kui Du and Xiao-Hui Sun assume that the linear system AX = B. is 
inconsistent and therefore considers the constrained minimization problem: 

.X̂ = arg min
X∈Rn×l×p

f (X) s.t. ATAX = ATB. (9) 

The authors propose the tensor randomized regularized extended Kaczmarz 
(TRREK) method; see Algorithm 7 for the pseudocode. If f is a strongly admissible 
and γ .-strongly convex function, then the TRREK algorithm converges linearly in 
expectation to the solution X̂. of the least-squares problem (9). Their method is an 
extended generalization of that in [10], which allows it to pass below the usual 
convergence horizon of a Kaczmarz-type method.
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Algorithm 7 Tensor Randomized Regularized Extended Kaczmarz (TRREK) [12] 
1: procedure TRREK(A,B, K, stepsizes α
,  αc > 0) 
2: Z(0) = B, Y(0) ∈ rangel(AT ), X(0) = ∇f ∗(Y(0) ). 
3: for k = 1,  .  .  .  ,  K  do 
4: Sample jk ∈ [n] with probability ‖A:jk :‖2 

F /‖A‖2 
F . 

5: Z(k) = Z(k−1) − αc

‖A:jk :‖2 
F 
A:jk :(A:ik :)TZ(k−1) 

6: Sample ik ∈ [m] with probability ‖A:ik :‖2 
F /‖A‖2 

F . 

7: Y(k) = Y(k−1) − α


‖Aik ::‖2 
F 
(A:jk :)T (Aik ::X(k−1) − B ik :: +Z(k) 

ik ::) 

8: X(k) = ∇f ∗(Y(k) ) 
9: end for return X(K) 

10: end procedure

3.4 Regression Under Other Tensor Products 

While the focus of this paper is linear tensor regression under the t-product, there 
has been work dealing with tensor regression under other tensor products. Broadly, 
this work tends to be focused either on frameworks or models of tensor regression, 
on algorithmic approaches for training or fitting a given tensor regression model, on 
applications of these models, or combinations of these. In [37], the authors propose 
a framework for the linear tensor regression problem under the contracted tensor 
product. In [73], the authors introduce and analyze a subsampled tensor projected 
gradient method for tensor regression. In [79], the authors propose a family of rank-
R generalized linear tensor regression models and suggest training this model with 
an alternating block relaxation method. The survey [36] contains a good overview 
of the broad class of tensor regression models, training methods, and application 
of these techniques. More generally, many tensor decomposition training methods 
utilize an alternating optimization scheme in which they solve subproblems holding 
all but one factor fixed. These subproblems are special instances of tensor regression 
problems that can occasionally be rewritten to ordinary least-squares problems; see, 
e.g., [8, 24, 33]. 

4 Proposed Iterative Methods for Tensor Linear Systems 

In this section, we provide new approaches for tensor linear systems in a variety of 
scenarios. First, in Sect. 4.1, we propose randomized column-slice-action iterative 
methods for tensor linear systems, which are especially important for systems 
where the measurement tensor is smaller than the signal tensor. In Sect. 4.2, we  
provide randomized iterative methods for tensor linear systems with a factorized 
measurement operator. Finally, in Sect. 4.3, we propose randomized iterative 
methods for tensor linear systems that are robust to sparse adversarial corruptions 
in the measurement tensor.
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4.1 Column-Slice-Action Methods 

While the row-oriented Kaczmarz-type methods are being actively explored in the 
tensor regression setting, coordinate-wise or column-action methods have been 
considered far less in the literature. The benefit of developing a column-action 
method is clear in situations where row slices of the measurement tensor are 
extremely large and cannot be stored in active memory, or the tensor data is naturally 
stored in column-slice components (e.g., distributed across computational servers or 
priority indexed by column). In this setting, accessing column-slices of the tensor 
may be the only reliable form of data access available. We will generalize classical 
column-action methods for matrix-vector systems, the Jacobi and Gauss-Seidel 
methods. First, we will describe how the Jacobi and Gauss-Seidel methods solve 
a linear system by operating on columns and show that randomized Gauss-Seidel 
(RGS) can be viewed as a variant of these methods applied to the normal equations. 
In [34], the authors prove that the residuals of randomized RGS converge linearly 
in expectation, yielding an improvement over the convergence rate in the classical 
settings. 

Classical Gauss-Seidel Method The classical Jacobi and Gauss-Seidel methods are 
iterative methods used to solve a system of linear equations Ax = b ., where the 
square matrix A. and the vector b. are known and the goal is to approximate x .. The  
Gauss-Seidel method was developed in the 1800s and is considered one of the first 
iterative methods developed [60]. It is taught in undergraduate numerical method 
courses and is similar to the Jacobi method, with the main difference being when 
updates are applied. 

When considering Ax = b., the matrix A. is decomposed into the sum of a strictly 
lower triangular matrix L., a diagonal matrix D ., and a strictly upper triangular matrix 
U ., A = D + L + U .. This allows the system of linear equations to be rewritten as 
Dx+Lx+Ux = b .. The Jacobi method exploits this rewritten system and produces 
a fixed-point iterative method on the fixed-point equation Dx = −(L + U)x + b. of 
the form 

. x(k) = −D−1(L + U)x(k−1) + D−1b.

Entry-wise, this takes the form 

. x
(k)
i = − 1

Aii

∑

j �=i

Aijx
(k−1)
j + 1

Aii

bi .

The Gauss-Seidel method, meanwhile, uses the fixed-point equation: (D + L)x =
−Ux + b. to construct the fixed-point iterative method 

.x(k) = −(D + L)−1Ux(k−1) + (D + L)−1b.
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This is equivalent to x(k) = −D−1Lx(k) − D−1Ux(k−1) + D−1b ., which takes the 
following form entry-wise: 

. x
(k)
i = − 1

Aii

i−1∑

j=1

Aijx
(k)
j − 1

Aii

n∑

j=i+1

Aijx
(k−1)
j + 1

Aii

bi .

The convergence properties of the Jacobi and Gauss-Seidel method are dependent on 
the properties of the matrix A., specifically upon the spectral radius of the matrices 
involved in the Jacobi and Gauss-Seidel updates, −D−1(L+U).and −(D+L)−1U ., 
respectively. 

Randomized Gauss-Seidel (RGS) Method In the recent literature, the method 
referred to as randomized Gauss-Seidel is, in fact, a variant of randomized coor-
dinate descent applied to the least-squares objective. We note that this can be 
viewed as a variant of either Jacobi’s method or Gauss-Seidel applied to the normal 
equations A�Ax = A�b. in which only a single coordinate is updated. This 
method iterates by minimizing a subset of the residual error with respect to a single 
coordinate; the kth iterate is 

.x(k) = x(k−1) − AT:ik (Ax(k−1) − b)

‖A:ik‖2 eik , , (10) 

where A:ik . is the ik .th column of A.. These methods have found success in 
subroutines for multigrid methods [59, 69], high-performance computing [72], and 
PDEs [16, 42]. Here, the probability that the j th column of A. is sampled in the 
kth iteration is ‖A:j‖2/‖A‖2

F .; that is, the probability is proportional to the square 
of the Euclidean norm of the column [34]. The algorithm has an expected linear 
convergence rate [34] given by 

.E‖x(k) − x∗‖2 ≤
(

1 − σ 2
min(A)

‖A‖2
F

)k

‖x(0) − x∗‖2. (11) 

This method and variants have additionally been analyzed in [15, 40, 57]. 

Extension to Tensor Settings We now consider the consistent tensor linear system 
AX = B., whereB ∈ Cm×l×p

.,A ∈ Cm×n×p
., andX ∈ Cn×l×p

.. We have formulated 
the tensor version of the randomized Gauss-Seidel for this setting: 

.X(k) = X(k−1) − Ej (A∗:j :A:j :)−1A∗:j :(AX(k−1) − B) (12) 

with X(k)
. and X(k−1)

. in Cn×l×p
., Ej . in Cn×1×p

. a vertical slice tensor with the first 
frontal slice being a standard basis vector ej . with a 1 in the j th  coordinate and 0’s 
elsewhere and the rest of the frontal slices are all vectors of zeros,A∗:j : . in C

1×m×p
.,



Randomized Iterative Methods for Tensor Regression Under the t-Product 17

A:j : . in Cm×1×p
., and j is a uniformly sampled column index from the set of i ndices

[n].. We give the pseudocode for this method in Algorithm 8. 

Algorithm 8 Tensor Randomized Gauss-Seidel (TRGS) 
procedure TRGS(A, B, K) 
X(0) = 0, R(0) = AX(0) − B 
for k = 1, 2, ..., K do

Sample jk ∈ [n ] 
X(k) = X(k−1) − Ejk (A∗:jk :A:jk :)−1A∗:jk :R

(k −1) 

R(k) = AX(k) − B 
end for return X(K) 

end procedure 

Comparing TRGS to Matrix Method and TRK The performance of our proposed 
TRGS algorithm was studied empirically on synthetic data. In the first experiment, 
we compared the performance of the TRGS to TRK method. In Fig. 1, we consider 
tensor A ∈ R50×20×30

. generated with i.i.d. random Gaussian entries and tensor X∗
. 

the same as described above. It looks like TRGS and TRK perform in a very similar 
manner. 

In the second suite of experiments, tensors A ∈ Rm×20×30
. and X∗ ∈ R20×10×30

. 

were generated with i.i.d. random Gaussian entries. Different cases spanning the 
under-determined and over-determined setting of the problem were considered by 
varying m, the dimension of the first mode of tensor A. as tabulated in Table 2. In  
Figs. 2, 3, 4, 5, 6, we compare the performance of our TRGS algorithm with that 
of matrix RGS on the equivalent system, bcirc(A)X[2] = B[2] ., defined in Fact 1. 
Throughout these experiments, the matricized error is ‖(X(k) −X∗)[2]‖/‖X∗[2]‖.; the  

matricized least-norm error is ‖(X(k) − XLN)[2]‖/‖(XLN)[2]‖., where XLN . is the 
least-norm solution; and the matricized residual error is ‖bcirc(A)X(k)

[2] − B[2]‖.. 
In the under-determined setting (Cases 1–2), we see that TRGS performs better, 
as evidenced by the rapid convergence of the residual error. This suggests that the 
TRGS converges to a solution of the system, but the nature of this solution is unclear 
and a potential direction of our future work. In the over-determined setting (Cases 

Fig. 1 Relative error of 
solution, 
‖X(k) − X∗‖F /‖X∗‖F ., over 
all iterations of TRK and 
TRGS forA ∈ R50×20×30 . 
where X(k) . are iterates and 
X∗ . is the exact solution
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Table 2 Cases of the numerical experiments of RGS algorithm on various sizes of tensor A.. The  
dimensions of the X. were 20 × 10 × 30., the same for all the cases 

Under-determined Over-determined 

Case 1: Fig. 2 A ∈ R15×20×30 . Case 3: Fig. 4 A ∈ R40×20×30 . 

Case 2: Fig. 3 A ∈ R10×20×30 . Case 4: Fig. 5 A ∈ R30×20×30 . 

Case 5: Fig. 6 A ∈ R20×20×30 . 

Fig. 2 Relative (left) and residual (right) solution error with iterations for TRGS and matrix RGS 
(on bcirc(A)X[2] = B[2] .) for tensor system from Case 1 from Table 2 (A ∈ R15×20×30 . under-
determined), where X(k) . are iterates, X∗ . is the exact solution, and XLN . is the least-norm solution 

Fig. 3 Relative (left) and residual (right) solution error with iterations for TRGS and matrix RGS 
(on bcirc(A)X[2] = B[2] .) for tensor system from Case 2 from Table 2 (A ∈ R10×20×30 . under-
determined), where X(k) . are iterates, X∗ . is the exact solution, and XLN . is the least-norm solution 

3–5), TRGS exhibits faster convergence to the true solution over matrix RGS. In 
fact, it was able to recover the exact solution (up to machine precision) in Case 3, 
which corresponds to a highly over-determined system.
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Fig. 4 Relative (left) and residual (right) solution error with iterations for TRGS and matrix RGS 
(on bcirc(A)X[2] = B[2] .) for tensor system from Case 3 from Table 2 (A ∈ R40×20×30 . over-
determined), where X(k) . are iterates, X∗ . is the exact solution, and XLN . is the least-norm solution 

Fig. 5 Relative (left) and residual (right) solution error with iterations for TRGS and matrix RGS 
(on bcirc(A)X[2] = B[2] .) for tensor system from Case 4 from Table 2 (A ∈ R30×20×30 . over-
determined), where X(k) . are iterates and X∗ . is the exact unique solution 

Fig. 6 Relative (left) and residual (right) solution error with iterations for TRGS and matrix RGS 
(on bcirc(A)X[2] = B[2] .) for tensor system from Case 5 from Table 2 (A ∈ R20×20×30 . over-
determined), where X(k) . are iterates and X∗ . is the exact unique solution
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4.2 Tensor Regression with Factorized Measurement Operator 

We now turn our attention to problems in which the measurement operator is 
given by the product of two tensor operators. This setting naturally occurs in some 
applications, such as image deblurring with two known blurring operators [31], or 
can be statistically motivated when the measurement matrix A. has an intrinsic low 
dimension. In that case, an SVD can be used to replace A. by its lower-dimensional 
representation. Reducing computational costs can also drive the use of a product 
of the type (13) in lieu of A. [17]. For example, algorithms for low-rank matrix 
completion, such as alternating minimization, include a step where a low-rank A. is 
decomposed into two matrices U . and V ., ideally with r < min(m, n)., and proceed 
with working with the smaller matrices instead of the original measurement matrix. 

Existing Approaches to Regression with Factorized Measurement Operator For 
matrices, the problem can be formally stated as follows: solve the system Ax = b ., 
where A ∈ Rm×n

. comes in the product form A = UV ., where U ∈ Rm×r
. and 

V ∈ Rr×n
.. In [41], the authors consider the system Ax = b. in the form 

.UV x = b, (13) 

which they solve in multi-steps by tackling the associated subsystems 

.Uz = b, (14) 

and 

.V x = z (15) 

using an algorithm that interlaces the steps of the Kaczmarz method applied to each 
individual system. 

The authors in [41] develop the two algorithms described below, RK-RK and 
REK-RK, that find the optimal solution for (13) using the factors of A.. Both  
methods, which are variants of the randomized Kaczmarz method in [66], solve 
the systems (14) and (15) by interlacing Kaczmarz steps. That is, instead of first 
finding the solution of (14) iteratively and then using this solution to solve (15) in 
a subsequent sequence of iterations, we compute updates for both systems in each 
iteration of our algorithm such that the most recent update for z(k)

. is employed to 
evaluate the next update x(k)

.. This leads to a more efficient algorithm [41]. 
The variant RK-RK focuses on a consistent system Ax = b ., while REK-RK 

deals with the case in which Ax = b . is inconsistent. Note that the latter method 
draws from REK, an extension of RK proposed by [81] to produce the optimal 
solution for any system (with linear convergence for both inconsistent systems and 
consistent systems) following the demonstration in [46] that RK may not yield the 
optimal solution for the inconsistent system—it is only guaranteed to converge to 
within a radius of convergence of this solution.
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Algorithm 9 Matrix RK-RK [41] 
1: procedure RK-RK(U , V , b ,  K  )
2: z(0) = 0 
3: x(0) = 0 
4: for k = 1,  .  .  .  ,  K  do 
5: Sample ik with probability ‖U ik :‖2 

2/‖U‖2 
F . 

6: z(k) = z(k−1) − U∗
ik : 

(U ik :z(k−1)−bik )

‖U i k :‖2 
2 

7: Sample jk with probability ‖V jk :‖2 
2/‖V ‖2 

F . 

8: x(k) = x(k−1) − V ∗jk : 
(V jk :x(k−1)−z (k) 

jk 
) 

‖V jk ‖2 
2

9: end for return x(K) 

10: end procedure 

Algorithm 10 Matrix REK-RK [41] 
1: procedure REK-RK(U , V , b ,  K  )
2: z(0) = 0 
3: x(0) = 0 
4: w(0) = b 
5: for k = 1,  .  .  .  ,  K  do 
6: Sample ik with probability ‖U ik :‖2 

2/‖U‖2 
F . 

7: Sample jk with probability ‖U :jk
‖2 

2/‖U‖2 
F 

8: w(k) = w(k−1) − U :jk 

U∗:jk 
w(k−1)

‖U : jk ‖2 
2 

9: z(k) = z(k−1) − U∗
ik : 

(U ik :z(k−1)−yik )

‖U i k :‖2 
2 

10: Sample jk with probability ‖V jk :‖2 
2/‖V ‖2 

F . 

11: x(k) = x(k−1) − V ∗jk : 
(V jk :x(k−1)−z (k) 

jk 
) 

‖V jk ‖2 
2

12: end for return x(K) 

13: end procedure 

Extension to Tensor Settings In this section, we study methods for consistent 
tensor systems; hence, we will focus on generalizing RK-RK to the tensor setting. 
Our generalization will build upon TRK (Algorithm 1) and the factorized RK 
method (Algorithm 9) [41]. We propose the factorized tensor randomized Kaczmarz 
(FacTRK) procedure for solving a factorized system: 

. UVX = B,

whereU ∈ Rm×r×p,V ∈ Rr×n×p
., X ∈ Rn×l×p

. and B ∈ Rm×l×p,. by alternatively 
applying tensor RK to the two systems UZ = B,. and VX = Z.. The pseudocode 
for FacTRK is provided in Algorithm 11. 

Comparing FacTRK to Matrix Method and TRK We begin with a comparison of 
FacTRK (updates using U. and V.) to TRK (updates usingA = UV.) on a consistent 
tensor linear system. Figure 7 compares the performance of our algorithm FacTRK,
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Fig. 7 Residual error against 
iterations for FacTRK vs. 
TRK 

Algorithm 11 Factorized Tensor Randomized Kaczmarz (FacTRK) 
1: procedure FACTRK(U,V, B,  K  ) 
2: Z(0) = 0 
3: X(0) = 0 
4: for k = 1,  .  .  .  ,  K  do 
5: Sample ik ∈ [m] . 
6: Z(k) = Z(k−1) −U∗

ik ::(Uik ::U∗
ik ::)

−1(Uik ::Z(k−1) − Bi k ::) 
7: Sample jk ∈ [r] . 
8: X(k) = X(k−1) −V∗

jk ::(Vjk ::V∗
jk ::)

−1(Vjk ::X(k−1) −Z(k) 
j k ::) 

9: end for return X(K) 

10: end procedure 

Algorithm 11, with TRK, Algorithm 1, for solving the t-product linear system 
AX = B., where A = UV.. Here, we generate tensors U ∈ R50×10×30,V ∈
R

10×5×30
. with i.i.d. Gaussian normal entries and generate A ∈ R

50×5×30
. as 

A = UV.. We construct X ∈ R5×7×30
. with i.i.d. Gaussian normal entries and 

construct a consistent linear system by settingB = AX.. We perform 2000 iterations 
of each algorithm and measure the residual error ‖AX(k) − B‖2

F . in each iteration. 
The numerical results suggest that FacTRK gains a computational advantage by 
exploiting the factorization over naively applying TRK. 

Next, we compare FacTRK to the matrix RK-RK algorithm applied to the equiv-
alent matrix system, bcirc(U)bcirc(V)X[2] = B[2] ., defined in Fact 1 for a suite of 
examples. The following table describes different cases for numerical experiments 
that compare FacTRK and matrix RK-RK (Algorithm 9) for solving t-linear system 
UVX = B. where U ∈ Rm×r×p,V ∈ Rr×n×p

. and A = UV ∈ Rm×n×p
.. 

Throughout these experiments, the matricized error is ‖(X(k) −X∗)[2]‖/‖X∗[2]‖. and 

the matricized residual error is ‖bcirc(U)bcirc(V)X(k)
[2] − B[2]‖.. We notice that 

in every case, FacTRK enjoys faster decreasing residual error than that of matrix 
RK-RK. In every case, except those where U. is under-determined and V. is over-
determined, the residual error follows a generally decreasing trend and does not 
approach a nonzero (numerically) horizon. We additionally note that in the cases in 
which U. and A. are both under-determined, the relative errors of FacTRK appear 
to be worse than those of matrix RK-RK for late iterations. We hypothesize that 
tensor methods require fewer iterations and in fact the shapes of the error curves are



Randomized Iterative Methods for Tensor Regression Under the t-Product 23

Table 3 Cases of the numerical experiments of FacTRK and matrix RK-RK algorithms on various 
sizes of tensors A., U., and  V.. The dimensions of the X. were 20 × 10 × 30., the same for all the 
cases. We indicate those cases that are impossible to form with “–” 

U. under-
determined V. 
under-
determined 

U. over-
determined V. 
over-
determined 

U. over-
determined V. 
under-
determined 

U. under-
determined V. 
over-
determinedCases 

1.A ∈ R15×20×30 . 
under-determined 

r = 17. Fig. 8 
(left) 

– r = 10. Fig. 8 
(center) 

r = 25. Fig. 8 
(right) 

2.A ∈ R10×20×30 . 
under-determined 

r = 15. Fig. 9 
(left) 

– r = 5. Fig. 9 
(center) 

r = 25. Fig. 9 
(right) 

3.A ∈ R40×20×30 . 
over-determined 

– r = 30. 
Fig. 10 (left) 

r = 15. 
Fig. 10 
(center) 

r = 45. 
Fig. 10 (right) 

4.A ∈ R30×20×30 . 
over-determined 

– r = 25. 
Fig. 11 (left) 

r = 15. 
Fig. 11 
(center) 

r = 35. 
Fig. 11 (right) 

5.A ∈ R20×20×30 . 
over-determined 

– r = 20. 
Fig. 12 

– – 

the same, and only matricized methods require more iterations to achieve the same 
errors as the tensor method. This is due to the fact that matrix RK-RK accesses 
significantly less of the problem defining data than FacTRK, since the matricization 
spreads the data from a single row slice of the tensor systemAX = B. into a block of 
rows in the equivalent matrix system bcirc(A)X[2] = B[2] .. Outside of the four cases 
where U. and A. are both under-determined, the relative error of FacTRK decreases 
at least as quickly as that of matrix RK-RK. 

4.3 Tensor Regression with Adversarial Corruption 

We now consider the challenging setting in which the tensor linear system has 
arbitrary and even possibly adversarial corruptions and develop iterative methods 
that are robust to such corruptions. This setting is relevant in most modern applica-
tions where measurements must be collected, stored, and repeatedly accessed. These 
steps often introduce transmission or transcription corruption into the data; on any 
one instance, this corruption is rare, but across a large-scale tensor, corruption is 
likely and could be of arbitrary size. Because these corruptions could be quite large, 
running a standard least-squares solver will likely not give a solution anywhere near 
the desired solution. 

Simple iterative methods like the Kaczmarz method are prime candidates for 
corruption-robust methods [20–22]. The information calculated within an iteration 
(e.g., residual entries) can often additionally provide information about the geom-
etry of the problem, the trustworthiness of data, and the nearness and existence
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Fig. 8 Relative (top) and residual (bottom) solution error versus iterations for FacTRK and matrix 
RK-RK (on equivalent system bcirc(U)bcirc(V)X[2] = B[2] . defined in Fact 1) for systems from 
Case 1 in Table 3 (A ∈ R15×20×30 . under-determined), where X(k) . are iterates, X∗ . is the exact 
solution, and XLN . is the least-norm solution. (Left) r = 17., U. under-determined, V. under-
determined; (Center) r = 10., U. over-determined, V. under-determined; (Right) r = 25., U. 
under-determined, V. over-determined 

Fig. 9 Relative (top) and residual (bottom) solution error versus iterations for FacTRK and matrix 
RK-RK (on equivalent system bcirc(U)bcirc(V)X[2] = B[2] . defined in Fact 1) for systems from 
Case 2 in Table 3 (A ∈ R10×20×30 . under-determined), where X(k) . are iterates, X∗ . is the exact 
solution, and XLN . is the least-norm solution. (Left) r = 15., U. under-determined, V. under-
determined; (Center) r = 5., U. over-determined, V. under-determined; (Right) r = 25., U. 
under-determined, V. over-determined
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Fig. 10 Relative (top) and residual (bottom) solution error versus iterations for FacTRK and 
matrix RK-RK (on equivalent system bcirc(U)bcirc(V)X[2] = B[2] . defined in Fact 1) for systems 
from Case 3 in Table 3 (A ∈ R40×20×30 . over-determined), where X(k) . are iterates, X∗ . is the 
exact solution, and XLN . is the least-norm solution. (Left) r = 30., U. over-determined, V. over-
determined; (Center) r = 15., U. over-determined, V. under-determined; (Right) r = 45., U. 
under-determined, V. over-determined 

Fig. 11 Relative (top) and residual (bottom) solution error versus iterations for FacTRK and 
matrix RK-RK (on equivalent system bcirc(U)bcirc(V)X[2] = B[2] . defined in Fact 1) for systems 
from Case 4 in Table 3 (A ∈ R30×20×30 . over-determined), where X(k) . are iterates, X∗ . is the 
exact solution, and XLN . is the least-norm solution. (Left) r = 25., U. over-determined, V. over-
determined; (Center) r = 15., U. over-determined, V. under-determined; (Right) r = 35., U. 
under-determined, V. over-determined
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Fig. 12 Relative (left) and residual (right) solution error versus iterations for FacTRK and matrix 
RK-RK (on equivalent system bcirc(U)bcirc(V)X[2] = B[2] . defined in Fact 1) for system with 
r = 20. from Case 5 in Table 3 (A ∈ R20×20×30,U,. and V. over-determined), where X(k) . are 
iterates, X∗ . is the exact solution, and XLN . is the least-norm solution 

of a solution. It has become common to aggregate information across multiple 
iterations to attempt to mitigate the effect of benign noise [2, 44], but variants using 
this information to avoid the devastating effects of adversarial corruption in the 
problem-defining data are newer and less well-understood [11, 22, 63, 65]. Since 
these problems arise in medical imaging, sensor networks, error correction, and 
data science, the effects of adversarial corruptions in the data could be catastrophic 
downstream. An ill-timed update using corrupted data can destroy the valuable 
information learned by many updates produced with uncorrupted data, making 
iterative methods challenging to employ on large-scale data. 

Existing Statistical Approaches to Adversarial Corruption Since arbitrary corrup-
tions can be quite large, simply ignoring them and hoping for convergence is not 
realistic. On the other hand, given that the corruptions can be large, iterative steps 
that encounter such a corruption should be statistically different than non-affected 
iterative steps. This notion is what lies behind current methods for the matrix 
case that tolerate large corruptions [11, 22, 63, 65]. This approach, coined quantile 
randomized Kaczmarz (QRK), utilizes the residual error, Ax(k) − b., where x(k)

. 

is the current iterate, to detect outliers corresponding to corruptions. If a residual 
entry has magnitude above a certain quantile of all residuals, that entry is deemed 
unreliable, and its corresponding hyperplane will be rejected if selected in that 
iteration. The QRK method shows reliable convergence to the true solution of the 
uncorrupted system under mild assumptions on the number of corruptions both 
empirically and theoretically. 

Some QRK follow-up works considered the case when sparse corruptions are 
mixed with small noise [29, 75], gave an alternative approach for the convergence 
proof [65], and considered a variant of the algorithm in which the quantile is 
computed from only a subsample of the residual [19]. Additionally, there has been 
significant interest in methods for robust linear regression [5, 58, 70] due to the 
ubiquity of linear problems with a small number of outlier measurements. Other
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works relevant to this problem include min-k loss SGD [63], robust SGD [11, 56], 
and Byzantine approaches [1, 6]. 

Extension to Tensor Linear Systems While the QRK approach works well in the 
matrix setting, the tensor setting provides some significant challenges. In the matrix 
case, a corruption in b. simply implies that (once identified) one can ignore that 
entry and otherwise proceed as usual in the iterative process. In the tensor setting, 
however, a single corruption in B. affects an entire slice of the solution X.. If there 
are few corruptions, ignoring each slice during iteration is possible. However, with a 
moderate number of corruptions, ignoring each corrupted slice is not feasible as this 
would result in never updating the estimation and thus never converging. Therefore, 
a different approach is necessary. Of course, one could matricize the system and 
run QRK and be able to tolerate a moderate amount of corruptions. However, the 
downside to doing this, as shown in [39], is that the contraction rate, and thus the 
computational time, is much worse for the matrix version of RK than it is for TRK 
(Algorithm 1). In the future work, we will investigate an approach that has the 
benefit of a fast convergence rate like TRK with the ability to handle a moderate 
number of corruptions like QRK. 

Building on the work in the matrix case [22], we have developed a simple 
quantile tensor RK (QTRK) method that utilizes the Frobenius norms of the 
updates to decide whether an update is unreliable (i.e., is likely to correspond to 
a corruption). We denote 

.Pj (X) := A∗
j ::(Aj ::A∗

j ::)−1(A∗
j ::X− Bj ::). (16) 

We write Qq(X, S). as the qth quantile of all X . over the set S. We assume A ∈
R

m×n×p
. and B ∈ Rm×l×p

.. The pseudocode for our QTRK method is given in 
Algorithm 12. 

Algorithm 12 Quantile Tensor Randomized Kaczmarz (QTRK) 
1: procedure QTRK(A, B, quantile level q, block size t , K ) 
2: X(0) = 0 
3: for k = 1, 2, . . . , K do 
4: sample i1,  .  .  .  it ∼ Uniform(1 , . . . , m)

5: sample j ∼ Uniform(1,  .  .  .  ,  m  )  
6: if ‖Pj (X(k−1) )‖F ≤ Qq(‖Pil (X(k−1) )‖F , {il : l ∈ [t]}) then
7: X(k) = X(k−1) − Pj (X(k−1) ) � See definition in (16) 
8: else 
9: X(k) = X(k−1 ) 

10: end if 
11: end for 

return X(K) 

12: end procedure 
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Fig. 13 Solution error versus iteration for TRK vs QTRK, for a simple example, where A ∈
R

12×5×10 ., B ∈ R12×7×10 ., X ∈ R5×7×10 ., and  t = 12.. (Left) One corruption, q = 0.9.; (Center)  
Three corruptions, q = 0.7.; (Right) Five corruptions, q = 0.5. 

Comparing QTRK to TRK We have found that, empirically, this method performs 
well for a small number of corruptions of arbitrary size. Indeed, we compare the 
classical TRK method to our proposed QTRK method in Fig. 13, where the error 
is displayed between the true and QTRK and TRK approximated solution for 
various levels of corruptions in the system. In this experiment, A ∈ R12×5×10

., 
B ∈ R12×7×10

., X ∈ R5×7×10
.. We generate A. and X. to have i.i.d. Gaussian 

normal random entries and produce B. by taking AX. and corrupting the indicated 
number of entries (one in the left plot, three in the center plot, and five in the right 
plot of Fig. 13). The number of iterations is K = 1, 000., and the block size is 
t = 12., which aligns with the number of horizontal slices in tensor A.. By randomly 
corrupting varying numbers (1, 3, and 5) of entries in tensor A., the performance 
of both methods is assessed in terms of error between the true solution and the 
approximated solution achieved by QTRK and TRK. Note that for a greater number 
of corruptions, one has to be more conservative with the choice of quantile level 
q. We see that, unsurprisingly, QTRK offers convergence to the solution of the 
underlying uncorrupted system, whereas TRK has no hope of such convergence, 
given that its projections are using corrupted data that pushes the iterate from the 
true solution. 

5 Image Deconvolution Experiments 

Image deconvolution or deblurring is the process of removing blurring artifacts from 
images and returning a sharp image from an image convolved with a known blurring 
operator. Image blurring may be represented in terms of a convolution where each 
pixel value is replaced with a weighted sum of nearby pixel values. This averaging 
diminishes sharp contrasts in the image. This convolution can be represented by 
multiplication by a given circulant matrix and thus is connected to the t-product. 
The equivalency between 2D convolution and multiplication by a tensor operator 
under the t-product has been established [30] and exploited [10].
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Fig. 14 Video frame deconvolution with TRGS method on consistent system AX = B.. (Upper 
left) residual error of TRGS iterates in three experiments varying initialization; (Upper center) 
relative errors of TRGS iterates produced with zero X(0) .; (Bottom left) relative errors of TRGS 
iterates produced with blurry measurement X(0) .; (Bottom center) relative errors of TRGS iterates 
produced with random X(0) .; (Right) visualization of original frames (top row), blurry frames 
(second row), TRGS recovered frames (third- fifth row), and least-norm solution frames (bottom 
row) 

We can consider the task of deblurring to be a tensor recovery optimization 
problem subject to the constraint AX = B. [10, 30]. In this notation, B. is the 
measurement tensor (containing the pixel information in the blurred image), A. is 
the known convolutional blurring operator, and our goal is to recover X., the sharp 
image tensor. In the right columns of Fig. 14, we can see the original (sharp) images 
in the top row and the degraded, blurry images after convolution with the known 
blurring operator in the second row. The goal is to recover the resolution of the 
original images, given only access to the blurry ones. 

In this section, we illustrate the use of our proposed methods in image deconvo-
lution. We demonstrate the promise of these methods for variants of the deblurring 
problem and discuss the interesting theoretical questions these experiments and the 
image deconvolution application raise. The experiments presented in this section 
were performed in MATLAB 2021b on a MacBook Pro 2019 with a 2.3 GHz 8-
Core Intel Core i9 and 16GB RAM. 

In these experiments, we focus on deblurring an image sequence, or video, 
B̄ ∈ Rm×l×p

. with l frames. We assume that all frames are degraded by the same 
known spatial blurring operator, represented in its tensor form A ∈ Rm×m×p

.. In  
all given experiments, we use the MRI video data set mri in MATLAB. This data 
set contains 12 frames of size 128 × 128. from an MRI data scan of a human head. 
In these experiments, the blurry frames are generated by convolving the ground 
truth X̄∗ ∈ R128×12×128

. with (a) tensor(s) representing frame-wise 2D Gaussian 
smoothing kernel(s). We note that AX∗ = B.; however, we cannot hope to exactly 
recover the original image from only these measurements, as the matrix operator
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and tensor operator representing the Gaussian smoothing kernel are not full-rank. 
For this reason, we are interested in examining the recovered images and not just 
measuring the relative error or residual error of the recovered images. 

5.1 Deconvolution with TRGS Method 

In our first experiment, we construct the degraded, blurry images by convolving the 
mri tensor X̄∗

. described above with a tensor representing a Gaussian smoothing 
kernel of size 5 × 5. with standard deviation two and replicating the edge pixels 
twice on all edges (to construct a “tall” system). The blurring and replication may 
be represented by t-product multiplication with a tensor operatorA ∈ R132×128×132

.. 
We hope to recover X∗

., which is X̄∗
. with the edge pixels on the left and right 

edge of every frame replicated twice. Indeed, the blurry and replicated image 
B ∈ R132×12×132

. satisfiesAX∗ = B.. 
We apply the TRGS method to this consistent tensor linear system with various 

initial iterates. In our first experiment, we begin with initial iterate X(0) ∈
R

128×12×132
. with all entries zero. In our second experiment, we begin with initial 

iterate X(0) = B2:130,1:12,1:132 .; that is, we trim the left and right replicated pixels 
from every frame of the blurry video. In our third experiment, we begin with 
initial iterate X(0) ∈ R128×12×132

. with each entry sampled i.i.d. from the unif[0, 1]. 
distribution. In each experiment, we run 100,000. iterations of the TRGS method. 
For all iterations of each experiment, we measure the residual error ‖AX(k) −B‖F .; 
see the upper left plot of Fig. 14. We also measure the relative error to the original 
frames, ‖X(k) −X∗‖F /‖X∗‖F ., and to the least-norm solution frames XLN = A†B., 
‖X(k) − XLN‖F /‖XLN‖F .; see the upper middle plot of Fig. 14 for the relative 
errors of TRGS initialized with the zero tensor, the lower left plot of Fig. 14 for 
the relative errors of TRGS initialized with the blurry tensor, and the lower middle 
plot of Fig. 14 for the relative errors of TRGS initialized with the random tensor. 

We compare the frames recovered from the TRGS method with these three 
initializations (rows 3–5) to the original frames (top row), the degraded blurry 
frames (second row), and the least-norm solution frames produced asA†B. (bottom 
row) in the array of frames on the right of Fig. 14. As evidenced by the visualization 
of the recovered frames, the residual error, and the final relative error to the least-
norm solution, TRGS initialized with the blurry frame tensor provides the strongest 
recovery. We note that the current theory in the matrix regime does not account 
for or explain the improved performance of TRGS initialized with the blurry frame 
tensor. In the future work, we will investigate what property of the blurry frames 
had made them a good initialization for the TRGS method.
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Fig. 15 Video frame deconvolution of doubly blurred frames with the FacTRK method on 
consistent systemUVX = B.. (Upper left) residual error of FacTRK iterates in three experiments 
varying initialization; (Upper center) relative errors of FacTRK iterates produced with zero X(0) .; 
(Bottom left) relative errors of FacTRK iterates produced with blurry measurement X(0) .; (Bottom 
center) relative errors of FacTRK iterates produced with random X(0) .; (Right) visualization of 
original frames (top row), blurry frames (second row), FacTRK recovered frames (third–fifth row), 
and least-norm solution frames (bottom row) 

5.2 Deconvolution of Doubly Blurred Images with FacTRK 
Method 

In this experiment, we construct the degraded, blurry images by convolving the mri 
tensor X̄∗

. described above with a tensor representing a Gaussian smoothing kernel 
of size 5 × 5. with standard deviation two and convolving this result with a tensor 
representing an averaging kernel of size 5 × 5. and replicating the edge pixels twice 
on all edges (to construct a “tall” system). The dual blurring and replication may be 
represented by t-product multiplication with a tensor operator, which can be written 
as the product of two tensors, A = UV ∈ R132×128×132

.. We hope to recover X∗
., 

which is X̄∗
. with the edge pixels on the left and right edge of every frame replicated 

twice. Indeed, the doubly blurry and replicated image B ∈ R132×12×132
. satisfies 

AX∗ = UVX∗ = B.. 
We apply the FacTRK method to this consistent tensor linear system with 

various initial iterates. In our first experiment, we begin with initial iterate X(0) ∈
R

128×12×132
. with all entries zero. In our second experiment, we begin with initial 

iterate X(0) = B2:130,1:12,1:132 .; that is, we trim the left and right replicated pixels 
from every frame of the blurry video. In our third experiment, we begin with 
initial iterate X(0) ∈ R128×12×132

. with each entry sampled i.i.d. from the unif[0, 1]. 
distribution. In each experiment, we run 100, 000. iterations of the FacTRK method. 
For all iterations of each experiment, we measure the residual error ‖AX(k) −B‖F .; 
see the upper left plot of Fig. 15. We also measure the relative error to the original
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frames, ‖X(k) −X∗‖F /‖X∗‖F ., and to the least-norm solution frames XLN = A†B., 
‖X(k) −XLN‖F /‖XLN‖F .; see the upper middle plot of Fig. 15 for the relative errors 
of FacTRK initialized with the zero tensor, the lower left plot of Fig. 15 for the 
relative errors of FacTRK initialized with the blurry tensor, and the lower middle 
plot of Fig. 15 for the relative errors of FacTRK initialized with the random tensor. 

We compare the frames recovered from the FacTRK method with these three 
initializations (rows 3–5) to the original frames (top row), the doubly degraded 
blurry frames (second row), and the least-norm solution frames produced as A†B. 

(bottom row) in the array of frames on the right of Fig. 15. We note again, as 
evidenced by the visualization of the recovered frames and the residual error, 
FacTRK initialized with the blurry frame tensor provides the strongest recovery 
and that, again, the current theory in the matrix regime does not account for or 
explain the improved performance of FacTRK initialized with the blurry frame 
tensor. Additionally, in this problem, the least-norm solution (right bottom row of 
Fig. 15) suffers from some artifacts due to an error in the numerical calculation 
of A†

. and that FacTRK appears to better avoid these. Finally, we note that in each 
experiment, the relative error to the original frames, ‖X(k)−X∗‖F /‖X∗‖F ., increases 
even as the residual error, ‖AX(k) − B‖F ., decreases. In the future work, we will 
investigate the description of the element of the solution space to which FacTRK is 
converging. 

5.3 Deconvolution of Blurred and Corrupted Images with 
QTRK Method 

In this experiment, we construct the corrupted and degraded, blurry images by 
convolving the mri tensor X̄∗

. described above with a tensor representing a Gaussian 
smoothing kernel of size 5 × 5. with standard deviation two and replicating the edge 
pixels twice on all edges (to construct a “tall” system) and introducing a corruption 
into the blurry frame tensor by setting a randomly sampled entry in the first frame 
slice to value 1000. The blurring and replication may be represented by t-product 
multiplication with a tensor operator, which can be written as the product of two 
tensors, A = UV ∈ R132×128×132

.. We hope to recover X∗
., which is X̄∗

. with the 
edge pixels on the left and right edge of every frame replicated twice. However, 
in this case, the corrupted and blurry image B ∈ R132×12×132

. does not satisfy 
AX∗ = UVX∗ = B.. 

We apply the QTRK method with q = 0.99. to this corrupted tensor linear system 
with various initial iterates. In our first experiment, we begin with initial iterate 
X(0) ∈ R128×12×132

. with all entries zero. In our second experiment, we begin with 
initial iterate X(0) = B2:130,1:12,1:132 .; that is, we trim the left and right replicated 
pixels from every frame of the blurry video. In our third experiment, we begin with 
initial iterate X(0) ∈ R128×12×132

. with each entry sampled i.i.d. from the unif[0, 1]. 
distribution. In each experiment, we run 100, 000. iterations of the QTRK method.
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Fig. 16 Video frame deconvolution of blurred and corrupted frames with the QTRK method on 
the corrupted (inconsistent) system defined by A. and B.. (Upper left) residual error of QTRK 
iterates in three experiments varying initialization; (Upper center) relative errors of QTRK iterates 
produced with zero X(0) .; (Bottom left) relative errors of QTRK iterates produced with blurry 
measurement X(0) .; (Bottom center) relative errors of QTRK iterates produced with random X(0) .; 
(Right) visualization of original frames (top row), blurry frames (second row), QTRK recovered 
frames (third–fifth row), and least-norm solution frames (bottom row) 

For all iterations of each experiment, we measure the residual error ‖AX(k) −B‖F .; 
see the upper left plot of Fig. 16. We also measure the relative error to the original 
frames, ‖X(k) −X∗‖F /‖X∗‖F ., and to the least-norm solution frames XLN = A†B., 
‖X(k) − XLN‖F /‖XLN‖F .; see the upper middle plot of Fig. 16 for the relative 
errors of QTRK initialized with the zero tensor, the lower left plot of Fig. 16 for 
the relative errors of QTRK initialized with the blurry tensor, and the lower middle 
plot of Fig. 16 for the relative errors of QTRK initialized with the random tensor. 

We compare the frames recovered from the QTRK method with these three 
initializations (rows 3–5) to the original frames (top row), the doubly degraded 
blurry frames (second row), and the least-norm solution frames produced as A†B. 

(bottom row) in the array of frames on the right of Fig. 16. We note again that, 
as demonstrated by the visualization of the recovered frames, QTRK initialized 
with the blurry frame tensor provides the strongest recovery and that, again, the 
current theory in the matrix regime does not account for or explain the improved 
performance of QTRK initialized with the blurry frame tensor, nor the meaningful 
recovery of QTRK at all (as the underlying uncorrupted system is less than full 
rank and nearly square). Additionally, in this problem, the least-norm solution (right 
bottom row of Fig. 16) is entirely ruined by the presence of the corruption in the 
blurry slice corresponding to the first frame, yet QTRK is able to approximately 
solve the deconvolution problem. In the future work, we will investigate the 
theoretical convergence of QTRK and the matrix method QRK on structured 
systems that are under-determined.
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6 Conclusion 

In this paper, we accomplish several things. First, we summarize the current 
state of tensor regression in various settings, e.g., consistent or inconsistent linear 
systems or convex optimization over linear system constraints. Then, we develop 
new algorithms, which extend the Gauss-Seidel and Kaczmarz methods to new 
settings, namely, tensors for the Gauss-Seidel method and, for the Kaczmarz 
algorithms, tensor regression with factorized measurement operator and tensor 
regression with adversarial corruption. We test the performance of these algorithms 
in various critical scenarios, e.g., consistent or inconsistent cases and a deblurring 
problem, by empirically comparing their convergence rate and/or accuracy to matrix 
counterparts. Our results are promising; in all our experiments, our methods match 
or (significantly) surpass the empirical convergence rate and accuracy of matrix 
methods. 

Furthermore, our numerical work prompts several follow-up questions; for 
example, we see from Figs. 2, 3, 4, 5, 6 that TRGS converges to an element of the 
solution space, but we have yet to establish the nature of this solution. Additionally, 
several of our experiments suggest convergence of our iterative tensor regression 
methods outside of the regime for which theoretical results for their matrix 
counterparts guarantee convergence; for instance, consider the residual convergence 
of TRGS and FacTRK on under-determined systems and the success of QTRK 
on the under-determined image deconvolution system. We hope that our future 
work proving convergence guarantees for these tensor system iterative methods 
may offer, additionally, novel insights into the matrix system setting. Additionally, 
in Figs. 8, 9, 10, 11, right panels, we see that when U. is under-determined 
and V. is over-determined, convergence of the relative and residual solution error 
differs significantly from the other cases. This suggests further theoretical work is 
necessary to understand why this case is different. We hypothesize that when V. 

is over-determined, the solution to the inner system is overfitted, and this does not 
allow enough freedom for the outer system to stabilize and converge. Additional 
future work will consider the image deconvolution problem in more detail and 
treat it more fully. In particular, we are interested in understanding what properties 
of the image deconvolution problem may allow for useful recovery (by TRGS, 
FacTRK, and QTRK) on systems for which existing convergence guarantees in 
the matrix regime do not apply. Our ongoing efforts are focused on investigating 
these interesting theoretical questions and providing a comprehensive theoretical 
framework for convergence of TRGS, FacTRK, and QTRK. 
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Matrix Exponentials: Lie–Trotter–Suzuki 
Fractal Decomposition, Gauss 
Runge–Kutta Polynomial Formulation, 
and Compressible Features 
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Jingfang Huang, and Yifei Lou 

1 Introduction 

In classical linear algebra analysis, a matrix exponential eAt
. can be intuitively 

defined by its Taylor expansion: 

.eAt = I + At + 1

2!A
2t2 + 1

3!A
3t3 + · · · , (1) 

where A is an n×n.matrix, I is the Identity matrix, and t is a scalar variable to show 
the connections between matrix exponentials and time-dependent problems. When 
matrix A can be diagonalized using its eigensystems in the form A = BDB−1

., 
where 

.D =

⎛
⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λn

⎞
⎟⎟⎟⎠ (2) 
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is a diagonal matrix containing all the eigenvalues λi .on the diagonal and the column 
vectors of B are the corresponding eigenvectors, then the matrix exponential is given 
by

. eAt = BeDtB−1,

where 

.eDt =

⎛
⎜⎜⎜⎝

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...

0 0 · · · eλnt

⎞
⎟⎟⎟⎠ . (3) 

The eigen-decomposition-based matrix exponential definition can be generalized to 
Jordan forms when the matrix is not diagonalizable, and we skip the details. 

This paper presents the work of three female undergraduate students (RE, EH, 
and YM) at UNC-Chapel Hill. Each student focused on a particular research topic 
and collaborated to generate interesting analysis and numerical results. The students 
contributed equally to this work. The main contributions of their research include 
the explorations of two techniques for efficient calculations of the matrix expo-
nentials using the operator splitting techniques, efficient numerical extractions of 
different compressible features in a matrix, and a study of the interactions between 
diagonal (or banded) structures with low-rank structures when time t evolves in 
a matrix exponential. In this paper, we focus on Hermitian matrices A that are 
always diagonalizable. When the size of the matrix, denoted by n,. is large, the well-
defined matrix exponential using the straightforward eigen-decomposition becomes 
computationally intractable due to the O(n3).operations and O(n2). storage required 
to find the eigensystem. Instead of general Hermitian matrices, this paper considers 
special cases of the matrix exponentials when matrix A can be decomposed as 
the sum of two (or more) simple structured matrices, i.e., A = T + V,. where 
matrices T and V can be diagonal or banded in the physical or frequency domains 
or have low-rank structures. Note that compressible matrix structures commonly 
exist in real-world applications, e.g., the Laplace operator is diagonal in the 
Fourier/frequency domain; (nonlinear) reactions in physical or biological systems 
are diagonal in the physical domain; discretized Laplace differential operator is 
banded (tridiagonal) in 1D setting; a banded matrix is the sum of a diagonal 
matrix and hierarchically low-rank off-diagonal matrix blocks; and the submatrix 
blocks representing the “well-separated” far-field electrostatic, hydrodynamic, and 
other types of interactions (also related to the inverse of the Laplacian and other 
elliptic operators) are always low-rank. We present two examples with different 
compressible features. The first example comes from quantum statistical mechanics. 
As the wave function φ . satisfies the Schrödinger’s equation,
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.ih̄
∂φ

∂t
= Hφ =

(
− h̄2

2m
∇2 + U

)
φ. (4) 

Using matrix A to represent the discretized Hamiltonian H that characterizes the 
total energy of a quantum physical system, matrix A can be split into two matrices
as

.A = T + V, (5) 

where T (representing discretized − h̄2

2m
∇2

.) is a diagonal matrix when expressed 

in the momentum space, also known as Fourier space, and V (representing the 
potential U from the environment in which the quantum system exists) often 
contains low-rank structures when considered either in the physical or frequency 
domain. In the second example, we consider a reaction–diffusion equation model 
from biological or physical applications given by

. ut (x, t) = �u(x, t) + f (u(x, t)),

where ut . is the time derivative, �. is the spatial Laplace operator describing the 
diffusion process, and f (u). is the reaction term. Note that the Laplace operator is 
diagonal in the Fourier frequency domain and the reaction term is diagonal in the 
physical domain. Therefore, the operator can be split into a diagonal operator and a 
convolution operator that is diagonal in the frequency domain. For systems that can 
be decomposed into the summation of simple structured blocks, “operator splitting” 
is a commonly used technique to take advantage of simple structures and accelerate 
numerical simulations. For example, a time-splitting spectral approximation scheme 
[1] is applied to the general nonlinear Schrödinger equations (NLS) in the semi-
classical regimes, where the original operator is decomposed into the summation 
of a diagonal operator in the frequency domain (Laplace operator) and a different 
diagonal operator in the physical domain. Then, the frequency domain diagonal 
system can be accurately and efficiently solved using a spectral method, and the 
physical domain diagonal system can be solved separately using high-order ordinary 
differential equation (ODE) initial value problem solvers for each decoupled single-
variable scalar differential equation. 

In this paper, we focus on a class of applications when the original operator 
(matrix A) is the sum of a diagonal operator (matrix T ) and a low-rank operator 
(matrix V ). We first study the efficient computation of the matrix exponential etA

. as 
t evolves. We present two numerical approaches for one time step from 0 to�t .when 
the time stepsize �t . is small. In the first approach that is widely used in the quantum 
statistics community [2, 4, 11, 19, 20], the local fractal Lie–Trotter–Suzuki (LTS) 
decompositions approximate eA�t

. using the products of terms in the form eαkT �t
.
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and eβkV �t
.with scalar values αk, βk .. Examples of the LTS decompositions include 

the Lie product formula [15], also widely called the Trotter decomposition [21]: 

. eA�t = eT �teV �t + O(�t)2 = eV �teT �t + O(�t)2,

and the second-order Strang splitting [18]: 

. eA�t ≈ eT �t
2 eV �teT �t

2 ≈ eV �t
2 eT �teV �t

2 .

In the second approach, note that Y (t) = eAt
. satisfies the ordinary different 

equations: 

.

{
Y ′(t) = A · Y (t)

Y (0) = In×n.
(6) 

As there generally exists no polynomial matrix with a bounded degree that exactly 
satisfies the differential equation in one time marching step [0,�t]., one searches 
for a degree p polynomial matrix that satisfies a pseudo-spectral (collocation) 
formulation by requiring that the differential equation is exactly satisfied at p 
collocation points {0 ≤ t1, t2, · · · , tp ≤ �t}.. Following the terminology in 
mathematical analysis, a spectral method is a technique where one studies the 
function expansion coefficients (frequency domain) instead of the function values 
(physical domain) where the basis can be any orthogonal eigensystems from the 
Sturm–Liouville theory, e.g., the Fourier series or orthogonal polynomial basis 
functions. A pseudo-spectral method refers to the case when one implicitly studies 
the expansion using the function values at a special set of sample points that are 
often related to the zeros of the eigenfunctions. When the Gaussian quadrature nodes 
(zeros of the Legendre polynomials) are used, the resulting Gauss Runge–Kutta 
(GRK) method (also called the Gauss collocation or pseudo-spectral formulations) 
has order 2p and is A-stable, B-stable, symmetric, and symplectic [10]. To avoid the 
numerically unstable differentiation operations, we consider the equivalent Picard 
integral equation reformulation: 

.

{
Y (x) = Y (0) + ∫ x

0 A · Y (t)dt

Y (0) = In×n,
(7) 

and solve the resulting discretized GRK formulation efficiently using the spectral 
deferred correction (SDC) or Krylov deferred correction (KDC) methods, where 
a low-order method (e.g., a low-order LTS method) is applied as a preconditioner 
and the preconditioned system is solved either by the geometric series expansion 
(fixed-point iterations in SDC) [6] or by the least squares-based Krylov subspace 
methods (in KDC) [12]. We show how both the LTS decompositions and SDC/KDC 
accelerated GRK methods can compute the matrix exponentials efficiently when 
the n × n. matrix A = T + V ., T is diagonal, and V is rank-k � n.. Note that
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the exponential of a diagonal matrix is diagonal and the exponential of a rank-k 
matrix is the Identity matrix plus a rank-k matrix. Therefore, the required storage 
and number of operations in a related matrix–vector multiplication are bothO(n). for 
T and eαT

., andO(kn). for V and eβV
.. The matrix–matrix multiplications for T , eαT

., 
V , and eβV

. are either O(n). (diagonal times diagonal) or O(kn). (otherwise). When 
solving a differential equation system with a given initial value vector, both the LTS 
decompositions and the SDC/KDC-GRK algorithms can utilize the compressible 
features in the split matrices T and V , reducing each matrix–vector multiplication 
cost from the direct O(n2). to the asymptotically optimal O(kn).. Therefore, the 
storage and number of operations are bounded by O(kn). in each time marching 
step. 

For A = T + V . where T is diagonal and V is low rank, we have theoretically 
and numerically explored the interesting question on how the two special structures 
in the matrix exponential eAt

. evolve as time t increases. Is eAt
. still the sum of a 

diagonal matrix and a low-rank matrix? If so, how does the numerical rank of the 
low-rank matrix change? Is the rank bounded? And are there any low-rank structures 
in the submatrix blocks representing the far-field relations between different well-
separated subsystems? Understanding the hidden compressible features allows more 
efficient computations of matrix exponentials. By combining randomized rank-
revealing and low-rank decomposition algorithms, we present some preliminary 
results on the study of the “interactions” of the low-rank and diagonal structures 
in the matrix exponential eAt

.. 
We organize this paper as follows. Section 2 focuses on different Lie–Trotter– 

Suzuki decompositions. In Sect. 3, we discuss the polynomial expansion-based 
Gauss Runge–Kutta formulation and how the discretized system can be solved 
efficiently using the spectral or Krylov deferred correction methods. In Sect. 4, 
we describe several compressible structures that can be utilized to accelerate the 
involved algebraic computations, and discuss the interactions of low-rank and 
diagonal structures in a matrix exponential. In Sect. 5, we present numerical results 
to demonstrate the performance of various methods under different choices of algo-
rithmic parameters and how the low-rank structures change in matrix exponentials 
as time t evolves. Finally in Sect. 6, we summarize our results and discuss our future 
work. 

2 Lie–Trotter–Suzuki Decompositions 

The Lie–Trotter–Suzuki (LTS) decompositions are a class of varying order methods 
commonly used in the study of quantum mechanical systems for numerically 
approximating the matrix eA

. using easier to compute factors of eT
. and eV

., where 
A = T + V .. In this section, we present several decompositions we have studied.
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2.1 S1: Order 1 Trotter Decomposition 

The simplest decomposition is the Trotter approximation, denoted as S1, given by 

.e�t(T +V ) = e�tT e�tV + O(�t2) = S1(�t) + O(�t2). (8) 

The order of S1 can be derived by the Taylor expansion of matrix exponentials 
where the matrix–matrix multiplications are noncommutative. Following the work 
in [11], we compare the following Taylor expansions of matrix exponentials: 

. e�t(T +V ) = I + �t(T + V ) + �t2

2
(T + V )2 + O(�t3)

= I + �t(T + V ) + �t2

2
(T 2 + T V + V T + V 2) + O(�t3), (9) 

and 

.e�tT e�tV = I + �t(T + V ) + �t2

2
(T 2 + 2T V + V 2) + O(�t3). (10) 

This analysis shows that the leading order in local truncation error is the second 

order given by �t2

2 (V T − T V ).; hence, the global error in a time marching scheme 
is first-order O(�t).. 

2.2 S2 and P2: Symmetric Order 2 Decompositions 

A famous second-order decomposition is the Strang splitting [18, 19], referred to as 
S2 in this paper, given by the formulas 

.e�t(T +V ) = e�tT /2e�tV e�tT /2 + O(�t3) = S2(�t) + O(�t3), (11) 

or equivalently, 

.e�t(T +V ) = e�tV/2e�tT e�tV/2 + O(�t3) = S2(�t) + O(�t3). (12) 

The “symmetric structure” in the decomposition makes the Strang splitting a 
globally second-order method when solving time-dependent differential equations. 

When expanded in terms of nested commutators (Hall bases) and minimizing the 
1-norm of the coefficients, the optimal second-order expansion, referred to as P2, is 
given by the following formula: 

.e�t(T +V ) ≈ P2(�t) = ea1�tT eb1�tV ea2�tT eb1�tV ea1�tT , (13)
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where a1 = 1
6 (3− √

3)., a2 = 1− 2a1 ., and b1 = 1
2 . are the parameters that optimize 

the 1-norm of the coefficients [2, 19]. 

2.3 S3, Q3, and Q4: Higher-Order Decompositions 

We also study higher-order LTS decompositions. By properly combining the 
decomposition S2, a new decomposition S3 is given by the formula 

.
e�t(T +V ) ≈ S3(�t) = S2(s�t)S2((1 − 2s)�t)S2(s�t)

= e
s
2�tT es�tV e

1−s
2 �tT e(1−2s)�tV e

1−s
2 �tT es�tV e

s
2�tT ,

(14) 

where s = 1
2− 3√2

.. Because of the special choice of s, S3 is an order 4 method [19]. 

In addition to real-valued coefficients, complex coefficients can be used for 
potentially improved accuracy and stability for special physical systems. We present 
two recursively defined decompositions in this category [19]. The decomposition Q3 
is given by 

.Q3(�t) = S2(p3�t)S2(p̄3�t), (15) 

where p3 = 1
6 (3 + √

3i). and p̄3 . is the complex conjugate of p3 .. Using Q3, we can 
define Q4  a  s

.Q4(�t) = Q3(p4�t)Q3(p̄4�t) (16) 

where p4 = (
1 + eiπ/4

)−1
.. For general complex differential equations or complex 

matrix A = T + V ., Q3 is the third order and Q4 is the fourth order. An interesting 
feature of Q3 is that when it is applied to a system with all real numbers, as its 
leading order local truncation error is purely imaginary, it effectively becomes a 
fourth-order method, which will be numerically shown in Sect. 5. 

We refer interested readers to [2, 7, 11, 19, 20] for detailed discussions of existing 
LTS decompositions. In Sect. 5, we present preliminary numerical experiments to 
demonstrate the performance of the aforementioned decompositions. 

3 Gauss Runge–Kutta Formulation and Its Accelerated 
Solutions 

In addition to the LTS decompositions, we rely on classical numerical analysis 
for ODE initial value problems to handle the matrix exponential. As the matrix
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exponential Y (t) = eAt
. for an n × n.matrix A satisfies the ODE

.

{
Y ′(t) = A · Y (t)

Y (0) = In×n,
(17) 

we present a polynomial-based approach to approximate Y (t) = eAt ≈ Pp(t)., 
where Pp(t). is a polynomial matrix of degree p, i.e., each entry of Pp(t). is a 
polynomial in t of degree no more than p .

3.1 Pseudo-spectral Differentiation Formulation 

In general, there exists no polynomial matrix with a bounded degree that exactly sat-
isfies the differential equation; therefore, one can search for a degree p polynomial 
matrix P that satisfies a pseudo-spectral (collocation) formulation by requiring that 
the differential equation is exactly satisfied at p collocation points {tj }.. We define 
the pseudo-spectral differentiation formulation for the ODE initial value problem in 
Eq. (17) as follows: 

Definition 1 (Pseudo-spectral Differentiation Formulation) For a given set of 
collocation points {t1, t2, · · · , tp}., the pseudo-spectral formulation finds a polyno-
mial matrix Pp(t)., which satisfies 

.

{
P ′

p(tj ) = A · Pp(tj )

Pp(0) = In×n.
(18) 

Comment on the Choice of {tj }. Clearly, the choice of the nodes {tj }. has impacts 
on the numerical properties of the spectral differentiation formulation. We briefly 
discuss the following two important classes of node choices. 

(i) Gauss–Legendre Nodes When the zeros of a Legendre polynomial are used, the 
resulting pseudo-spectral formulation is often referred to as the Gauss collocation 
or Gauss Runge–Kutta (GRK) formulation. The numerical algorithm for Eq. (18) 
has the following nice properties: 

Theorem 1 When p Gauss–Legendre nodes are used, the Gauss Runge–Kutta 
formulation in Eq. (18) for approximating the solution of Eq. (17) is order 2p,  A-
stable, B-stable, symmetric, and symplectic.

Interested readers are referred to [10] to understand why the Gauss collocation 
formulation can be considered as a special case of the implicit Runge–Kutta 
methods and numerical properties of the resulting GRK formulations. 

(ii) Gauss–Chebyshev Nodes One can also use the zeros of the Chebyshev 
polynomial to take advantage of the near-minimax properties of the Chebyshev
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polynomial approximation and the efficiency of the fast Fourier transform to 
compute the Chebyshev expansion coefficients from the function values at all 
the node points. We refer to the resulting formulation as the Gauss–Chebyshev 
collocation formulation. 

Note that the node choices have significant impacts on numerical integration 
and differentiation operations. It is well documented in classical numerical analysis 
literature that interpolations based on the zeros of orthogonal polynomials (Gauss-
type quadrature nodes) have improved accuracy and stability properties. In this 
paper, we focus on the Gauss quadrature nodes. We have also considered evenly 
spaced points when the desired order of the method is no more than 8, to better 
“recycle” previous computations for improved algorithm efficiency (we skip the 
details). 

3.2 Spectral Integration and Picard Integral Equation 
Reformulation 

Given the unknown values Pp(tj )., where 0 ≤ tj ≤ �t . are the (scaled) Gauss 
quadrature points in [0,�t]., to solve the pseudo-spectral differentiation formulation 
in Eq. (18) in one time step [0,�t]., a spectral differentiation operator is needed. 
Definition 2 ((Pseudo-)Spectral Differentiation Matrix) Given the function val-
ues f (tj ). at t0 = 0. and scaled Gauss quadrature points {t1, t2, · · · , tp}. in the interval 
[0,�t]., one can construct an interpolating polynomial of degree p denoted by P(t).. 
If one differentiates the polynomial and evaluates the derivative at the same set of 
points, one can construct a linear mapping from the function values {f (tj )}j=1,··· ,p . 

to the derivative values {f ′(tj ) ≈ P ′(tj )}j=1,··· ,p .. The transformation matrix D is 
defined as the spectral differentiation matrix and we hav e

. 

⎡
⎢⎢⎢⎣

f ′(t1)
f ′(t2)

...

f ′(tp)

⎤
⎥⎥⎥⎦ = �tDp×p

⎡
⎢⎢⎢⎣

f (t1)

f (t2)
...

f (tp)

⎤
⎥⎥⎥⎦ .

Similarly, a spectral integration matrix can be defined as follows: 

Definition 3 ((Pseudo-)Spectral Integration Matrix) Given the function values 
f (tj ). at t0 = 0. and scaled Gauss quadrature points {t1, t2, · · · , tp}. in the interval 
[0,�t]., one can construct an interpolating polynomial of degree p denoted by P(t).. 
If one defines F(tj ) = ∫ tj

0 f (τ)dτ ., which can be approximated by evaluating the 

polynomial
∫ tj
0 P(τ)dτ .at the same set of points, one can construct a linear mapping 

from the function values {f (tj )}j=1,··· ,p . to the integral values {F(tj )}j=1,··· ,p ..  The  
transformation matrix S is defined as the spectral integration matrix and we have
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. 

⎡
⎢⎢⎢⎣

F(t1)

F (t2)
...

F (tp)

⎤
⎥⎥⎥⎦ = �tSp×p

⎡
⎢⎢⎢⎣

f (t1)

f (t2)
...

f (tp)

⎤
⎥⎥⎥⎦ .

It is interesting to compare the spectral differentiation with spectral integration 
matrix. It was shown in [9] that the spectral integration matrix is almost a tri-
diagonal matrix in the frequency domain (when one considers the relation between 
expansion coefficients rather than the function values). One can use the fast 
Fourier/Cosine transform (for Chebyshev nodes) or fast Legendre transform (for 
Legendre nodes) to go back and forth efficiently between the physical domain 
(function values) and frequency domain (expansion coefficients). Such algorithm 
accelerations are particularly helpful when the number of nodes p is large. A more 
important difference is the condition numbers of the spectral differentiation and 
integration matrices. In [9], it was shown that the condition number of the spectral 
differentiation matrix is approximately O(p2).. The condition number of the spectral 
integration matrix, on the other hand, is bounded by a constant (for the Chebyshev 
polynomial, the constant is approximately 2.4; see Eq. (21) in [9]). 

We numerically demonstrate the condition numbers of the spectral integration 
and differentiation matrices for the Gauss quadrature nodes. For the function f (t) =
sin(t)., we compute its derivative and integral values using spectral differentiation 
and integration matrices, respectively, and compare the numerical results with the 
analytical derivatives and integrals. We present the numerical results in Fig. 1, 
showing how errors decay when the number of Gauss nodes increases for each 
matrix. The numerical results match the theoretical analysis, and spectral integration 
is numerically more stable than spectral differentiation. 

To avoid the numerical instability associated with the differential operator in 
Eq. (17), we consider an equivalent Picard integral equation reformulation: 

.

{
Y (t) = Y (0) + ∫ t

0 A · Y (τ)dτ

Y (0) = In×n
, (19) 

and search for a polynomial matrix Pp(t). that satisfies the discretized pseudo-
spectral integral equation formulation defined as follows: 

Definition 4 (Pseudo-spectral Integral Equation Reformulation) For the equiv-
alent Picard integral equation reformulation of the ODE initial value problem 
presented in Eq. (19) and a given set of scaled Gauss quadrature-type node points 
{t1, t2, · · · , tp}. in one marching step from [0,�t]., the pseudo-spectral integral 
equation reformulation finds a polynomial matrix Pp(t). that satisfies 

.

{
Pp(tj ) = Pp(0) + ∫ tj

0 A · Pp(τ)dτ

Pp(0) = In×n.
(20)
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Fig. 1 A comparison of spectral integration versus spectral differentiation 

The pseudo-spectral integral equation reformulation is capable of achieving 
machine precision accuracy when it is solved accurately. 

3.3 Spectral Deferred Correction Methods 

To solve the pseudo-spectral integral equation reformulation in Eq. (20), we apply 
the spectral deferred correction (SDC) method first introduced in [6] to improve the 
efficiency of the algorithm. The SDC steps are listed next. 

Step 1: Find a Low-Order Approximate Solution The first step of a deferred 
correction method is to find an approximate matrix polynomial solution P̃ (t). using 
a low-order method. To demonstrate the idea, we simply apply the first-order Trotter 
decomposition and compute P̃ (t). as follows: 

. P̃ (0) = In×n,

. P̃ (tj+1) = eT (tj+1−tj )eV (tj+1−tj )P̃ (tj ).

Instead of a first-order approximation, one can apply higher-order approxima-
tions discussed in Sect. 2. An interesting question is how different “low-order” 
predictors impact algorithm efficiency, which will be studied in the future.
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Step 2: Compute the Residue Once the approximate solution P̃ (t). is available, 
we define P(t) = P̃ (t) + δ(t). and plug it into the Picard integral equation: 

.

{
P̃ (t) + δ(t) = Y (0) + ∫ t

0 A · (P̃ (τ ) + δ(τ ))dτ

δ(0) = 0n×n.
(21) 

One can derive a new set of equations for the error (also called defect) δ(t).: 

.

{
δ(t) = ∫ t

0 A · δ(τ )dτ +
(
Y (0) + ∫ t

0 A · P̃ (τ )dτ − P̃ (t)
)

δ(0) = 0n×n.
(22) 

Define the residue as 

. ε(t) = Y (0) +
∫ t

0
A · P̃ (τ )dτ − P̃ (t),

and then the error’s equation becomes a new (inhomogeneous) Picard integral 
equation: 

.

{
δ(t) = ∫ t

0 A · δ(τ )dτ + ε(t)

δ(0) = 0m×m.
(23) 

Note that the approximate solution P̃ (t). is known; therefore, the integral 
∫ t

0 A ·
P̃ (τ )dτ . can be accurately evaluated using a high-order (and stable) pseudo-spectral 
integration matrix that integrates the interpolating polynomial of P̃ (t). exactly. 

Step 3: Apply a Low-Order Method to the Error’s Equation The third step of 
an SDC method is to apply a low-order method to get a low-order estimate δ̃(t). of 
the analytical error δ(t).. There are many low-order approaches; among which we 
demonstrate a second-order algorithm based on the trapezoidal rule. 

We consider the differential equation form of the Picard integral equation: 

.

{
δ′(t) = A · δ(t) + ε′(t)
δ(0) = 0n×n.

(24) 

For given δ(tj )., the analytical solution at tj+1 . is given by 

. δ(tj+1) = eA(tj+1−tj )δ(tj ) +
∫ tj+1

tj

eA(tj+1−τ)ε′(τ )dτ.

Applying integration by parts, we have 

.δ(tj+1) = eAhj+1δ(tj ) + eA(tj+1−τ)ε(τ )|tj+1
τ=tj

+
∫ tj+1

tj

AeA(tj+1−τ)ε(τ )dτ
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where hj+1 = tj+1 − tj .. Therefore, we obtain 

. δ(tj+1) = eAhj+1δ(tj ) + ε(tj+1) − eAhj+1ε(tj ) +
∫ tj+1

tj

AeA(tj+1−τ)ε(τ )dτ.

Again, eAhj+1 . can be efficiently applied using the Lie–Trotter–Suzuki operator 
splitting-based low-order methods. We apply the second-order trapezoidal rule to 
evaluate

∫ tj+1
tj

AeA(t−τ)ε(τ )dτ .; hence, the updating formula becomes 

. ̃δ(tj+1) = eAhj+1(δ(tj ) − ε(tj )) + ε(tj+1) + hj+1

2
(AeAhj+1ε(tj ) + Aε(tj+1)),

(25) 
where δ̃(t). is the low-order approximation of the exact error δ(t).. We can define 
Steps 2 and 3 as a function δ̃(t) = Fun(P̃ (t)). where the input is the given 
approximate solution P̃ (t).and the output is the low-order approximation of the error 
δ̃(t).. Each such (implicit) function evaluation is considered as one SDC correction. 

Step 4: Repeat Steps 2–4, or Stop, or Reset and Restart If the low-order 
estimate of the error δ̃(t). is within a prescribed error tolerance, then the approximate 
solution is considered accurate enough and one can output it as the converged 
solution. Otherwise, one can use the low-order estimate of the error to improve 
the approximate solution simply by using 

. P̃new = P̃old + δ̃,

and then returning to Step 2 until the iterations are convergent or a maximum 
number of iterations is reached. In the latter case when the method is not convergent, 
one reduces the time stepsize and restarts SDC from Step 1. As the low-order 
method becomes more accurate for smaller time stepsizes, the method is guaranteed 
to converge when a sufficiently small stepsize is used. 

Comment The SDC method is equivalent to a sequence of fixed-point (stationary) 
iterations representing a particular Neumann series expansion for a low-order-
method-preconditioned formulation. As the spectral integration matrix is applied 
in the final converged collocation formulation, the resulting algorithm is referred to 
as the spectral deferred correction (SDC) method in existing literature [6]. Instead 
of a naive Neumann series expansion, one can use the terms in the Neumann series 
to construct a Krylov subspace and search for the optimal least squares solution in 
the Krylov subspace to further accelerate the convergence. The resulting algorithm 
is referred to as the Krylov deferred correction method (KDC) [12]. For general 
nonlinear ODE initial value problems, the implementation of KDC is a simple 
application of an existing Jacobian-free Newton–Krylov (JFNK) solver [13, 14]  to  
find the zero of the low-order-method-preconditioned function δ̃(t) = Fun(P̃ )..
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4 Compressible Matrix Structures and Accelerated 
Calculations 

By representing the original matrix A as the sum of two (or more) simple structured 
matrices T and V , many of the involved algebraic operations can be accelerated. 
In this section, we study the diagonal and low-rank compressible features, their 
interactions in the matrix exponentials, and accelerated computation techniques.

First, using the Taylor expansion definition of a matrix exponential, it is 
straightforward to show that the exponential of a diagonal matrix T is also diagonal. 
The required storage for an n×n.diagonal matrix isO(n).. When a diagonal matrix is 
applied to any vector, the amount of required operations is O(n).. The multiplication 
of two diagonal matrices requires asymptotically optimal O(n). operations. 

Next, we consider a real symmetric low-rank (rank k � n.) matrix and consider 
its “complete” eigen-decomposition Vn×n = Un×n�n×nU

T
n×n . where U is an 

orthogonal matrix containing all the orthonormal eigenvectors and � . is diagonal 
with only the first k diagonal entries nonzero. As eV = Ue�UT

. and only the first 
k diagonal entries of e�

. �= 1., we find that eV
. is the sum of the Identity matrix and 

a low-rank matrix U
(
e� − I

)
UT

. with the same rank k. Assuming the “compact” 
low-rank decomposition Vn×n = Un×k�k×kU

T
k×n . is already available, the storage 

of this decomposed form is O(k · n).. When V or eV
. is applied to a given vector 

using the decomposed form, the number of operations is only O(k ·n).. Furthermore, 
it only requires O(k · n). operations to compute the product of a low-rank matrix 
with a diagonal matrix, or a low-rank matrix with another low-rank matrix, or the 
sum of a diagonal matrix and low-rank matrix with the sum of another diagonal 
matrix and low-rank matrix. These products are basic building blocks in the LTS 
decompositions. 

When studying the solution of ODE initial value problem using etAy0 .where the 
vector y0 . contains the initial conditions and A = T + V . with T and V either 
diagonal or low-rank, both the LTS decompositions and SDC accelerated GRK 
(SDC-GRK) methods are efficient for large-size matrices as the time marching 
scheme only requires the storage of vectors, special structured matrices, and matrix– 
vector multiplications of T , eT

., V , and eV
.with given vectors. The required storage 

and number of operations for each time marching step are both asymptotically 
optimal O(k · n).. 

For applications where the matrix exponential etA
. is required, due to the 

interactions of different compressible features in matrix A, the corresponding 
compressible features in the matrix exponential etA

.may become complicated when 
t increases. This can be demonstrated using the following example: Assume D1 . and 
D2 . are two diagonal matrices and L1 . and L2 . are two low-rank matrices with rank k. 
Then, the matrix product (products of different terms in the LTS decompositions) is 

.(D1 + L1)(D2 + L2) = D1D2 + (D1L2 + L1(D2 + L2)) = D3 + L3.
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Although we conclude with another sum of a diagonal matrix D3 = D1D2 . and 
a low-rank matrix L3 = (D1 + L1)L2 + L1D2 ., the rank of L3 . may become 
larger than k and increase to as large as 2k. As such products appear many times 
in the LTS decompositions and SDC-GRK algorithms, in the worst-case scenario, 
both the storage and number of operations in a related matrix–matrix multiplication 
increase as t increases due to the change in the rank k of the low-rank matrix, and the 
numerical computation may soon become impossible for large-size matrices. One 
motivation for our research is to understand how the compressible features (e.g., 
diagonal, banded, and low-rank structures in the physical and frequency domains) of 
matrix exponentials evolve as t increases. Understanding and identifying the hidden 
compressible features allow more efficient computations of matrix exponentials.

We have explored the interactions of the diagonal structure with the low-rank 
structure in the matrix exponential etA

. when A = T + V . is the sum of a 
diagonal matrix and a rank k � n. matrix. We have implemented two numerical 
approaches to efficiently find the numerical rank of the matrix L3 ., its compressed 
SVD representation, and the diagonal matrix D3 . after each matrix–matrix product 
(D1+L1)(D2+L2) = D3+L3 .. In the first approach, as we know the rank of L3 . is no 
more than 2k and the matrices D1 ., D2 ., L1 ., and L2 . have compressed structures, the 
matrix–vector multiplication L3v. can be efficiently evaluated for any given vector 
v.. Therefore, we apply the randomized algorithm from [17] where 2k + q . vectors 
{vi}., i = 1, · · · , 2k + q . are randomly generated and the compressed representation 
of L3 . is derived by analyzing the matrix–vector multiplications {L3vi}..  We  s  et
q = 8. and refer interested readers to [17] for how to choose q to minimize the 
probability of large approximation errors and details of the randomized algorithm. 
In the second approach, we combine ideas from the CUR matrix decompositions 
[16] and randomized CUR decomposition algorithms presented in [5]. By studying 
a properly sampled “skeleton” of the off-diagonal entries of (D1+L1)(D2+L2).,  we  
find the numerical rank of the off-diagonals of L3 . (defined as the minimal rank of 
L3 − D . for all possible diagonal matrices D). Once the compressed representations 
of the off-diagonals of L3 . are available, we find the diagonal matrix D3 . by simply 
computing the differences between the diagonals of (D1 + L1)(D2 + L2). and 
those from the compressed representations of the off-diagonals of L3 .. We skip the 
algorithmic details and refer interested readers to [5]. Note that the first approach 
finds the numerical rank r1 . of L3 ., while the second approach studies the rank r2 . of 
the off-diagonals of L3 .. Clearly, r1 ≥ r2 ..  For  most L3 . matrices, we have observed 
numerically that r1 = r2 .. 

We have applied our randomized rank-revealing algorithms to decompose the 
matrix exponential etA

. (derived using either the LTS decompositions or SDC 
accelerated GRK techniques) as the sum of a diagonal matrix D3 . and a low-rank 
matrix L3 .. We present some of our theoretical findings. First, when A = λ0I + V . 

where V is rank k, etA = λ1I + L3 .where the rank of L3 . is no more than k for any 
time t . Next, when A is symmetric negative definite, as all the eigenvalues λ. are real 
and negative, and eλt → 0. exponentially fast as t → ∞., the numerical rank of L3 . 

eventually decays to zero as t → ∞.. For finite time t , we can group the eigenvalues 
of tA. into two groups, those less than a threshold − σ . and those in the interval



54 R. E. Emrick et al.

[−σ, 0]..  I  f σ . is a large positive number and e−σ
. is less than the error tolerance, then 

all the eigenvalues less than − σ . can be neglected when computing the numerical 
rank of L3 .. For the other group, as the function ex

. can be approximated by a finite 
degree polynomial for x ∈ [−σ, 0]., the rank of L3 . is bounded as there are only 
a finite number of (D1 + L1)(D2 + L2). type matrix–matrix multiplications when 
computing the matrix exponential etA

.using its polynomial approximation. For more 
general matrix A, the rank of L3 . depends on the eigenvalue distributions of matrix 
A, which can be studied numerically in a time marching scheme. We present some 
preliminary numerical results in Sect. 5. 

We end this section by citing two relevant results along this research direction. 
It was found in [8] that the eigenvector trajectory generated by smooth changes 
(e.g., in time) of the Hamiltonian matrix can be well approximated by a low-
dimensional manifold; therefore, one can “learn” the eigenvector trajectory using 
data where the eigenvectors are computable. In addition, the eigensystems of a 
matrix Xn . after a low-rank perturbation are studied in [3]. It was shown that adding 
some randomness to the eigenspaces permits further progress in analysis and a 
phase transition phenomenon was discovered after exact answers (interpreted in a 
probabilistic sense) are derived. 

5 Preliminary Numerical Results 

In this section, we present numerical results for selected matrix A examples. The 
LTS decompositions and SDC-GRK formulations are applied to the same set of 
problems to understand their accuracy and stability properties. As these approaches 
are based on different mathematical ideas and a lot of algorithm parameters still 
need fine-tuning, we find that a fair comparison is often hard and the method 
of choice is highly dependent on the accuracy requirements, problem settings, 
algorithm parameter selections, and compressible features of the split matrices and 
their e xponentials.

In the first example, we consider a simplified two-body interacting quantum 

system in three dimensions modeled by A = T + V . where Ti,j = −δi,j
p2

x+p2
y+p2

z

2m . 

representing the kinetic energy (or the noninteracting) part of A. It is a diagonal 
matrix and its diagonal entries are determined by a vector p. with three entries 
(px, py, pz .), each representing momentum in one of three dimensions. Vi,j = −g . 

is the potential energy (or interacting) part of A; thus, V is a constant matrix where 
g is a constant scalar representing the coupling strength of the two bodies. Such a 
contact (zero-range) interaction is often used to describe ultracold atomic gases in 
dilute regimes; it is also often used to model dilute neutron matter in the crust of 
neutron stars (see, e.g., [22]). 

We first demonstrate the “order” behaviors of the LTS decompositions for 
Example 1. In Fig. 2, we present the local truncation errors from different LTS 
decompositions. For an n × n. real matrix A and its numerical approximation Ã.,  we
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Fig. 2 Example 1: Local truncation error analysis for LTS decompositions 

measure the error (residue) using the scaled Frobenius norm (also called Euclidean 

norm) defined as 1
n

√∑
i,j

(
(ai,j − ãi,j )2

)
,. where ai,j . and ãi,j . are the entries in 

matrices A and Ã., respectively. When the decomposition Q3 or Q4 is used, we 
only consider the real part of the approximating matrix. Our numerical results show 
that the local truncation errors of S1, S2, S3, P2, and Q4 decay to zero with the 
expected order when the stepsize converges to zero. As discussed in Sect. 2, our 
numerical results also confirmed that the real part of the local truncation error of the 
method Q3 has order 5; therefore, its global order becomes the same as those of the 
decompositions S3 and Q4. 

The order analysis of the SDC-GRK algorithm becomes more complicated. It 
depends on the type and number of node points used in the Picard integral equation 
formulation and on the number of SDC corrections. In this paper, because of its 
optimal numerical properties as shown in Theorem 1, we focus on the Gauss– 
Legendre collocation nodes in the GRK formulation. We compare the algorithm 
performance for different numbers of nodes and SDC corrections. In Fig. 3,  we  show  
the convergence properties of the SDC accelerated GRK algorithms with p = 4. 

and p = 10. Gauss nodes for different stepsize choices after two, three, and four 
SDC corrections. Instead of the scaled Frobenius norm, we use the element-wise
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Fig. 3 Example 1: Local truncation error analysis for SDC-GRK formulations 

max norm defined as maxi,j |ai,j − ãi,j |. to measure the error. We first observe that 
when the stepsize is too large (e.g., stepsize > 0.1.), the SDC method becomes 
divergent and the error increases as the number of corrections increases. The reason 
is that the low-order method preconditioned system is not yet close to the Identity 
matrix and has “bad” eigenvalues that cause the error in the fixed-point iterations 
to grow exponentially as a function of the number of corrections. Second, when the 
SDC method is convergent, the order of the method heavily depends on the number 
of corrections, e.g., after two corrections, the slope of the algorithm with p = 4. 
is almost the same as that from p = 10.. Similar results can be seen after three 
and four corrections. We want to mention that after reaching the intrinsic order 
2p of the GRK formulation, further SDC corrections can no longer improve the 
order of the algorithm. Finally, when the stepsize is approximately 0.01. (10 Gauss 
points are used in the interval [0, 0.01].), the numerical results from the SDC-GRK 
method after four corrections provide better accuracy than all of the tested LTS 
decompositions with stepsize 0.001.. 

In order to better compare the performance of the LTS decompositions with that 
of the SDC-GRK formulations, we also show the achieved accuracy as a function 
of the number of matrix–matrix multiplications (we assume matrix exponential 
eAt

. is required). The results for the LTS decompositions are presented in Fig. 4.
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Fig. 4 Example 1: Achieved accuracy as a function of the number of matrix–matrix multiplica-
tions for LTS decompositions 

For the same stepsize, Q4 provides better accuracy than Q3, but it requires more 
matrix–matrix multiplications as each Q4 is the product of two Q3s. When the 
performance is measured by the number of matrix–matrix multiplications for the 
same prescribed accuracy requirement, Q3 becomes a clear winner. In Fig. 5,  we  
present the performance results for the SDC-GRK methods. The numerical results 
show that lower-order SDC-GRK method may perform better for low-accuracy 
requirements and higher-order SDC-GRK methods are preferred for high-accuracy 
requirements. As the current SDC-GRK implementation uses a first- or second-
order time marching scheme as the preconditioner for the GRK formulation, the 
resulting algorithm outperforms the low-order LTS decompositions (e.g., S1, S2, 
and P2) for high-accuracy requirements. However, such first- or second-order time 
marching scheme-based SDC-GRK algorithm cannot yet compete with Q3 for this 
example. We find that using Q3 as the low-order method in Step 1 of the SDC 
approach can significantly improve the performance; however, it is still unclear how 
to use Q3 or other higher-order methods in the correction step (Step 3) of the SDC-
GRK algorithms. We are continuing our research along this direction and results 
will be reported in the future.

In our second numerical example, we consider a 125 × 125. matrix T that 
contains two differently scaled block Identity matrices of sizes 63×63. and 62×62.,
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Fig. 5 Example 1: Achieved accuracy as a function of the number of matrix–matrix multiplica-
tions for SDC-GRK formulations 

Table 1 Example 2: Four 
different cases with different 
c1 ., c2 .,  and σmax . settings 

Case c1 . c2 . σmax . 

1 5 4.999 5 

2 5 0.005 0.005 

3 5 4.999 100 

4 5 0.005 5 

respectively: 

.T =
(

c1I 0
0 c2I

)
, (26) 

where c1 . and c2 . are different constant scalars. We choose V to be a rank-5 negative 
semi-definite matrix. The five nonzero singular values of V are randomly sampled 
from a uniform distribution in the interval [−σmax, 0]., and its singular vectors 
are randomly generated. The two differently scaled Identity submatrices can be 
considered as two different physical systems. For this example, we consider four 
cases listed in Table 1, representing different interaction patterns of the two systems
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Fig. 6 Example 2: LTS decompositions for four different cases with c1 = 5. and different c2 . and 
σmax . values 

( c1 . and c2 .) and potential energy roughly controlled by the environment parameter 
σmax ..  In  Fi  g. 6, we show how the accuracy depends on the number of matrix–matrix 
multiplications for different LTS decompositions for Cases 1–4. From the numerical 
results, we see that (i) a higher-order method is always preferred for high accuracy 
requirements. For low-accuracy requirements, sometimes a low-order method may 
perform better. (ii) For all four cases, method Q3 is a clear winner when compared 
with the other higher-order methods. When the time stepsize is large, there are 
convergence issues with the decomposition S3 (e.g., see Case 3). Similar issues 
with S3 are also observed in Example 1; see Fig. 4. (iii) After achieving the best 
possible accuracy, using smaller time stepsizes and marching more steps (more 
matrix–matrix multiplications) will increase the error, e.g., see Case 1, when the 
number of matrix–matrix multiplications is ≥ 200., the error from Q3 starts to 
increase. It is therefore important to choose the optimal algorithm parameters (e.g.,
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Fig. 7 Example 2: SDC-GRK for four different cases with c1 = 5. and different c2 . and σmax . 
values 

stepsize) in the LTS decompositions. (iv) The settings c1 ., c2 ., and σmax . did change 
the performance of the LTS decompositions. When method Q3 is used, it requires 
approximately 200 matrix–matrix multiplications to achieve machine precision for 
Case 1. The numbers become approximately 300, 700, and > 1000. for Cases 2, 3, 
and 4, respectively. 

Similar experiments are performed for the SDC-GRK algorithm and results are 
presented in Fig. 7. For Cases 1 and 2, the SDC-GRK algorithm with p = 10. 

and two SDC corrections outperforms other SDC-GRK methods. For Case 3, 
the SDC-GRK algorithm with p = 4. and two SDC corrections is the winner 
for lower-accuracy requirements, and the algorithm with p = 4. and three SDC 
corrections becomes the method of choice for higher-accuracy requirements. For 
Case 4 and higher accuracy requirements, the SDC-GRK algorithm with p = 10. 
and four SDC corrections becomes the winner. Finally, we note that unlike the LTS



Matrix Exponentials: Lie–Trotter–Suzuki vs Gauss Runge–Kutta 61

100 101 102 103 104 

Number of Matrix-Matrix Multiplications 

10-16 

10-14 

10-12 

10-10 

10-8 

10-6 

10-4 

10-2 
R

es
id

ue
 

Lie-Trotter-Suzuki: Time Stepping to t = 1 

S1 
S2 
S3 
Q3 
Q4 
P2 

Fig. 8 Example 3: LTS decompositions, residue versus number of matrix–matrix multiplications 

decompositions, the errors from the SDC-GRK algorithms for this example remain 
at approximately machine precision and don’t seem to increase as significantly when 
using smaller time stepsizes (more matrix–matrix multiplications). 

We have considered several additional examples including adding perturbations 
to the Identity matrix and increasing the rank k of the low-rank V matrix. We 
show the performance of different algorithms for a more general but representative 
setting where T is a general diagonal matrix with diagonal entries randomly sampled 
from the uniform probability density distribution U [−1, 0]. and V is a rank k = 5. 

negative semi-definite matrix constructed using V = Qn×k�k×kQ
T
k×n . where Q 

is derived from the singular value decomposition of a random matrix and the k 
nonzero diagonals of � . are randomly sampled from U [−σmax, 0]..  In  Fi  g. 8,  we  s  et
σmax = 1. and plot the achieved accuracy for different numbers of matrix–matrix 
multiplications for different LTS decompositions. In Fig. 9, we plot the achieved 
accuracy as a function of the number of matrix–matrix multiplications for the SDC-
GRK methods. For this example, as the collocation formulation with 10 points 
in the interval [0, 1]. approximately resolves the solution to machine precision, 
and the SDC iterations approximately converge to the collocation formulation in 
four iterations, the SDC method with ten Gauss nodes and four iterations (high-
order) clearly outperforms the other SDC-GRK methods. We provide guidelines 
for selecting an appropriate algorithm and parameters for a given problem. For 
low-accuracy requirements, we find that the LTS-based Q3 outperforms most
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Fig. 9 Example 3: SDC-GRK methods, error vs number of matrix–matrix multiplications 

of the other methods we have studied. In this regime, most current SDC-GRK 
implementations outperform the low-order LTS decompositions S1, S2, and P2. 
However, as introducing higher-order methods in the Correction Step (Step 3) of the 
current SDC-GRK implementations remains a challenging research topic, existing 
second-order preconditioner-based SDC-GRK schemes are not yet as competitive 
as Q3 and Q4. For high-accuracy requirements, as the SDC-GRK technique 
allows for much larger time stepsizes, it becomes the method of choice when 
proper preconditioners and acceleration techniques are introduced. The “optimal” 
implementations of the SDC-GRK and KDC-GRK are still actively being studied 
by our research community. 

This paper is motivated by the research efforts to understand how the com-
pressible features in matrix A interact with each other as t evolves in the matrix 
exponential etA

.. We present some preliminary numerical results to demonstrate 
how the low-rank and diagonal structures in A may impact the properties of the 
matrix exponentials, e.g., the numerical rank of the off-diagonals of etA

. defined 
as the minimal rank of etA − D . for all possible diagonal matrices D.  The  
existence and identification of the compressible features in the matrix exponentials 
are important for understanding the physical systems and for accelerating the 
numerical simulations for large-scale problems. We consider the settings in our 
second example where T is given by E q. (26). Note that when t is small and
O(t2). along with higher-order terms can be neglected in Eq. (1), the numerical 
rank of the off-diagonals of etA

. is therefore determined by the numerical rank of
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(b) Case 2: stepsize = 0.3 

Fig. 10 Numerical rank of off-diagonals of etA .,  where A = T + V . and T is  given  by  E  q. (26) 

the off-diagonals of matrix tA, which is approximately 5. This rank changes as 
t increases. In the left of Fig. 10, we show how the numerical rank increases when 
t ∈ [0, 3e−5].. In the right of Fig. 10, we show that the solution (and rank) eventually 
decreases to zero when t approximately equals to 45. Therefore, the numerical rank 
of the off-diagonals is bounded by a constant (approximately 10) for all t > 0.. See 
Sect. 4 for discussions of the off-diagonals’ low-rank feature extraction algorithm 
and theoretical explanations of the changes in the low-rank properties in time. 

Finally, to show the complexity of the relations between the compressible 
features in the matrix exponential etA

. and those in the matrix A, we consider a 
discretized convolution matrix where Ai,j = 1

|xi−xj | ., i �= j ., and xi .’s are ordered 
and evenly spaced in the interval [0, 1].. To make the matrix negative definite, each 
diagonal Ai,i . is chosen to be the negative sum of the other matrix entries in the 
same row (or column). Note that such a matrix is no longer the summation of 
a diagonal matrix and a low-rank matrix. In many physical models, the spatially 
“well-separated” interactions are often low-rank. When matrix A describes the 
interactions of three physical systems, the first system is located in [0, 1

3 ]., the second 
system is in ( 13 ,

2
3 ]., and the last system is in ( 23 , 1].. Systems 1 and 3 are thus 

spatially “well-separated” as they are at least “one box size” apart. The interactions 
of systems 1 and 3 form an off-diagonal matrix block in both A and etA

..  The  
rank of the corresponding well-separated matrix block in A is always bounded by 
approximately 10 using the SVD analysis, independent of the dimension of the 
submatrix block and locations of xi .. Our numerical results reveal that for fixed 
matrix size, the rank of the well-separated submatrix block will be bounded as t 
increases. However, when the dimension of the matrix increases, the maximum 
rank (defined as the maximum rank for all t values) of the corresponding well-
separated submatrix block of etA

. increases approximately linearly as a function of 
the dimension of the well-separated submatrix block. This is clearly a challenge 
for large-scale simulations. In Fig. 11, we show how the maximum ranks (in t) 
of well-separated submatrices increase when the number of evenly spaced points 
increases. We assume the submatrix has dimension n×n.. We are studying this “loss
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Fig. 11 Linear growth of the maximum numerical rank of well-separated submatrices of eAt . as a 
function of submatrix dimension n × n. 

of compressible features” phenomenon from both the modeling and linear algebra 
perspectives, and results will be reported in the future. 

6 Summary and Future Work 

The efficient computation of matrix exponentials is a fundamental building block 
in the numerical simulation of time-dependent science and engineering problems. 
In this paper, assuming the matrix can be split into the sum of simple structured 
matrices, including diagonal and low-rank matrices, we present two approaches 
to accelerate the computation of matrix exponentials and related matrix–matrix 
and matrix–vector multiplications. The first approach is based on the Lie–Trotter– 
Suzuki decompositions where the matrix exponential is approximated by the 
product of the exponentials of simple structured matrices. In the second approach, 
a polynomial matrix is computed to approximate the solution of the differential 
equation for the matrix exponentials. Compared with existing general-purpose 
solvers, preliminary numerical experiments show that both methods can improve 
simulation efficiency and provide satisfactory results in accuracy and stability.



Matrix Exponentials: Lie–Trotter–Suzuki vs Gauss Runge–Kutta 65

In order to further improve the efficiency of the presented algorithms, it is impor-
tant to understand and extract the compressible features in the matrix exponentials. 
A particularly interesting question is how the eigenvalues, eigenvectors, and rank of 
the off-diagonals and submatrix blocks change when the physical system evolves 
in time. We have implemented randomized rank-revealing algorithms to extract 
the low-rank structures and create compressed representations for the low-rank 
structures. The algorithms have been applied to several systems to better understand 
the complicated interactions of different compressible features. We are currently 
working on the rigorous analysis of the preliminary numerical experiments and 
results will be presented in the future. 
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Part II 
Graph Algorithms



An Exploration of Graph Distances, 
Graph Curvature, and Applications to 
Network Analysis 

Kasia Jankiewicz, Manasa Kesapragada, Anna Konstorum, 
Kathryn Leonard, Nazia Riasat, and Michelle Snider 

1 Introduction 

Various notions of curvature in geometry measure how much, and possibly in which 
directions, the space differs from a flat Euclidean space, e.g., how much a curve 
differs from a straight line and how much a surface differs from a flat plane. In 
Riemannian geometry, the concepts of scalar curvature, which is an assignment of 
a number to each point in a manifold, or Riemann or Ricci curvature tensors, which 
assign a tensor to each point in a manifold, are considered as an intrinsic property 
of a geometric object, i.e., they are independent to the embedding of the object in 
an ambient space [17]. 

The classic examples of constant curvature are the surface of a sphere, which 
has constant positive curvature; the Euclidean plane, whose curvature is zero 
everywhere; and the hyperbolic plane, which has constant negative curvature. More 
generally, the curvature at a given point is defined for more general Riemannian 
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manifolds, and it may vary as the point varies, so there might be points of positive 
curvature where the manifold locally resembles a sphere; points with zero curvature, 
where the manifold locally looks flat; and points of negative curvature. There also 
exist notions of curvature of higher-dimensional manifolds. The curvature captures 
various geometric properties, e.g., the area of the disk of a fixed radius, or the 
isoperimetry, i.e., the relation between the circumference of a closed curve and the 
area enclosed by it. 

There is a natural interest in defining a concept of curvature that captures some of 
those aspects in discrete spaces, such as graphs, to help understand the connections 
and structure therein. In this paper, we focus on the notions of curvature that 
are defined for graphs, as opposed to continuous spaces classically considered in 
differential geometry. We are also interested in intrinsic definitions of curvature. 
Among the first studied graph curvature notions were the Ollivier-Ricci curvature 
[23], defined in terms of optimal transport, and the Forman-Ricci curvature [10], 
in terms of the discrete Laplacian. More recently, the concept of graph curvature, 
defined in terms of shortest-path and resistance distance, has been proposed and 
studied by Devriendt-Lambiotte [7] Steinerberger [24], and Devriendt-Ottolini-
Steinerberger [8]. 

Classically, nodes in graphs have often been analyzed in terms of their centrality, 
according to various types of centrality measures, and how that is related to the 
connections and structure of the graph. These measures can be thought of as how 
“important” a node is to some defined information flow across a network [5]. Thus, 
when considering the curvature of a graph, it is natural to ask how the curvature at 
each node is related to the centrality or if they give us different or complementary 
information. 

In this work, we focus on studying associated properties of centrality and 
curvature at the node level of a graph. Definitions for different kinds of curvature 
and centrality depend heavily on the choice of distance metric on the graph. As 
such, we consider curvatures and centralities using two different distances on 
graphs: shortest-path distance and resistance distance. Unlike the standard shortest-
path distance, the resistance distance takes into account not only the shortest path 
between two vertices but the lengths of all paths. As such, it provides much more 
information about how information can flow across a graph. 

A connection between the centrality measures and other notions of discrete 
curvature has been recently investigated by other authors. In [19], variants of 
Ricci curvature (Baker-Émery, Forman, and Ollivier) on graphs and their relations 
to centrality measures are explored. In [18], a bound on the average shortest-
path distance in terms of the average vertex degree and the average Ollivier-Ricci 
curvature “weighted” by the betweenness centrality is established. 

In this paper, in Sect. 2, we cover the necessary definitions for the Laplacian, two 
graph distances, centrality measures, and graph curvature. In Sect. 3, we discuss 
mathematical interpretations of graph distance and curvature. We then investigate 
the relationships between these metrics and the intuition behind them, in particular 
between node-level curvature and node-centrality measures on a set of synthetic and
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real-world graphs. The studied graphs are described in Sect. 4, and our computations 
are presented in Sect. 5. Further discussion is included in Sect. 6. 

2 Background 

Let G = (V ,E,w). be an undirected, weighted graph with vertices v ∈ V = [1, n]., 
edges ei,j ∈ E .,  for i, j ∈ [1, n]. between vertices i and j with edge weights in R≥0 . 

given as aij ≥ 0.. Define the adjacency matrix A = (aij ). and the diagonal degree 
matrixD = ∑

j Aij ., where the ith .diagonal entry is the generalized degree of vertex 
i.  Let 1 = (1, . . . , 1)., the vector of all ones, with the length determined by context. 

2.1 The Laplacian 

Definition 1 For a graph G, we define the Laplacian matrix as 

. L := D − A.

This matrix is symmetric positive semi-definite; therefore, all eigenvalues are 
nonnegative. By definition, L1 = 0., so 0 is an eigenvalue with normalized 
eigenvector 1/

√
n1.. Let us assume that G is a connected graph, in which case all 

other eigenvalues will be positive. That is, 0 < λ2 ≤ λ3 . . . ≤ λn .with eigenvectors 
[ 1√

n
1, v2, . . . , vn]. . The singular value decomposition of L can then be written a s

. L =
[

1√
n
1 v2 . . . vn

]

⎡

⎢
⎢
⎣

0
λ2

· · ·
λn

⎤

⎥
⎥
⎦

[
1√
n
1 v2 . . . vn

]T

:= V

⎡

⎢
⎢
⎣

0
λ2

· · ·
λn

⎤

⎥
⎥
⎦ V T .

The Laplacian matrix is not invertible, but we describe two pseudo-inverses. The 
Moore-Penrose, or generalized, inverse of the Laplacian is defined as 

.L† = V

⎡

⎢
⎢
⎣

0
1/λ2

· · ·
1/λn

⎤

⎥
⎥
⎦ V T . (1)
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This matrix is also symmetric, positive definite, and has zero row and column sums. 
In fact, 

. L†L = LL† = �n

where �n = I − 1
n
11T

. is the projector onto the subspace orthogonal to the kernel 
of L, the space spanned by 1.. From this, we can verify that 

. L† = (L + 1

n
11T )−1 − 1

n
11T

as in Ghosh et al. [12]. That is, we add a perturbation to the Laplacian matrix to 
make it invertible and then subtract the perturbation off after we have inverted it. 

Second, we define the regularized Laplacian � . as 

. � := L + β

n
11T

for some choice of β > 0.. This matrix has the same eigenvectors as L,  but  the  0  
eigenvalue is shifted so that � . is non-singular and as such we can find 

. �−1 := (L + β

n
11T )−1

= V

⎡

⎢
⎢
⎣

1/β
1/λ2

· · ·
1/λn

⎤

⎥
⎥
⎦ V T . (2) 

That is, for β = 1., we get the following relationship between the two pseudo-
inverses: 

. �−1 = L† + 1

n
11T

A note on overloaded notation: we use D with no subscripts to indicate the degree 
matrix and D∗ .with subscripts to represent the two types of distance matrices we use 
to compute other metrics. 

2.2 Graph Distances 

We define a path pi,j = {vi, vi+1, .., vj }. as a sequence of vertices on G such that 
for each vk ∈ pi,j ., ∃ ek ∈ E . that connects {vk, vk+1}. and k �= l ∀ vk, vl ∈ pi,j ..  We  
consider two distance metrics: the shortest-path distance is the length of the shortest 
path between two points, while the resistance distance depends on all parallel paths 
between them, as detailed below.
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Definition 2 The shortest-path distance between nodes vi, vj ∈ V . is taken to be 

. DS,ij = min
pi,j

⎛

⎝
j−1∑

k=i

w(ek)

⎞

⎠ ,

where {ei, ei+1, ..., ej−1}. correspond to edges of a path pi,j = {vi, vi+1, ..., vj }.. 
The resistance distance on graphs, also known as the effective resistance,  was  

introduced by Klein and Randic [15] and inspired by electrical network theory. 
Informally, all edges ei,j ∈ E . for a graph G = (V ,E,w). are conceptualized as 
resistors with the weight of the edge proportional to the conductance, and for nodes 
vi, vj ∈ E ., the resistance distance is calculated by considering a unit of current 
entering the network at vi . and leaving at vj ., and calculating the potential difference 
DR,ij . between the two using Kirchhoff’s circuit laws: 

1. The sum of all currents at a node is 0. 
2. The sum of all voltages around a closed loop is 0. 

Definition 3 The resistance distance DR,ij . between nodes vi, vj ∈ V . is taken to be 

.DR,ij = (�−1)ii + (�−1)jj − 2(�−1)ij , (3) 

where the inverse of the regularized Laplacian is as in Eq. 2, as defined in [6, 9]. 

Note that we could have equivalently defined this as 

.DR,ij = L
†
ii + L

†
jj − 2L†

ij , (4) 

by Definition 2, where L†
. is the Moore-Penrose pseudo-inverse of the Laplacian as 

defined in Eq. 1. We note this since some authors [24]  use  Eq  . 4, while others [8] 
use Eq. 3. 

The resistance distance is a useful metric for assessing the “connectedness” of 
two nodes in a graph, in that it incorporates not just the single shortest path but 
also the lengths of all the paths connecting those two nodes. As a simple example, 
consider a graph G with just two nodes and a single edge of weight 1, versus a 
graph G′

.with two nodes but two edges of weight 1 each. The shortest-path distance 
between the two nodes is 1 in both graphs, but the resistance distance in G is 1, 
while in G′

.,  it  i  s 1
2 ., accounting for the two possible paths. This can be useful in 

graphs that represent information flow, as it captures in some sense how easy it is 
for information to get from one node to another. 

Bozzo et al. [6] highlight that in an acyclic graph, the shortest-path and resistance 
distances are equivalent, as there is only one path for current to flow from any 
starting point to any ending point. As graphs become denser, there are more paths 
between nodes, creating more paths for the current to split its flow, and, thus, the 
resistance distance becomes smaller than the shortest-path distance.
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2.3 Centrality Measures 

Network centrality refers to node properties capturing their “importance,” or 
centrality to a network. The most basic measure is degree centrality, which is simply 
the degree of a node scaled by the number of nodes in the graph, |V |.. 
Definition 4 Degree centrality Degcent,i . of a node i is the degree of the node 
divided by (|V | − 1).. 

Several other centrality measures are parameterized by the distance on the nodes. 
We look at two such measures, the closeness centrality and betweenness centrality, 
which were first defined in [4] and [11], respectively, and can be considered with 
respect to any distance on a graph. We provide details of their formulation using 
both the shortest-path distance DS . (Definition 2) and resistance distance DR . (Eq. 4). 

Closeness centrality of a node is defined as the mean distance between that node 
and all other nodes in a network for a particular distance metric. The closeness 
centrality represents a relative measure of how long it will take for information to 
spread to and from each node. Betweenness centrality measures the proportion of 
paths that a node lies in between all pairs of nodes and, as such, captures how often 
random walks in the graph pass through a particular node. This can be thought of as 
how important a node is for information flow across a network. The mathematical 
definitions for these centrality metrics parametrized by the two different distances 
are provided below. 

Definition 5 Shortest-path closeness centrality, CS,i . of a node i is taken to be the 
average of the shortest-path distance from that node to all the others:

. CS,i = n
∑n

j=1,j �=i DS,ij

,

where n = |V |.. 
We will refer toCS,i .as defined above to be the closeness centrality parameterized 

by the shortest distance metric. Alternately, we will consider the closeness centrality 
parameterized by the resistance distance as in [6], sometimes also called the current-
flow closeness centrality due to its interpretation of how current flows between 
nodes. 

Definition 6 Resistance closeness centrality CR,i . of a node i is defined as

. CR,i = n
∑n

j=1,j �=i DR,ij

,

where the distance metric used is the resistance distance as in Eq. 3. 

Definition 7 Shortest-path betweenness centrality, BS,i ., for a node i is the propor-
tion of shortest paths that node i lies in between all nodes:
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. BS,i =
∑

a �=b

η(a, i, b)

η(a, b)
,

where η(a, i, b). is the number of shortest paths connecting vertices a and b that pass 
through node i and η(a, b). is the total number of shortest paths between a and b .

Definition 8 Resistance betweenness centrality (or current-flow betweenness cen-
trality), BR,i ., is calculated as the average of current flow through a node i when 
a unit of current is injected in a source and removed from a target node across all 
source-target pairs. It can be shown [6] that BR,i . can be calculated as the following 
sum over source a and target b pairs:

. BR,i = 1

(1/2)n(n − 1)

∑

(a,b),a<b

F
(a,b)
i ,

where n = |V |. and F
(a,b)
i . is the current flow through node i from source a to target 

b, defined as

. F
(a,b)
i = 1

4

∑

j

Aij |DR,ia − DR,ja + DR,jb − DR,ib|,

where A is the weighted adjacency matrix of G and DR,∗∗ . is the resistance distance 
as calculated in Eq. 4. 

Note that the ordering within the pair of source a and target b is irrelevant, as
F

(a,b)
i = F

(b,a)
i .. If we think of the graph as a network over which information 

flows, betweenness centrality at a node gives us information about how much each 
node has control over information flowing through it. 

2.4 Graph Curvature 

While the reader may have some intuition about the curvature of surfaces, this does 
not directly translate to a notion of curvature on a graph. One can think of curvature 
as a limiting factor on the size of a graph—just as a highly positively curved surface 
is limited in size, so is a highly positively curved graph [8]. Another interpretation 
of graph curvature is a measure of the average distance between two random walks 
that start at a particular vertex and take independent random paths [7]. 

Definition 9 The curvature κi ∈ R. in the vertex vi ∈ V . is defined such that the 
vector κ = (κ1, . . . , κn) ∈ Rn

. solves the linear system of equations: 

.D∗ κ = n · 1 = (n, . . . , n)
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Fig. 1 (Left) The dodecahedron has constant positive resistance curvature (κR = 1.0949.), just as 
the sphere has positive curvature. (Right) A balanced tree with five branches per node and a depth 
of 3 is an example of the following: every finite tree has positive resistance curvature at all leaf 
nodes and negative resistance curvature at interior nodes 

as in [24], where it is noted that it is “exceedingly rare” that this system does not 
have a solution. We denote curvature calculated with the shortest-path distance as 
κS,i . and curvature calculated with the resistance distance as κR,i .. 

To provide some intuition, in Fig. 1, we show examples of positive and negative 
resistance curvature κR .. 

We note that the literature includes several slightly different definitions of graph 
curvature. First, in their 2022 work, Devriendt and Lambiotte [7] define it as the 
solution to 

.κ = D−1∗ 1

〈1,D−1∗ 1〉 . (5) 

The denominator normalization factor has the effect that every graph with constant 
curvature has curvature κi = 1/n.. 

Second, in their 2024 paper, Devriendt et al. [8] make a slight change to [24] and 
define it as the solution to 

.D∗ κ = 1 = (1, . . . , 1). (6) 

The authors note that this change allows for the computation of useful bounds 
relating to hitting and commute times [8].
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3 Mathematical Interpretations 

To help motivate the intuition behind graph distances for newcomers to the field, 
we provide mathematical interpretation in the language of linear algebra. One 
interpretation of graph distances comes from matrix theory and the link between 
symmetric positive definite matrices and Euclidean distance matrices, as in [14] 
whose framing we now summarize. Let �n . be the cone of symmetric positive semi-
definite matrices of order n, contained in Sn ., the subspace of symmetric matrices 
of order n.  Let 	n . be the cone of Euclidean distance matrices of order n.  Fo  r ◦. 

representing the Hadamard product, and 1. representing the n-vector of ones, we 
may define a mapping from �n → 	n .: 

. K(A) = (A ◦ I ) 11T + 11T (A ◦ I ) − 2A

= diag(A)1T + 1 diag(A)T − 2A.

We note that K(A)ij = aii + ajj − 2aij .. Since K is linear, a quick count of 
dimensions shows that dim(ker(K)) = n.. If we assume that Ax = 0. for some 
x ∈ Rn

. satisfying xT 1 = 1., we can uniquely determine an A mapping to any 
particular distance matrix for our choice of x. Given a graph distance matrix, we 
may then search for A ∈ �n . for our choice of x. Similarly, we may generate new 
distance matrices by applying K to matrices A ∈ �n .. 

In the specific case of the resistance distance, we have a matrix � = D−A+ 1
n
1., 

which is an element of �n . together with its inverse �−1
..  The  term 1

n
1. reflects the 

choice of x determining ker(A).. Applying the mapping K , we obtain a matrix R =
K(�−1). with ij th element Rij = (�−1)ii + (�−1)jj − 2(�−1)ij .. In other words, 
the resistance distance matrix is the image of the inverse of the regularized graph 
Laplacian matrix (with a particular choice of kernel) under the mapping K .  This  
provides a mathematical context for interpreting resistance distance in particular 
graphs, as we do in some of the experiments that follow .

4 Methods 

In this work, we are interested in the relationships between notions of centrality 
(closeness, betweenness, and degree) and curvature. We will consider each measure 
computed with both the standard shortest-path distance measure and the resistance 
distance. We compare these measures on the vertices of a set of graphs, some 
synthetic and some based on real-world data. For completeness, we list the seven 
measures on a vertex vi . here: 

• Degcent i .: degree centrality (Definition 4) 
• CS,i .: shortest-path closeness centrality (Definition 5) 
• CR,i .: resistance closeness centrality (Definition 6)
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• BS,i .: shortest-path betweenness centrality (Definition 7) 
• BR,i .: resistance betweenness centrality (Definition 8) 
• κS,i .: shortest-path curvature (Definition 9) 
• κR,i .: resistance curvature (Definition 9) 

4.1 Graphs Tested 

The graphs considered include a mixture of synthetic and real-world graphs, chosen 
to investigate the relationships between the measures listed above. 

4.1.1 Synthetic Graphs Under Perturbations 

To develop our intuition about how these measurements interrelate, we begin with 
experiments on small graphs. Looking at graphs with the same number of nodes 
but different graph structures helps us to understand how graph distances change as 
graph connectivity changes. The graphs we consider, each with eight nodes, are the 
binomial tree, the Sedgewick maze graph, the lollipop graph, the ladder graph, and 
the star graph (Fig. 7). 

Another dimension of intuition comes from seeing how values of graph curvature 
and centrality change for a fixed graph structure as distances grow. Given a distance 
matrix D∗ ., we may apply the techniques in Sect. 3 to increase the size of the 
dominant eigenvalue of D. More precisely, given a distance matrix D, we compute 
the corresponding A = K−1(D∗)., which is a real, symmetric matrix. We then 
multiply the dominant eigenvalue of A by either 10 or 1000 to obtain a perturbed
Ap . for p = 10, 1000. and then recover a perturbed D∗,p = K(Ap).. A short 
calculation shows that the nondominant eigenvalues of D∗ . are largely stable under 
this perturbation. We then compute graph measures for D∗ ., D∗,10 ., and D∗,1000 . and 
see how those graph measures vary. 

4.1.2 Synthetic Graphs for Measure Comparison 

For the centrality and curvature correlation experiments, we consider one con-
structed graph and two generated graphs: the Krackhardt kite graph, a lobster graph, 
and a Barabási-Albert graph (Fig. 2). These graphs have been chosen because their 
structures highlight differences in the metrics under consideration. 

The Krackhardt kite graph [16] is a simple graph with ten nodes, designed 
to distinguish different concepts of centrality computed with the shortest-path 
distance: the vertex with maximum degree Degcent i ., the vertex with maximum 
betweenness centrality BS,i ., and the two vertices with maximum closeness cen-
trality CS,i . are all different.
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Fig. 2 Synthetic graphs and their properties: (Left column) Spring layout of the synthetic graph; 
(middle column) Pearson correlations between centrality measures and curvatures of the tested 
graphs. Axes from top-to-bottom and left-to-right are CS ., BS ., κS ., CR ., BR ., κR .,  and Degcent .; (right 
columns) distribution of centrality metrics 

The lobster graph is randomly generated, parameterized by the number of nodes 
in the backbone n, the probability of adding an edge to the backbone p1 ., and the 
probability of adding an edge one level beyond the backbone p2 .. In our example, 
we used n = 8., p1 = 0.8., p2 = 0.7.. This parameter selection creates a balance 
between high-curvature leaf nodes and low-curvature backbone nodes. 

The Barabási-Albert graph was generated using the Barabási-Albert network 
growth model [3]. It generates networks with scale-free properties and a power-law 
distribution of node degrees. In this model, nodes are incrementally added one at 
a time, and each newly added node forms connections with existing nodes chosen 
based on their degrees. The Barabási-Albert model in this study was configured with 
100 nodes (n = 100.), where each newly introduced node forms a single connection 
(m = 1.) with an existing node in the network. This parameter selection highlights 
the basic preferential attachment mechanism, illustrating how hubs form as the 
network grows, which is considered an essential feature of real-world networks [3]. 

4.1.3 Real-World Graphs for Measure Comparison 

For more realistic centrality and curvature correlation experiments, we consider the 
following three graphs based on real data: the Zachary karate club graph, the Davis 
Southern women graph, and the co-authorship network (Fig. 3).
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Fig. 3 Real-world graphs and their properties: (Left column) Spring layout of the real-world 
graph; (middle column) Pearson correlations between centrality measures and curvatures of the 
tested graphs. Axes from top-to-bottom and left-to-right are CS ., BS ., κS ., CR ., BR ., κR .,  and Degcent .; 
(right columns) distribution of centrality metrics 

Zachary’s karate club graph is a social network graph based on 34 members 
of a karate club that split in two after a conflict [26]. The structure of the graph can 
be used to predict which members (nodes) joined each of the two resulting groups. 

The Davis Southern Women graph (DSW) is a bipartite graph generated from 
data collected by Davis et al. in the 1930s representing observed attendance at 14 
social events by 18 Southern women [1]. 

The co-authorship network is based on publication co-authorship among a 
group of 1589 scientists working on the topic of networks in the early 2000s [20]. 
For this work, we only consider the largest connected component of this graph. 

4.1.4 Metric Behavior on Sample Graph 

In order to provide some intuition on the various metrics we consider in this paper, 
we describe those metrics in a constructed example. The kite graph (Fig. 4)  was  
constructed such that the following vertices are all different under the shortest-
path distance: the vertex with maximum degree Degcent i . (vertex 3), the vertex with 
maximum BS,i . (vertex 7), the two vertices with maximum CS,i . (vertices 5 and 
6), and the vertex with maximum κS . (vertex 9). When we consider the resistance 
distance, the vertices with the maximum BR,i ., CR,i ., and κR . all match their shortest 
distance counterparts. If we consider the vertices with the lowest values of each 
metric, the closeness centrality is the lowest under both metrics in vertex 9. While
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Fig. 4 Krackhardt kite graph with labeled vertices, highlighting the negative correlation between 
degree and curvatures. Note that vertices 2, 4, and 9 are tied for the minimum BS,i . 

the betweenness centralities BS,i . and BR,i . are minimized at vertex 9 under both 
metrics, vertices 2 and 4 also tie for the minimum under only the shortest-path 
betweenness. For curvature, the minimum κS . occurs at vertex 7, but the minimum 
κR . is at vertex 3 (where the degree centrality is highest). 

5 Results 

As expected, we note a positive correlation between all centrality metrics, irre-
spective of the graphs tested (Figs. 2 and 3). We also observe a strong negative 
correlation between κR ., and to a lesser extent κS ., and all centrality measures across 
all graphs. 

5.1 Distribution of Metrics as a Function of Graph Structure 

We observe that a portion of the graphs are heavy-tailed in their degree distribution: 
the lobster and Barabási-Albert graphs from the synthetic graphs and the co-
authorship and, to a lesser degree, the karate club graph from the real-world 
graphs. A heavy-tailed degree distribution indicates that the graphs have a “hub-
like” structure, with a few nodes that are highly connected relative to the others 
[13]. Although similar with respect to their degree distribution, the two synthetic 
graphs have a tree configuration, whereas the two real-world graphs have cycles. We 
will show that these different structural properties give rise to different relationships 
between the graphs’ respective node metrics.
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We start with a discussion of the behavior of the two different distance metrics 
on tree structures. Recall that the resistance distance between two nodes depends 
on all the possible paths between them. First, consider a pair of nodes connected 
by a single edge: the shortest-path distance and resistance distance between them 
are equal. This will extend to a pair of nodes that only allow a single path between 
them, which is the case for two nodes on a single tree branch. For a tree graph with 
no cycles, most of the nodes will have a low degree, as we observe in the degree 
centrality distribution for the lobster and Barabási-Albert graphs (Fig. 2). All pairs 
of nodes will have only one path between them, as noted earlier and in [6], meaning 
that the resistance distance will be equal to the shortest-path distance for all node 
pairs. We can observe this relationship in the metrics, which we compute using the 
distance measures: in the lobster and Barabási-Albert graphs, CS . and CR ., BS . and 
BR ., and κS . and κR ., are all perfectly correlated, whereas in the real-world graphs, 
which display cycles, there are less consistently high correlations across these pairs 
of metrics. 

When parameterizing both centralities and curvature with the resistance distance 
( CR ., BR ., and κR ., respectively), we can refer back to Fig. 1 to gain additional 
intuition on the behavior of both metrics vis-a-vis the graph structure. In a tree 
graph, local resistance distances will be large, as current trying to flow through will 
have limited paths. Thus, the resistance distance centrality measure will be high, 
and we observe negative curvature at all nodes that aren’t leaves, and for the same 
reason, a high CR . and BR .. Conversely, in a more dense graph that is not acyclic, a 
node that has a neighborhood that has many cycles connected to it will have lower 
local resistance distances, as the current flowing through will be able to split across 
multiple paths. This means the CR . and BR . will be lower, and a lower κR . will be 
observed. 

These relationships are well illustrated in the random lobster graph (Fig. 5, 
top row). The inverse correlation of resistance betweenness ( BR .) and resistance 
curvature ( κR .) is highlighted both in the leaf nodes (where both are close to 0) and 
backbone nodes (where BR . is positive, and κR . is negative). We see a very similar 
structure for the Barabási-Albert graph (Fig. 2). 

We now consider the degree distribution of the different graphs in Figs. 2 and 3. 
We note that the degree distribution tends to be more heavy-tailed in the lobster and 
Barabási-Albert graphs (which are trees) and the karate and co-authorship graphs 
(which have cycles). For intuition, note that the two nodes with the highest Degcent . 

in the karate club graph correspond to the leaders of the two factions after the 
original karate club split (Figs. 3 and 5). As discussed above, in the trees, the 
shortest-path and resistance distance matrices will be identical; therefore, κS . and 
κR . will be perfectly correlated and highly correlated with the degree centrality, 
mirroring the observed heavy-tailed distribution (Fig. 2). Conversely, in the karate 
club and co-authorship networks, the correlation between κS . and κR . is relatively 
lower due to the differences in the shortest-path and resistance distances of the 
nodes. Notably, κR . maintains its high correlation to Degcent ., whereas κS . does not.
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Fig. 5 Comparing centrality and curvature in (top row) the random lobster graph and (bottom row) 
the karate club graph. The graphs are colored by resistance betweenness ( BR .) in the first column 
and resistance curvature ( κR .), negated and shifted, in the second column. For the lobster graph, the 
red arrows point to a node that has differing relative BR . and κr . 

This is due to the fact that the resistance distance captures information related to all 
paths between two nodes, which will be more closely correlated to the node degree 
than the shortest-path distance. Therefore, the hub-like nature, which is evidenced 
by the heavy-tailed degree distribution, is also reflected by κR ., but not κS .. Of note, 
κR . and Degcent . are also more highly correlated in the DSW graph, which does 
not have a heavy-tailed degree distribution but has cycles, indicating that the strong 
correlation observed between κR . and Degcent . does not depend on the distribution 
of Degcent .. 

5.2 Discrepancies Between Centrality, Curvature, and Degree 

Since the resistance distance has been argued as a “natural” distance to parameterize 
graph curvature [24], we focus on understanding potential similarities/differences 
between the betweenness centrality as parameterized by the resistance distance ( BR .) 
and graph curvature as parameterized by the resistance distance ( κR .). We visualize
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Fig. 6 The co-authorship network, with nodes colored by (left) resistance betweenness ( BR .), 
(middle) degree centrality (Degcent .), and (left) resistance curvature ( κR .), negated and shifted. In 
these plots, the node size is also proportional to each measure. The node labels N, B, H correspond 
to authors M. Newman, A. Barabási, and P. Holme, respectively 

the co-authorship network since it has the lowest correlation between BR . and κR . 

(Fig. 3). Plotting BR ., Degcent ., and (the negative of) κR ., respectively, for the co-
authorship network shows that the highest-scoring nodes are not identical (Fig. 6). 
Indeed, we observe some very interesting patterns emerge: author M. Newman has 
the highest BR . and -κR . values, whereas author A. Barabási has the highest Degcent . 

and second highest -κR .. Author P. Holme has the second highest BR . and does not 
make the top five highest scores for either Degcent . or -κR .. We observe then that 
A. Barabási has the highest degree but relatively lower BR ., showing that he is not 
positioned in a part of the network with high information flow. Nevertheless, he 
still achieves the second highest -κR ., indicating that the resistance curvature is able 
to identify nodes with both high degree and information flow, which neither BR . 

nor Degcent . can pick up individually. We observe a similar phenomenon in the 
random lobster graph (Fig. 5), where the node indicated by the red arrow has a 
relatively higher BR . than κ∗

R .. In this case, we observe that nodes connecting two 
highly connected regions of a graph, which themselves are not highly connected, 
are more effectively resolved using the BR .metric. 

We can see this phenomenon dynamically in the small graphs described in 
Sect. 4.1.1 under perturbations of the dominant eigenvalue of the distance matrix 
(Fig. 7), as discussed in Sect. 3. We recall the interpretation of resistance between-
ness as a measure of how many paths through the graph a particular node is on and 
resistance curvature as a measure of how locally distant a particular node is (how 
“flattenable” it is). We can see in Fig. 7 that, as distances from a node increase with 
the increase of the dominant eigenvalue of the distance matrix, the nodes that have 
low resistance curvature and high resistance betweenness are those nodes that are 
distant from neighbors but are a bottleneck for paths through the graph. The ladder 
graph relationships do not change since no node is a bottleneck. In the lollipop 
graph, on the other hand, the nodes with growing distance lose their betweenness 
while maintaining low curvature since paths can move through the other side of the 
graph, where the nodes are increasing in-betweenness.
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6 Discussion 

The relationship between a newly defined form of discrete curvature on graphs 
parameterized by shortest-path or resistance distance ( κS . and κR ., respectively) 
offers a new approach to graph and network analysis. In this paper, we have explored 
the relationship between graph curvature and established node-centrality metrics 
such as closeness and betweenness parameterized by two distances and degree 
centrality. We have observed a strong dependence of the metric relationships on 
graph structure: graphs that are more tree-like will have a strong correlation between 
κR . and κS . due to the similarity of the respective distance metrics and, conversely, a 
lower correlation of κR . and κS . in a graph with larger interconnectedness. A strong 
negative correlation exists between curvature and the centrality metrics across both 
distance metrics for all graphs studied, but more strongly for resistance distance. In 
general, local tree-like structures have higher centrality and low curvature, whereas 
local areas with many cycles have lower centrality but high curvature, giving rise to 
high correlations irrespective of structure. 

Yet, we observed that this correlation is not 100%. In the co-authorship network, 
we observed that κR . can provide a balance between emphasizing a high-degree 
node and a node with high information flow. Conversely, κR . is less capable than 
BR . to capture nodes that connect two highly connected regions of the graph. 
Understanding what structural features κR . is more and less likely to capture can 
help researchers determine whether this metric is appropriate for their respective 
applications. Another structural feature of networks where κR . may find application 
is in graph community detection and analysis. Indeed, Ni et al. used a discrete 
version of the Ricci flow, which is an evolutionary metric that is curvature-
dependent, for network community detection [7, 22]. In more recent work, Tian 
et al. considered several notions of graph curvature to implement the Ricci flow 
for community detection [25]. In addition to flow-based community detection, we 
could also consider using the resistance curvature to evaluate highly important nodes 
within communities: while we would expect generally higher curvature for nodes 
in communities due to their high interconnectivity, influential nodes (those with 
especially high degree and information flow) would have relatively lower curvature 
within communities and could thus be detected via the κR .. 

Both the resistance betweenness centrality and resistance curvature can also 
be interpreted in terms of random walks on the graphs. As shown in [21], the 
betweenness centrality with resistance distance ( BR .)  at  vertex vi . is equivalent to 
a measure of how often a random walk between source node a and target node 
b passes through node vi ., averaged across all source-target pairs. Devriendt et 
al. show that the resistance curvature, based on their definition in Eq. 5,  at  a  
vertex vi . is related to the average distance between nodes in its neighborhood, or 
equivalently to the average distance between two walkers who start at vertex vi . and 
take independent random paths, as defined by the diffusion equation (Appendix B.5. 
in [7]). With this interpretation, we can see that nodes along this bridge structure 
have relatively higher resistance betweenness since they are on a high probability
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path to get between the two clusters, given that there are very few other ways to get 
between the clusters. However, they also have relatively high resistance curvature 
values despite not being in clusters themselves, as two random walkers who start on 
one of the bridge nodes can easily make it to one of the end clusters, at which point 
their paths will quickly diverge. This phenomenon is observed in our experiments 
in the lobster graph, as previously described. 

It may also be possible to mathematically explain the relationship between 
resistance betweenness and resistance curvature more closely. For inverting the 
resistance distance matrix DR ., work has been done by [2]. For a vertex vi ∈ V ., 
let adj (vi). denote the set of vertices adjacent to vi .. Then, for i = 1, . . . , n.,  le  t τ . be 
the column vector with components given by 

. τi = 2 −
∑

j∈adj (vi )

DR,ij

aij

Then, one can derive an equation for the inverse of the resistance matrix (DR)−1
. as 

.(DR)−1 = −1

2
L + 1

τT DRτ
ττT . (7) 

Further work could analyze the formulas for BR . (Definition 8) and κR . (Definition 9 
with Eq. 7) for insights. 

In conclusion, we have performed an exploration of the relationship between a 
new notion of graph curvature and established centrality metrics and found several 
promising avenues for both application and future research on the utility of graph 
curvature for network analysis. 
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Appendix 

Perturbation graphs as described in Sects. 4.1.1 and 5.2 (Fig. 7).
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Fig. 7 Resistance betweenness ( BR .) and resistance curvature ( κR .), in graphs with eight nodes. 
Left column: original graph. Middle column: graph with dominant distance eigenvalue increased 
tenfold. Right column: graph with dominant distance eigenvalue increased thousandfold
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Time-Varying Graph Signal Recovery 
Using High-Order Smoothness and 
Adaptive Low-Rankness 

Weihong Guo, Yifei Lou, Jing Qin, and Ming Yan 

1 Introduction 

Many real-world datasets are represented in the form of graphs, such as sea surface 
temperatures, Covid-19 cases at regional or global levels, and PM 2.5 levels in the 
atmosphere. Graphs play a crucial role in data science, facilitating the mathematical 
modeling of intricate relationships among data points. Typically composed of 
vertices with either undirected or directed edges, graphs regard each data point 
as a vertex and use edges to represent pairwise connections in terms of distances 
or similarities. A graph signal is a collection of values defined on the vertex set. 
The graph structure can be either provided by specific applications or learned from 
partial or complete datasets. 

As an extension of (discrete) signal processing, graph signal processing [29] 
has become an emerging field in data science and attracted tremendous attention 
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due to its capability of dealing with big data with irregular and complex graph 
structures from various applications, such as natural language processing [21], 
traffic prediction [31], climate change monitoring [28], and epidemic predic-
tion [10]. Graph signal recovery aims to recover a collection of signals with certain 
smoothness assumptions defined on a graph from partial and/or noisy observations. 
Unlike signals defined in traditional Euclidean spaces, the intricate geometry of the 
underlying graph domain must be considered when processing and recovering graph 
signals. Graph signals typically exhibit smoothness either locally or globally over 
the graph. 

There are some challenges in graph signal recovery when exploiting the under-
lying graph structure to improve signal reconstruction accuracy. First, the topology 
of a graph desires a comprehensive representation involving many graph compo-
nents, such as structural properties, connectivity patterns, vertex/edge density, and 
distribution. Second, it may be insufficient to describe the smoothness of graph 
signals by simply restricting the similarity of signal values locally. Moreover, 
the growth of graph size leads to a significant computational burden. To address 
them, various techniques have been developed, including graph-based regularization 
methods [4, 5, 17, 18], spectral graph theory [6, 24, 32, 35], and optimization 
algorithms [1, 15]. 

1.1 Time-Varying Graph Signal Recovery 

A time-varying or spatial-temporal graph signal can be considered as a sequence 
of signals arranged chronologically, where each signal at a specific time instance is 
defined on a static or dynamically changing spatial graph. 

Consider an undirected unweighted graph G = (V ,E),. where V is a set of n 
vertices and E is a set of edges. We assume a collection of time-varying graph
signals {xt }t=1,...,m . with xt ∈ Rn

. are defined on V with a time index t .  L  et
X = [x1, . . . , xm] ∈ Rn×m

. be the dataset represented in matrix. The pairwise 
connections on the graph G can be modeled by an adjacency matrix A, where t he
(i, j).-th entry of A is one if there is an edge between vertices i and j and zero 
otherwise. This binary adjacency matrix can be extended to the non-binary case for 
a weighted graph, where each entry indicates the similarity between two vertices. 
Throughout the paper, we use a standard K nearest neighbor (KNN) approach 
with an integer K,. based on the Euclidean distance of data points to construct the 
adjacency matrix. 

Given an adjacency matrix A, we further define the graph Laplacian matrix, 
L = M − A ∈ Rn×n,. where M is a diagonal matrix with its diagonal element
Mii = ∑

j Aij .. The graph Laplacian serves as a matrix representation of the graph 
structure and can be used to describe some important characteristics of a graph, 
such as node connectivity and similarity. For example, geographic locations in the 
form of coordinates, i.e., longitude and latitude, are typically used to calculate the 
pairwise distance and, thereby, the graph Laplacian for geospatial data. For some
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datasets without obvious graph domains, a preprocessing step of graph learning can 
be implemented; see [33] for a comprehensive review of graph learning techniques. 

Time-varying graph signal recovery aims to recover an underlying matrix 
from its partially observed entries that are possibly polluted by additive noise. 
Mathematically, a forward model is Y = J ◦ X + N,. where Y is the observed 
data, J ∈ {0, 1}n×m

. is a sampling matrix, and N. is a random noise. In this work, 
we focus on recovering time-varying signals, represented by the matrix X,  from  
incomplete noisy data Y defined on static spatial graphs in the sense that the vertex 
set and the edges do not change over time. In addition, we adopt a symmetrically 
normalized graph Laplacian that is pre-computed based on geographic locations.

1.2 Related Works 

The recovery of graph signals from partial observations is an ill-posed problem due 
to missing information. Graph regularization plays a crucial role in developing a 
recovery model for time-varying signals by enforcing temporal correlation and/or 
describing the underlying graph topology. An intuitive approach for recovering 
time-varying graph signals is to apply interpolation methods to fill in the missing 
entries, such as natural neighborhood interpolation (NNI) [30]. Numerous recovery 
models with diverse smoothness terms have been proposed to further preserve the 
underlying geometry. For example, graph smoothing (GS) [22] characterizes the 
smoothness of the signal using the graph Laplacian of X. Alternatively, temporal 
smoothness is incorporated in time-varying graph signal recovery (TGSR) [27] 
by formulating the graph Laplacian of DX,. where D is a first-order temporal 
difference operator. The combination of the graph Laplacian of X and the Tikhonov 
regularity of DX was considered in [25]. In contrast, the graph Laplacian of 
DX with an additional low-rank regularity of X was formulated as low-rank 
differential smoothness (LRDS) [20]. In the Tikhonov regularization, ‖XD‖2F =
tr(XDDT XT ). implies that DDT

. is treated as the temporal graph Laplacian. In [11], 
the graph Laplacian matrix L is replaced by (L + εI)r ., where I is the identity 
matrix and r ≥ 1. for a high-order Sobolev spatial-temporal smoothness. Its 
main advantage lies in faster convergence, as this approach does not necessitate 
extensive eigenvalue decomposition or matrix inversion. Recently, another low-rank 
and graph-time smoothness (LRGTS) method has been proposed in [19], where the 
sum of the nuclear norm and the Tikhonov regularizer on the second-order temporal 
smoothness are adopted to promote the low-rankness and the temporal smoothness, 
respectively. 

All the aforementioned models can be unified into one minimization framework: 

.min
X

1

2
‖Y − J ◦ X‖2F + α

2
tr(DT

θ XT LsXDθ) + βR(X) + γ

2
tr(XLtX

T ), (1) 

where Dθ . is a θ .-th order temporal difference operator; Ls . and Lt . are the spatial and 
temporal graph Laplacian matrices, respectively; R(X). is the regularization term
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Table 1 Comparison of related works and proposed methods 

Method Optimization model 

GS [22] minX
1
2 ‖Y − J ◦ X‖2F + α

2 tr(XT LX). (θ = β = γ = 0. ) 

Tikhonov [25] minX
1
2 ‖Y − J ◦ X‖2F + α

2 tr(XT LX) + γ
2 ‖XD1‖2F . 

(θ = β = 0, Lt = D1D
T
1 . ) 

TGSR [27] minX
1
2 ‖Y − J ◦ X‖2F + α

2 tr(DT
1 XT LXD1). ( θ = 1, β = γ = 0.) 

LRDS [20] minX
1
2 ‖Y − J ◦ X‖2F + α

2 tr(DT
1 XT LXD1) + β‖X‖∗ . (θ = 1, γ = 0.) 

Sobolev [11] minX
1
2 ‖Y − J ◦ X‖2F + α

2 tr(DT
1 XT (L + εI)rXD1). 

(θ = 1, Ls = L̃, β = γ = 0.) 

LRGTS [19] minX
1
2 ‖Y − J ◦ X‖2F + α

2 tr(XT LX) + β ‖X‖∗ + γ
2 ‖XD2‖2F . 

(θ = 0, Lt = D2D
T
2 .) 

Proposed L2 minX
1
2‖Y − J ◦ X‖2F + α

2 tr(DT
θ XT (L + εI)rXDθ ) + β ‖X‖erf . (γ = 0.) 

where ‖X‖erf . is an ERF-weighted nuclear norm 

Proposed L1 minX ‖Y − J ◦ X‖1 + α
2 tr(DT

θ XT (L + εI)rXDθ ) + β ‖X‖erf . (γ = 0.) 

where ‖X‖erf . is an ERF-weighted nuclear norm 

applied to X describing its characteristics; and α ≥ 0, β ≥ 0, γ ≥ 0. are three 
parameters. Two common choices of θ . are (1) θ = 0. that corresponds to Dθ = I . 

and (2) θ = 1. used in TGSR. Additionally, Ls . can be a transformed version of the 
classical graph Laplacian L, e.g., Ls = (L + εI)r . as used in the Sobolev method 
[11], where ε . is positive and r ≥ 1.can be non-integer. The temporal graph Laplacian 
can be constructed by using the τ .-th order temporal difference operator, i.e., Lt =
DτD

T
τ ., for which case the temporal Laplacian can be expressed via the Frobenius 

norm tr(XDτD
T
τ XT ) = ‖XDτ‖2F ., e.g., Tikhonov with τ = 1.and LRGTS with τ =

2.. The regularization R(X). can be chosen as the nuclear norm of X if the underlying 
time-varying graph signal X is of low rank. Various models utilize different choices
of Dθ,Ls, Lt . and the regularization R. 

Following the general framework (Eq. 1), we propose a novel low-rank regular-
ization R(X). based on the error function (ERF) [14] for sparse signal recovery (see 
Sect. 2.3). In addition, to handle the non-Gaussian type of noise such as Laplace 
noise, we propose a variant model in which the Frobenius norm-based data fidelity 
term is replaced with the �1 .-norm data fidelity (see Sect. 2.4). In Table 1, we provide 
a summary of the proposed models and relevant works pertaining to the general 
framework outlined in Eq. (1). 

Leveraging the recent growth in deep learning, some time-varying graph sig-
nal recovery methods include unrolling technique [16], graph neural network 
(GNN) [3], and joint sampling and reconstruction of time-varying graph signals 
[34]. In this work, we are dedicated to developing unsupervised time-varying graph 
signal recovery algorithms that do not involve or rely on data training.
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1.3 Contributions 

The major contributions of this work are described as follows. 

1. We develop a generalized time-varying graph signal recovery framework encom-
passing several state-of-the-art works as special cases. We also develop two new 
models with an ERF-based regularization. 

2. The proposed models combine high-order temporal smoothness and graph 
structures with the temporal correlation exploited by iteratively reweighted 
nuclear norm regularization. 

3. We propose efficient algorithms for solving the proposed models. Convergence 
analysis is provided to show that the proposed Algorithm 1 ( �2 . case) generates a 
sequence that converges to a stationary point of the problem. 

4. We conduct various numerical experiments, utilizing both synthetic and real-
world datasets (specifically PM2.5 and sea surface temperature data), to validate 
the effectiveness of the proposed algorithm. 

1.4 Organization 

The subsequent sections of this paper are structured as follows. In Sect. 2, 
we introduce a pioneering framework for recovering time-varying graph signals, 
leveraging Sobolev smoothness and ERF regularization. Additionally, we put forth 
an efficient algorithm based on the alternating direction method of multipliers 
(ADMM) and iterative reweighting scheme. A comprehensive convergence analysis 
of the proposed Algorithm 1 is provided. In Sect. 3, we present numerical experi-
ments conducted on synthetic and real-world datasets sourced from environmental 
and epidemic contexts. Finally, Sect. 4 encapsulates our conclusions and outlines 
potential avenues for future research. 

2 Proposed Method 

2.1 Error-Function-Weighted Nuclear Norm Regularization 

To enhance the low-rankness of a matrix, weighted nuclear norm minimization 
(WNNM) has been developed with promising performance in image denoising [13]. 
Specifically, the weighted nuclear norm (WNN) is defined as 

. ‖L‖w,∗ :=
∑

i

wiσi(L), (2)
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where σi(L). is the i-th singular value of L in the decreasing order and the weight 
vector w = (wi). is in the nondecreasing order with wi ≥ 0. being the i-th 
entry. Choosing the weights is challenging in sparse and low-rank signal recovery 
problems. Iteratively reweighted L1 (IRL1) [2] was proposed for the sparse recovery 
problem, where the weight w. is updated based on the previous estimate. IRL1 can 
solve many problems with complicated sparse regularizations, exhibiting improved 
sparsity and convergence speed. 

In this work, we introduce a novel ERF-weighted nuclear norm based on the ERF 
regularizer [14] and use linearization to obtain WNN. For any real matrix X with n 
singular values σ1(X) ≥ . . . ≥ σn(X)., the ERF-weighted nuclear norm is 

. ‖X‖erf =
n∑

i=1

∫ σi(X)

0
e−t2/σ 2

dt, (3) 

where σ . serves as a filtering parameter. In particular, when σ → 0+
., ‖X‖erf

σ
→√

π

2 rank(X). and hence it can enforce the low-rankness. To solve the ERF-nuclear 
norm regularized minimization problem, we use iterative reweighting (linearization) 
to get WNN with adaptive weights. 

2.2 Fractional-Order Derivative 

Inspired by the Grünwald-Letnikov fractional derivative [26], we introduce the total 
θ .-th order temporal forward difference matrix with a zero boundary condition, as 
shown below: 

.Dθ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C(0)
...

. . .

C(k) · · · C(0)
. . .

. . .

C(k) · · · C(0)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ Rm×m. (4) 

Here, the coefficients {C(i)}ki=0 . are defined as 

. C(i) = �(θ + 1)

�(i + 1)�(θ + 1 − i)
, 0 ≤ i ≤ k,

where �(x). is the Gamma function. Notice that if θ . is a positive integer, k can be 
deterministic. For example, if θ = 1., then k = 1., and we have C(0) = 1. and 
C(1) = −1., which is reduced to the first-order finite difference case. If θ = 2., then 
it reduces to the temporal Laplacian operator. Generally, if θ = n., then only the first
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n + 1. coefficients {C(i)}ni=0 . are nonzero and thereby k = n + 1.. For any fractional 
value θ ., we have to choose the parameter k.. In our experiments, for instance, 
we choose k = 3. for θ = 1.8.. Compared to integer-order derivatives that only 
consider local properties, fractional-order derivatives can more accurately describe 
complex systems such as those with long-range temporal or spatial dependence. 
The difference matrix (Eq. 4) is built upon the zero boundary condition, while other 
types of boundary conditions, e.g., Newmann and periodic boundary conditions, can 
also be used. Alternatively, we can use low-order difference schemes for boundary 
conditions, e.g., the first-order forward difference based on the firstm−1. time points 
and the zeroth order for the last time point. 

2.3 Proposed Algorithm 1 

We propose the following ERF regularized time-varying graph signal recovery 
model: 

.min
X

1

2
‖Y − J ◦ X‖2F + α

2
tr(DT

θ XT (L + εI)rXDθ) + β ‖X‖erf . (5) 

Here, we use the Frobenius norm to define the data fidelity term for Gaussian 
noise, the Sobolev smoothness of time-varying graph signals [11] as the graph 
regularization, and the ERF-based regularization defined in Eq. (3) for temporal 
low-rank correlation. 

We apply ADMM with linearization to solve the problem (Eq. 5). First, we 
introduce an auxiliary variable Z to rewrite the problem (Eq. 5) into an equivalent 
constrained problem: 

. min
X,Z

1

2
‖Y − J ◦ X‖2F + α

2
tr(DT

θ XT (L + εI)rXDθ) + β ‖Z‖erf , s.t. X = Z.

Since the proximal operator of ‖ · ‖erf . is difficult to compute, we apply linearization 
on the ERF term to obtain a WNN when solving the subproblem for Z. The ADMM 
iterates as follows: 

. 

wi ← exp
(
−σ 2

i (X)/σ 2
)
, for i = 1, . . . , m

Z ← argmin
Z

β ‖Z‖w,∗ + ρ

2

∥
∥X − Z + Ẑ

∥
∥2

F

X ← argmin
X

1

2
‖J ◦ X − Y‖2F + α

2
tr(DT

θ XT (L + εI)rXDθ)+ ρ

2

∥
∥X−Z + Ẑ

∥
∥2

F

Ẑ ←Ẑ + (X − Z),

(6)
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where ρ > 0. is a stepsize that affects the convergence. Refer to Theorem 1 for 
more details. We derive closed-form solutions for both Z- and X-subproblems in 
Eq. (6). Specifically for the Z-subproblem, it can be updated via the singular value 
thresholding operator, i.e., 

.Z = SV T (X + Ẑ) = U shrink(
, diag(βw/ρ))V T , (7) 

where U
V T
. is the singular value decomposition of X + Ẑ . and diag(·). is a 

diagonalization operator turning a vector into a diagonal matrix with entries of the 
vector sitting on the diagonal. Here, the shrink operator shrink(x, ξ) = sign(x) ∗
max(|x| − ξ, 0). is implemented entrywise, where sign(x). returns the sign of x if 
x �= 0. and zero otherwise. 

In the X-subproblem, we can rewrite the second term of the objective function as 

. 

tr(DT
θ XT (L + εI)rXDθ) =

∥
∥
∥(L + εI)r/2XDθ

∥
∥
∥
2

F

=
∥
∥
∥(DT

θ ⊗ (L + εI)r/2) vec(X)

∥
∥
∥
2

2
:= ‖A vec(X)‖22 ,

where ⊗. is the Kronecker product. Thus, the X-subproblem has the closed-form 
solution as 

.X = mat[(Ĵ + αAT A + ρI)−1(Ĵ T Y + ρ vec(Z − Ẑ))], (8) 

where Ĵ = diag(vec(J )).. Note that Ĵ T Y = Y . since Ĵ . is a diagonal matrix with 
binary entries in the diagonal, whose nonzero entries correspond to the sampled 
spatial points. Furthermore, considering that the matrix Ĵ+αAT A+ρI . is symmetric 
and positive definite, we perform its Cholesky factorization as Ĵ + αAT A + ρI =
L̃L̃T

.. Subsequently, we leverage forward/backward substitution as a substitute for 
matrix inversion, thereby reducing computational time. The pseudo-code of the 
proposed approach for minimizing the model (Eq. 5) is given in Algorithm 1. 

Algorithm 1 Robust time-varying graph signal recovery with high-order smooth-
ness and adaptive low-rankness 

Input: graph Laplacian L, parameters α, β, ρ, spatial Laplacian parameters ε and r ,  ERF  
parameter σ , Fractional-order derivative parameters θ  >  0 and integer k ≥ 1. 
Output: X 
Initialize: X, Ẑ 
while The stopping criteria is satisfied do 

compute the weights w ′i s 
update Z via Eq. (7) 
update X via E q. (8)
Ẑ ← Ẑ + (X − Z) 

end while
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2.4 Proposed Algorithm 2 

In real-world applications, the type of noise could be unknown, and it is possible to 
encounter a mixture of different types of noise. To enhance the robustness against 
noise, we propose the second model: 

.min
X

‖Y − J ◦ X‖1 + α

2
tr(DT

θ XT (L + εI)rXDθ) + β ‖X‖erf (9) 

Compared with Eq. (5), this new model utilizes the �1 .-norm data fidelity to 
accommodate various types of noise. Because of the �1 . term, we need to introduce 
an additional variable V to make the subproblems easy to solve. The constrained 
formulation equivalent to Eq. (9) is 

. min
J◦X−Y=V

X=Z

‖V ‖1 + α

2
tr(DT

θ XT (L + εI)rXDθ) + β ‖Z‖erf .

Therefore, the ADMM with linearization [7, 9, 12, 23] on the ERF term has the 
following subproblems: 

.

V ← argmin
V

‖V ‖1 + ρ1

2

∥
∥J ◦ X − Y − V + V̂

∥
∥2

F

Z ← argmin
Z

‖Z‖w,∗ + ρ2

2

∥
∥X − Z + Ẑ

∥
∥2

F

X ← argmin
X

α

2
tr(DT

θ XT (L + εI)rXDθ) + ρ1

2

∥
∥J ◦ X − Y − V + V̂

∥
∥2

F

+ ρ2

2

∥
∥X − Z + Ẑ

∥
∥2

F

(10) 

For the V -subproblem, we get the closed-form solution expressed via the shrinkage 
operator: 

.V = shrink(Ĵ T (Y + V − V̂ ), 1/ρ1). (11) 

Similar to Algorithm 1, the solution of the Z-subproblem is given by Eq. (7) with ρ . 

replaced by ρ2 ..  For  the  X-subproblem, we get the closed-form solution:

.X = mat[(ρ1Ĵ + αAT A + ρ2I )−1(ρ1Ĵ
T (Y + V − V̂ ) + ρ2 vec(Z − Ẑ))]. (12) 

The entire algorithm is described in Algorithm 2.
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Algorithm 2 Robust time-varying graph signal recovery with high-order smooth-
ness and adaptive low-rankness 

Input: graph Laplacian L, parameters α, β, ρ1, ρ2, spatial Laplacian parameters ε and r ,  ERF  
parameter σ , Fractional-order derivative parameters θ  >  0 and integer k ≥ 1. 
Output: X 
Initialize: X, V̂ , Ẑ 
while The stopping criteria is satisfied do 

compute the weights w′
i s 

update V via Eq. (11) 
update Z via E q. (7) 
update X via E q. (12)
V̂ ← V̂ + (J ◦ X − Y − V  )
Ẑ ← Ẑ + (X − Z) 

end while

2.5 Convergence Analysis of Algorithm 1 

For simplicity, we define 

. f (X) := 1

2
‖Y − J ◦ X‖2F + α

2
tr(DT

θ XT (L + εI)γ XDθ)

and hence the augmented Lagrangian function is given by 

. L(X,Z, Ẑ) = f (X) + β‖Z‖erf + ρ〈Ẑ, X − Z〉 + ρ

2
‖X − Z‖2F .

The function f is convex and continuously differentiable. In addition, ∇f . is 
Lipschitz continuous with a constant Lf .. 

Theorem 1 Let ρ > Lf . and {(Xk, Zk, Ẑk)}. be a sequence generated from 
Algorithm 1; then, the sequence is bounded, and any limit point of the sequence 
is a stationary point of the problem (Eq. 5). 

Proof Consider one iteration of Algorithm 1; the update of Zk+1
. gives 

. L(Xk, Zk+1, Ẑk) −L(Xk, Zk, Ẑk)

= β‖Zk+1‖erf + ρ

2
‖Xk − Zk+1 + Ẑk‖2F − β‖Zk‖erf − ρ

2
‖Xk − Zk + Ẑk‖2F

≤ β‖Zk+1‖wk,∗ − β‖Zk‖wk,∗ + ρ

2
‖Xk + Ẑk − Zk+1‖2F − ρ

2
‖Xk + Ẑk − Zk‖2F

≤ − ρ

2
‖Zk+1 − Zk‖2F . (13)
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The first inequality holds because the error function is concave for positive values. 
The second inequality is valid because Zk+1

. is the optimal solution of the Z-
subproblem. 

Then, we consider the updates of Xk+1
. and Ẑk+1

., which together give 

. L(Xk+1, Zk+1, Ẑk+1) −L(Xk, Zk+1, Ẑk)

=f (Xk+1) + ρ〈Ẑk+1, Xk+1 − Zk+1〉 + ρ

2
‖Xk+1 − Zk+1‖2F

− f (Xk) − ρ〈Ẑk, Xk − Zk+1〉 − ρ

2
‖Xk − Zk+1‖2F

=f (Xk+1) − f (Xk) + ρ〈Ẑk+1, Xk+1 − Xk〉
+ ρ‖Ẑk+1 − Ẑk‖2F − ρ

2
‖Xk+1 − Xk‖2F ,

where the last equality uses the update Ẑk+1 = Ẑk + Xk+1 − Zk+1
.. Since f 

is smooth, the updates of Xk+1
. and Ẑk+1

. show that ρẐk+1 + ∇f (Xk+1) = 0.. 
The convexity and smoothness of f giv e f (Xk+1) + 〈∇f (Xk+1),Xk − Xk+1〉 +
1

2Lf
‖∇f (Xk+1) − ∇f (Xk)‖2 ≤ f (Xk).. Therefore, we have 

. L(Xk+1, Zk+1, Ẑk+1) −L(Xk, Zk+1, Ẑk)

≤
(

max

(
1

ρ
− 1

2Lf

, 0

)

L2
f − ρ

2

)

‖Xk+1 − Xk‖2F . (14) 

If ρ > Lf ., then max
(
1
ρ

− 1
2Lf

, 0
)

Lf
2 − ρ

2 < 0.. 

Combing Eqs. (13) and (14), we see that L(Xk, Zk, Ẑk). is decreasing. Further-
more, if ρ > Lf .,  we  ha  ve

. f (Xk) + β‖Zk‖erf + ρ〈Ẑk, Xk − Zk〉 + ρ

2
‖Xk − Zk‖2F

=f (Xk) + β‖Zk‖erf − 〈∇f (Xk),Xk − Zk〉 + ρ

2
‖Xk − Zk‖2F

≥f (Zk) + β‖Zk‖erf + ρ − Lf

2
‖Xk − Zk‖2F ≥ 0, (15) 

where the last inequality comes from the Lipschitz continuity of ∇f .. So, 
L(Xk, Zk, Ẑk). is bounded from below. Therefore, L(Xk, Zk, Ẑk). converges and 

. lim
k→∞(Xk+1 − Xk) = 0, lim

k→∞(Zk+1 − Zk) = 0. (16) 

Since ∇f . is Lipschitz continuous, we can get
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. lim
k→∞ Ẑk+1 − Ẑk = Xk − Zk = 0. (17) 

Next, we show that (Xk, Zk, Ẑk). is bounded. We have shown in Eq. (15) that 

. L(Xk, Zk, Ẑk) ≥f (Zk) + β‖Zk‖erf + ρ − Lf

2
‖Xk − Zk‖2F .

Therefore, when ρ > Lf ., the boundedness ofL(Xk, Zk, Ẑk).gives the boundedness 
of f (Zk) + β‖Zk‖erf . and ‖Xk − Zk‖2F .. Thus, sequences {Xk}. and {Zk}. are also 
bounded. Because ρẐk = −∇f (Xk)., the sequence {Ẑk}. is also bounded. 

Since the sequence {(Xk, Zk, Ẑk)}. is bounded, there exists a convergent subse-
quence, that is, (Xki , Zki , Ẑki ) → (X�, Z�, Ẑ�).. The limits (Eqs. 16 and 17)  show  
that (Xki+1, Zki+1, Ẑki+1) → (X�, Z�, Ẑ�).. Then, we have that X� = Z�

. and 
β∂‖Z�‖erf−ρẐ� = 0.. Thus, X�

. is a stationary point of the original problem (Eq. 5). 
Since it holds for any convergent subsequence, any limit point of the sequence is a 
stationary point of Eq. (5). ��

3 Numerical Experiments 

In this section, we conduct various numerical experiments on synthetic and real data 
to demonstrate the performance of our proposed methods. In particular, we compare 
our methods—Algorithm 1 and Algorithm 2—with other related states of the art, 
including natural NNI [30], GS [22], Tikhonov [25], TGSR [27], LRDS [20], and 
Sobolev [11]. To evaluate the reconstruction quality, we adopt the root mean square 
error (RMSE) as a comparison metric, defined as follows: 

.RMSE = ‖X − X̂‖F√
nm

, (18) 

where X̂ . is the approximation of the ground truth graph signal X ∈ Rn×m
. defined 

on a spatial-temporal graph with n nodes and m time instances. All the numerical 
experiments are implemented on MATLAB R2021a in a desktop computer with 
Intel CPU i9-9960X RAM 64GB and GPU Dual Nvidia Quadro RTX5000 with 
Windows 10 Pro.

3.1 Synthetic Data 

Following the work of [27], we generateN = 100.nodes randomly from the uniform 
distribution  in a 100 × 100. square area. The graph weight is determined using 
K-nearest neighbors. Specifically, the weight between any two nodes is inversely



Smooth and Low-Rank Time-Varying Graph Signal Recovery 103

Fig. 1 The graph is 
constructed by KNN with 
K = 5.. The weight between 
any two nodes is inversely 
proportional to the square of 
their Euclidean distance 
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proportional to the square of their Euclidean distance. We consider K = 5. and 
visualize the corresponding graph in Fig. 1. 

Denote the weight matrix by W,. its degree matrix M,. and the graph Laplacian 
L has eigen-decomposition L = U�UT ,. where � = diag(0, λ2, · · · , λN)..  We  
further define L−1/2 = U�−1/2UT

. where �−1/2 = diag(0, λ−1/2
2 , · · · , λ

−1/2
N ).. 

Starting from x1,.we generate the time-varying graph signal 

.xt = xt−1 + L−1/2ft , for t = 2, · · · , T , (19) 

where ft . is an i.i.d. Gaussian signal rescaled to ‖ft‖2 = κ . and κ . corre-
sponds to a temporal smoothness of the signal. Stacking {xt }. as a column vec-
tor, we obtain a data matrix X = [x1, x2, · · · , xT ].. We generate a low-rank 
data matrix obtained by starting with an empty matrix X and repeating X ←
[X, x1, · · · , x10, x10, x9, · · · , x1].10 times, thus also getting a 100×200.data matrix. 
The measurement noise at each node is i.i.d. Gaussian noise N(0, η2),. where η. is 
the standard deviation. 

Parameter Tuning For the proposed Algorithm 1, we fix the following parameters: 
k = 3. and θ = 1.8. in the definition of fractional-order derivative (Eq. 4); 
σ = 103 . in the definition of the ERF regularization (Eq. 3); ε = 0.1. and r = 3. 

in the Sobolev graph Laplacian; and the step size ρ = 10−6
. in the ADMM 

iterations (Eq. 6). In each set of experiments, we carefully tune two parameters 
(α, β). that determine the weights for the spatial-temporal smoothness and the 
low-rankness, respectively, in the proposed model (Eq. 5). We choose the best 
combination of (α, β). among α ∈ {0, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}. and 
β ∈ {0, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}.. As demonstrated 
in Table 1, some competing methods are special cases of the proposed models, and 
hence, we only tune the parameters α, β . for these methods while keeping other 
parameters fixed.
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Fig. 2 RMSE versus 
sampling rates. Averaged 
over 50 trials 
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Reconstruction Errors with Respect to Sampling Rates We begin by evaluating the 
performance of competing methods under different sampling rates. The smoothness 
level is set as κ = 1,. while the standard deviation of the Gaussian noise is η =
0.1.. The reconstruction performance is evaluated via RMSE, defined in Eq. (18), 
showing that the recovery errors of all the methods decrease with the increase of 
the sampling rates. The comparison results are visualized in Fig. 2. The proposed 
method achieves significant improvements over the competing methods. Surpris-
ingly, LRDS, equipped with the nuclear norm, does not yield stable reconstruction 
performance in the low-rank case. 

Reconstruction Errors with Respect to Noise Levels We then investigate the 
recovery performance under different noise levels by setting the noise variance 
η2 = {0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1}.. In this set of experiments, we fix the 
sampling rate as 40% and smoothing level κ = 1.. The noise level affects the 
magnitude of the least-squares fit, and as a result, we adjust the search window 
of α ∈ {0, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104 .. The parameter β . remains the 
same: β ∈ {0, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 1, 10}.. The results 
are presented in Fig. 3, demonstrating the superior performance of the proposed 
Algorithm 1 under various noise levels. 

3.2 Real Data 

In the real data experiments, we first test the daily mean particulate matter (PM) 
2.5 concentration dataset from California provided by the US Environmental 
Protection Agency https://www.epa.gov/outdoor-air-quality-data. We used the data 
captured daily from 93 sensors in California for the first 200 days in 2015. 
The constructed graph is depicted in Fig. 4.  In  Fi  g. 5, we compare the average

https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
https://www.epa.gov/outdoor-air-quality-data
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Fig. 3 RMSE versus noise 
level: η2 =
{0.01, 0.1, 0.2, 0.4, 0.6, 0.8, 1}.. 
Averaged over 50 trials 
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Fig. 4 Graph with the places 
in California for the PM 2.5 
concentration data. The graph 
was constructed with KNN 
for K = 5.
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recovery accuracy of all the comparing methods over 50 trials when the sampling 
rates are 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45.. In Table 2, we also compare the 
performance of Algorithm 1 and Algorithm 2, which shows Algorithm 2 can 
improve the accuracy of Algorithm 1 under some sampling rates with longer time 
in general. 

Next, we test the sea surface temperature dataset, which was captured monthly 
by the NOAA Physical Sciences Laboratory (PSL). The dataset can be downloaded 
from the PSL website https://psl.noaa.gov/. We use a subset of 200 time points 
on the Pacific Ocean within 400 months. The constructed graph is illustrated in 
Fig. 6. We see from Fig. 7 that the proposed algorithm outperforms other methods 
significantly and consistently across all sampling rates. In Table 3, we also compare

https://psl.noaa.gov/
https://psl.noaa.gov/
https://psl.noaa.gov/
https://psl.noaa.gov/
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Fig. 5 Average recovery 
accuracy comparison on the 
PM2.5 data 
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Table 2 Performance 
comparison of Algorithm 1 
and Algorithm 2 for the 
PM2.5 data. The running time 
for Algorithm 1 is about 
22 ∼.23 seconds, while 
Algorithm 2 uses about 
46 ∼ 48. seconds 

Alg.1 Alg.2 

Sampling rate RMSE Time (s) RMSE Time (s) 

0.10 5.7321 22.95 5.6915 46.49 

0.15 5.4770 22.63 6.4992 45.39 

0.20 5.0427 23.83 5.9730 48.50 

0.25 6.0358 23.37 5.6976 47.44 

0.30 5.6065 23.70 5.3809 47.86 

0.35 5.1920 23.55 5.1535 47.72 

0.40 5.2398 23.56 4.7758 47.59 

0.45 5.2283 23.80 5.0913 48.17 

the performance of Algorithm 1 and Algorithm 2, which indicates Algorithm 2 can 
improve the accuracy of Algorithm 1 under certain sampling rates but with more 
computational time in general. 

3.3 Discussions 

Using the sea surface temperature data, we conduct an ablation study of the 
proposed model (Eq. 5) without the smoothing regularization by setting α = 0. 
or without the low-rank ERF term by setting β = 0.. We plot the RMSE curves with 
respect to the sampling rates and the noise levels in Fig. 8, showing that the ERF 
regularization has a larger influence on the performance compared to the Sobolev-
base graph Laplacian regularization. 

Using the same sea surface temperature data, we investigate whether the 
proposed model (Eq. 5) is sensitive to the parameters (r, ε). in defining the Sobolev-
graph Laplacian and σ 2

. in defining the ERF regularization. Figure 9 shows that the
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Fig. 6 Graph with the places in the sea for the sea surface temperature data. The graph was 
constructed with KNN for K = 10. 

Fig. 7 Average recovery 
accuracy comparison on the 
sea surface temperature data 
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proposed approach is not sensitive to various degrees of smoothness controlled by 
r and ε .. Although the ERF regularization plays an important role in the recovery 
performance, as illustrated in the ablation study, the proposed model is not sensitive 
to the choice σ 2

. as long as it is larger than 10,000. 
In addition, we compare the proposed Algorithm 1 and Algorithm 2 using the 

sea surface temperature data and show the results in Tables 2 and 3. One can see 
that the two algorithms lead to similar RMSE, but Algorithm 2 is slower overall.
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Table 3 Performance 
comparison of Algorithm 1 
and Algorithm 2 for the sea 
surface temperature data. The 
running time for Algorithm 1 
is about 2 ∼.4 seconds, while 
Algorithm 2 uses about 
6 ∼ 23. seconds 

Algorithm 1 Algorithm 2 

Sampling rate RMSE Time (s) RMSE Time (s) 

0.10 0.3148 3.97 0.3163 22.99 

0.15 0.2497 3.37 0.2483 17.13 

0.20 0.2110 3.08 0.2109 13.52 

0.25 0.1832 2.87 0.1857 11.27 

0.30 0.1617 2.74 0.1666 9.62 

0.35 0.1438 2.63 0.1450 5.77 

0.40 0.1294 2.54 0.1291 5.66 

0.45 0.1166 2.46 0.1153 5.57 
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Fig. 8 Ablation study sampling rates (left) and noise levels (right) on the sea surface temperature 
data 
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Fig. 9 Sensitivity analysis with respect to varying the graph Laplacian (left) and σ 2 . in ERF (right) 
on the sea surface temperature data 

We therefore prefer to use Algorithm 1 unless the data is heavily polluted by the 
non-Gaussian type of noise, such as Laplace noise.
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4 Conclusions and Future Work 

In this paper, we exploit high-order smoothness across the temporal domain and 
adaptive low-rankness for time-varying graph signal recovery. In particular, we 
propose a novel graph signal recovery model based on a hybrid graph regularization 
involving a general order temporal difference, together with an error-function-
weighted nuclear norm. We also derive an effective optimization algorithm with 
guaranteed convergence by adopting a reweighting scheme and the ADMM frame-
work. Numerical experiments have demonstrated their efficiency and performance 
in terms of accuracy. However, the graph Laplacian is a computational bottleneck 
in our workflow, especially when the graph contains a large number of nodes. The 
acceleration of the weight calculation via sparse or low-rank approximations [8] 
will be left in future work. In addition, we will explore using high-order difference 
schemes to create a temporal Laplacian and low-rankness for recovering graph 
signals with dynamic graph topology. 
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Graph-Directed Topic Models of Text 
Documents 

Arjuna Flenner and Cristina Garcia-Cardona 

1 Introduction 

One goal of analyzing large collections of text documents is to build representations 
that facilitate the interpretation and recovery of information. This in turn requires 
the extraction of relevant features, which should encode interesting aspects of the 
observed data. This feature extraction characterization and quantification is difficult 
to accomplish in practice. The seminal work by Blei et al. in [5] introduced topic 
modeling using the Dirichlet process. This model used the Dirichlet process as a 
sparsity inducing prior while treating the words as simple Poisson count data [43]. 
Fundamental to topic modeling is the assumption that the data, or its expected 
value, can be represented as a linear combination of basis vectors if no other prior 
information is available. In the multivariate statistical arena, this is a subset of 
factor analysis. In this work, we integrate the idea of feature extraction using topic 
modeling with undirected graphs. 

As shown in [43], a basic structure of topic modeling is a Poisson factor analysis 
model that effectively models count data. Consider a collection of N documents 
where each document is composed of a collection of words. Let dn ∈ ZL

. represent 
a vector of word counts with a dictionary of size L. The Poisson factor analysis 
model assumes 
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.E [dn] =
K∑

k=1

ψkbnk, (1) 

where the observed data dn . is represented in terms of �1 .normalized basis vectors,  or  
topics, ψk . (factors) and the coefficients bnk . describe the weights of the combination 
(factor loading). In other words, the basis vectors capture patterns present in the data 
set, i.e., a good set of features, and the learning representation task is to compute 
them, together with the associated weights. In general, the number of components 
in the combination, denoted by K , characterizes the complexity of the model, and 
a key insight in [5] was the use of the Dirichlet process to automatically determine 
the value of K . 

Many different extensions to the basic topic modeling approach have been 
proposed [4, 12, 16–20, 23, 28, 31, 38, 39]. We add to this body of work by 
introducing a general model to include graphs in topic models and deriving an 
efficient Gibbs sampling method for posterior inference. Our approach is similar 
in nature to the graph-based clustering approaches in computational linguistics 
[1, 10, 35]; however, instead of segmenting the graph, we explore the utilization 
of a graph structure as a regularizer, with the hope of driving the learning procedure 
such that entities that are connected in the graph structure end up having similar 
representations. The advantages of using a graph are twofold. First, the graph 
enables the integration of information from different sources into our learning 
algorithms to influence the model priors. Second, the graph allows to take into 
account information encoded via relationships between the data that do not come 
from a metric or distance function. Thus, information such as interactions or 
common group memberships, explicitly encoded by networks of connections, or 
social networks, can also be incorporated as part of the learning procedure. 

Note that in contrast with [24], we are not trying to integrate topic modeling 
and dictionary learning. Instead, we are trying to integrate graph information into 
representation learning models. In the topic modeling case, we show how the graph-
directed model yields topics that are more descriptive and whose distribution is more 
balanced through the corpus of documents. This type of directed learning proves to 
be effective also for the case of dictionary learning, where we show that using the 
graph structure to encode a priori relations between observations allows for more 
distinctive basis vectors and, at the same time, lower average reconstruction errors. 

To make the representation learning tractable, we build stochastic models and 
embed them in a Bayesian framework such that the model parameters are learned 
by maximizing the posterior distribution given the data observations and the 
assumed priors. The computations are carried out using a Hamiltonian Monte 
Carlo (HMC) sampling method, whose energy-based formulation facilitates the 
information integration, in particular the graph encoded priors. 

The document is structured as follows. Section 2 summarizes the previous 
work. The representation learning problem and the graph model are introduced in 
Sect. 3, while Sect. 4 describes the computation procedure. Section 5 illustrates the 
applications to topic modeling and dictionary learning and compares performance
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with other methods. Finally, Sect. 6 includes the conclusion and perspectives for 
future work. 

2 Previous Work 

A simple model as the linear combination of basis vectors described by expression 
(1) is expressive and flexible enough, but the problem of finding the unknown 
basis, weights, and number of components is not well-defined. Most of the time, 
the learning task tries to build more structure into the problem by exploiting the 
inherent range of the data at hand, as in nonnegative matrix factorization [11], or 
assuming some conditions over the basis vectors. These different assumptions are 
the essential characteristics of the different methods. In the factor analysis field, 
different assumptions are used to decompose the data into a few factors and estimate 
associated weights. The basic procedure is to try to establish a stochastic generative 
model to describe the data set and provide a framework for learning the parameters 
of the model. 

However, many applications of factor analysis neglect the discrete nature of count 
data [40]. A case in point is the description of a corpus of text documents. In general, 
the corpus is given in terms of the times a word from the (corpus) vocabulary 
appears per document, and the learning task is expressed as the construction of 
topic models [4, 5, 17, 23, 38]. In the language of topic modeling literature, the set 
of basis vectors correspond to topics, and each topic is assimilated to a probability 
distribution of the words in the corpus vocabulary. Thus, more probable distributions 
are the ones that are compatible with the observed count of words. In [5], each 
document is a mixture of topics, and the topics a distribution of words. The priors 
in both cases are symmetric Dirichlet distributions, leading to the well-known 
latent Dirichlet allocation or LDA model. Several posterior works have studied 
variants of the LDA model. These include correlated topic models [23], where the 
basis elements are assumed correlated, while the words per topic are still assumed 
independent and dynamic topic models [4] where the topics are allowed to slowly 
change over time. The work of Wallace et al. [38] studies the influence that handling 
of stop words, number of topics selected, and Dirichlet priors have in the resulting 
LDA topic model and shows how the performance is improved when an asymmetric 
Dirichlet prior is used for the document-topic distributions. 

Computationally, there are two main approaches: variational and Markov chain 
Monte Carlo (MCMC) methods. The variational approach finds the parameters 
of a family of functions that approximate the posterior distribution given the 
observed topics [5]. Variational Bayesian methods are efficient if the resulting 
optimization is easy to compute as is the case of the conjugate priors used in the 
original work of Blei. Markov Chain Monte Carlo methods obtain samples from the 
posterior distribution [6], but complex models often mix slowly. Again, conjugate 
priors are often exploited in a Gibbs sampling scheme to simplify computations. 
Stick-breaking techniques have been employed [30] to generate efficient MCMC
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strategies. Stick breaking has also been used to extend the models as in the spatial 
modeling with stick breaking in [29, 30, 36] where a kind of spatial dependence 
of the basis vector component is assumed by using a similarity kernel and a stick-
breaking construction. 

Two non-Bayesian approaches that are similar in spirit to topic modeling are 
the nonnegative matrix and tensor factorization [11, 22] and nonnegative sparse 
representations [9, 41, 42]. The matrix and tensor factorization methods are most 
effective when combined with a word weighting [33] and thus do not represent 
the documents as pure count data. To obtain a more compact representation, the 
nonnegative sparse matrix or tensor factorization includes a �0 . or �1 . sparsity 
promoting regularization [33]. We do not consider these approaches in this work. 

We note that the Gaussian Markov random fields (GMRF) approach by Rue [32] 
has been used by Mimno et al. [26] to regularize the topic weights. Their model 
resembles the model in this work, but instead of creating a graph between the topic 
weighs they define a mean for the Gaussian process. 

3 Background 

We are learning representations of the data by integrating Poisson factor analysis 
and graphical methods. In this section, we give a brief overview of Poisson factor 
analysis and graphical models appropriate for this work. 

3.1 Poisson Factor Analysis 

In the case that the information available corresponds to count data, as, for example, 
in text documents where each document is represented as a count of the number of 
times a specific word appears in the document, Poisson factor analysis (PFA) is a 
natural model. For clarity, define the following notation. Given a corpus of D text 
document,

• d ∈ {1,  .  .  .  ,  D  }. indexes each of the documents in the corpus. 
• Nd . stands for the number of words in document d. 
• w ∈ {1,  .  .  .  ,  W  }. indexes each of the distinct words in the corpus vocabulary. 
• hdw ∈ Z + . is the observed number of times that word w is present in document 

d .
• hd . represents the observed histogram of words for document d. 

Poisson factor analysis assumes that the set of integer observations hdw ∈ Z+
. 

comes from a Poisson distribution:
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.hdw ∼ Poisson

(
K∑

k

ψkw bdk

)
, . (2) 

E[hdw] =  
K∑

k 
ψkw bdk, (3) 

ψkw ≥ 0,
∑

w 
ψkw = 1, bdk ≥ 0.

Due to the additive property of the Poisson distribution [21], this model implicitly 
assumes the existence of a decomposition of the form hdw = ∑K

k=1 hdwk ., where 
hdwk ∼ Poisson(ψkwbdk).. This suggests the following stochastic generative model 
for each of the documents xd . in the corpus: 

. xd ∼
Nd∏

l=1

P
(
zl

∣∣πd

)
P

(
wl

∣∣zl,ψ1, . . . ,ψK

)

zl ∼ Multinomial(πd),

wl

∣∣zl ∼ Multinomial(ψ l ),

hdwk
i.i.d∼ Poisson(ψkw bdk),

Tdk =
∑

w

hdwk, πdk = bdk∑
l bdl

where πd . represents the topic distribution in document d (consequently, the com-
ponent πdk . is the probability of topic k in document d); ψk ., the word distribution 
in topic k; zl . is an indicator variable for the topic assignment of the l-th word; wl ., 
the l-th word drawn; hdwk ., the count of words of type w appearing in topic k in 
document d; and Tdk ., the count of words of topic k appearing in document d.  Note  
that the last equalities are necessary to keep the consistency between the generative 
model and the PFA formulation. Hence, the learning task corresponds to estimating 
the model parameters ψkw . and bdk .. Note that to complete the specification of the 
model, it is necessary to define priors for these parameters, as well as setting the 
maximum number of topics K . 

3.2 Graphical Models 

Graphical models are often used to describe joint probability distributions of 
multiple variables [8]. A generic graph, denoted by G(V,E)., can be regarded as 
a node (vertex) set V and a collection of edges E that connect the nodes. The 
nodes in the graph are in one-to-one correspondence to random variables in the
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model, while edges in the graph encode dependency relationships between the nodes 
(random variables) they connect. The graph can be undirected, in which case the 
edges denote dependence between the corresponding nodes, or directed, in which 
case the conditional dependence is restricted to incoming edges. 

This kind of models allows for inference and estimation of local marginal 
distributions, likelihood of a particular random variable, or the most probable 
configuration of the model, among other summary statistics, in the case of directed 
acyclic graphs and random variables living in a discrete probability space [8]. 
However, there is no guarantee of convergence for cases of arbitrary graph configu-
rations or for random variables drawn from continuous probability space. Hence, 
approximate inference methods, such as loopy belief propagation, Monte Carlo 
Markov chain (MCMC) sampling, or variational Bayes, are commonly used [8]. 

However, an alternative take on the variable dependence representation with 
graphs can be constructed. Instead of correspondence between nodes and random 
variables, a correspondence between nodes and observations can be established. 
Specifically, each element in the node set V = {vn}Nn=1 . is associated with a data 
sample xn ., and an edge Eij . between the i-th and j -th nodes exists if sample i is 
related to sample j and does not exist otherwise. Note that this allows to encode 
known interactions between data samples. In this work, we only consider simple 
connections as interactions. It is easy to extend this work to the case where a 
quantitative dependency such as metric information given in terms of a similarity 
measurement is used. For example, one can consider the f ollowing:

.Wij =
{
1 if xi is related to xj

0 otherwise
. (4) 

3.2.1 Graph Laplacian and Graph Energy 

Let’s define the degree of node i as 

.di =
∑

j

Wij . (5) 

Thus, by definition of Wij ., di . measures how strong is the relation between sample 
xi . and the rest of the samples in the data set. 

If W. is the matrix of edge weights Wij ., and D.,  a N × N . diagonal matrix with 
diagonal elements Dii = di ., the graph Laplacian can be written as the matrix 

.L = D − W. (6) 

A state vector φj = (φj1, . . . , φjK)T . can be associated with each of the j ∈
{1, . . . , N}. nodes in the graph. The graph Laplacian allows to define the energy of 
the graph using the quadratic form:
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. 〈�,L �〉 = 1

2

N∑

i=1

N∑

j=1

Wij‖φi − φj‖2 (7)

= 1

2

K∑

k=1

N∑

i=1

N∑

j=1

Wij (φik − φjk)
2,

with matrix � = (φ1, . . . ,φN)., where each column corresponds to the state of a 
node in the graph. Note that this form of energy penalizes the differences in state 
for nodes that are closely related (edge with a large weight Wij .). Then, a state 
of minimal energy is characterized by a homogeneous state of strongly connected 
nodes. This does not exclude the trivial case where all the nodes have the same state. 
Other energy functions, based on p-Laplacian, can be used [7]. They are similar to 
the quadratic form but use an exponent p, with 1 ≤ p < 2.. 

As will be shown in the next section, previous information about the relationships 
of data points, encoded in terms of a weighted or unweighted graph, can be included 
in the computations of the model parameters by incorporating a graph energy term, 
expressed as a function of the graph Laplacian. A more detailed discussion of graph 
energies and Laplacians can be found in [2, 3, 13–15, 25]. 

4 Model Computations: Hamiltonian Monte Carlo 

Gibbs sampling and variational methods are the dominating computational tech-
niques for probabilistic topic models. We adapt a Gibbs or block Gibbs sampling 
method where each of the variables is updated in blocks. The addition of graphs 
imposes an additional computational difficulty since it is not part of a conjugate 
family in our model. Furthermore, we found a Metropolis-Hastings algorithm to 
mix slowly. For these reasons, we adapted a Hamiltonian Monte Carlo sampling 
technique. The clearest strategy to deriving the Hamiltonian Monte Carlo method 
is to define potential energy functions for our distributions. This section briefly 
discusses Hamiltonian Monte Carlo computations and derives the potential energy 
of our topic models given the documents. 

Our goal is to compute the topics ψk . and topic weights bdk . for the given corpus. 
Recall Bayes’ rule: 

.P(θ
∣∣D) = P(D

∣∣θ) P (θ)

P (D)
∝ P(D

∣∣θ) P (θ), (8) 

where θ . represents the parameters, D. the observations, P(D
∣∣θ). the likelihood, 

and P(θ). the parameters’ prior distribution. The main computational difficulty 
in finding the posterior probability distribution is the normalization P(D)..  The  
Hamiltonian Monte Carlo computational technique allows us to sample from a
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posterior distribution by establishing a correspondence between such a distribution 
and the energy function of the probability distribution. Thus, sampling from the 
distribution becomes sampling from the canonical distribution of the system [6, 27]. 
The probability density for the state q . under the canonical distribution is defined by 

.P(q) ∝ exp (−U(q)) , (9) 

where U(q). is the potential energy function. 
The probability P(q). for the state q . corresponds, in turn, to the posterior 

probability function we want to sample from (P(θ
∣∣D).). Consequently, the state q . 

of the physical system is equivalent to the set of parameters θ .we are sampling, and 
computing any dynamical evolution over q . immediately translates into computing a 
dynamical evolution for θ .. At the same time, this dynamical evolution corresponds 
to a sampling over the parameter space. The longer the dynamical evolution 
simulated, the less correlated the states and, therefore, the better sampling over the 
parameter space. 

To allow the use of dynamical methods, a momentum variable p . is intro-
duced [27]. This momentum variable has as many components as components in 
the state q .. The canonical distribution over the joint space of q . and p . is defined as 

.P(q,p) ∝ exp (−H(q,p)) , (10) 

where H(q,p) = U(q)+K(p). is the Hamiltonian function giving the total energy 
and K(p). the kinetic energy. Typically, 

.K(p) =
∑ p2

i

2
. (11) 

(Here, the masses are not considered explicitly; instead, they become part of the step 
size in the dynamical updates). 

4.1 Dynamical Updates 

The system evolution is simulated by means of the Hamiltonian dynamics: 

. 
dqi

dt
= +∂H

∂pi

= pi,

dpi

dt
= −∂H

∂qi

= −∂U

∂qi

.

This dynamics is approximated by a leapfrog discretization using finite time steps. 
A leapfrog step can be expressed as
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. pi

(
t + ε

2

)
= pi(t) − ε

2

∂U

∂qi

(q(t))

qi(t + ε) = qi(t) + ε pi

(
t + ε

2

)

pi(t + ε) = pi

(
t + ε

2

)
− ε

2

∂U

∂qi

(q(t + ε)),

with ε . representing the stepsize. This leapfrog update is applied for a specified 
number of steps L to simulate the evolution of the system for a time �t = εL.. 
Since the leapfrog procedure only approximates the evolution of the Hamiltonian 
dynamics, a systematic error is introduced in the system update. This error is 
eliminated by adding a step corresponding to the Metropolis algorithm [27]. Thus, 
the states obtained after the Metropolis algorithm constitute the samplings over the 
parameter space. 

Note that in order to compute the dynamical updates, it is necessary to compute 
the partial derivatives of U with respect to qi .. 

4.2 Defining Potential Energy Functions 

When the models are written in terms of probability densities, it is often easy to 
describe the computations in terms of energy. According to Eq. (9), the potential 
energy can be defined in terms of the probability density P(θ).,  b  y

.U(θ) = − log(P (θ)). (12) 

Thus, all the previously defined generative models can be written in terms of an 
energy functional as described next. 

4.3 Topic Modeling 

The generative model for the topic modeling problem can be expressed in terms of 
a potential energy given by 

.U
(
ψkw, bdk

∣∣hdw

) = − logP
(
ψkw, bdk

∣∣hdw

)

= − logP
(
hdw

∣∣ψkw, bdk

)

− logP
(
ψkw

∣∣bdk

)

= −
∑

d

∑

w

∑

k

hdwk log(ψkw)

−
∑

d

∑

k

Tdk log(πdk)
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Tdk =
∑

w 
hdwk 

πdk = 
bdk∑
l bdl 

such that ψkw ≥ 0,
∑

w 
ψkw = 1, 

bdk ≥ 0, πdk ≥ 0,
∑

k

πdk = 1.

The model can be completed by assuming a specific form for the prior distri-
butions. Here, we assume two different model priors leading to two different topic 
models. 

4.3.1 Latent Dirichlet Allocation (LDA) 

When the priors for the topic distribution over the documents and the word dis-
tribution over topics are assumed as Dirichlet distributions, the model corresponds 
to the latent Dirichlet allocation (LDA) model [5]. The Dirichlet distribution is a 
probability distribution over the simplex and has energy 

. − logP(x) = −
∑

k

(αk − 1) log(xk) + f (αk), (13) 

with αk . the hyperparameters of the Dirichlet distribution. For a symmetric distribu-
tion, αk = α > 0.. 

If the energies of the Dirichlet priors for the word distribution over topic k, ψk =
(ψk1, . . . , ψkW )T . for k ∈ {1, . . . , K}., and for the topic distribution over document 
d, πd = (πd1, . . . , πdK)T . for d ∈ {1, . . . , D}., are included in the PFA formulation, 
the energy for the complete model can be expressed by 

. U (ψkw, bdk) = −
∑

d

∑

w

∑

k

hdwk log(ψkw)

−
∑

d

∑

k

Tdk log(πdk)

−
∑

w

∑

k

(α − 1) log(ψkw)

−
∑

d

∑

k

(β − 1) log(πdk),

with restrictions ψkw ≥ 0., πdk ≥ 0.,
∑

k πdk = 1., and
∑

w ψkw = 1..
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The advantage of using Dirichlet priors is that due to the Dirichlet-multinomial 
conjugacy, ψ . and π . can be marginalized, which simplifies the computations. 

4.3.2 Graph-Directed Topic Modeling 

Analogously to the LDA model, we assume a Dirichlet distribution as a prior for the 
word distribution over topics, ψ .. This allows to exploit the Dirichlet-multinomial 
conjugacy for ψ .. 

In contrast, for the case of the prior of topic distribution over documents π ., 
we replace the Dirichlet prior by a graphical model encoding prior information 
about the documents. In particular, we want that documents with strong connections 
end up having similar topic distributions. This bias over π . can be enforced by 
introducing a term that measures how close are the topic distributions of strongly 
related documents. As described before, such term can be written via the graph 
Laplacian. We use the state φd = (φd1, . . . , φdK)T . for the state of node d in the 
topic modeling problem and associated matrix� = (φ1, . . . ,φN).. In order for these 
states to represent valid topic distributions, we use an approach similar to Mimno et 
al. [26]. With the help of the logistic function, we map the state φd . of node d to the 
multinomial parameter πdk . that describes the probability of topic k being included 
in document d :

.πdk = bdk∑
l bdl

= exp(φdk)∑
l exp(φdl)

. (14) 

Therefore, the potential energy with Dirichlet prior for word distribution over topics 
and graph-energy term for topic distribution over documents can be written as 

. U (ψkw, bdk) = −
∑

d

∑

w

∑

k

hdwk log(ψkw)

−
∑

d

∑

k

Tdk log(πdk)

−
∑

w

∑

k

(α − 1) log(ψkw)

+〈�,L �〉 . (15) 

For the graph-based energy term, we exploit the quadratic form (Eq. 8) to define 
a probability density over �. by P(�|L) = exp(−〈�,L�〉 − logZ(W)).. Note that 
since we know the weight matrix W., we are not interested in learning it and we do 
not need to know the partition function Z(W). explicitly. 

The final computations use block Gibbs sampling for the variables zl . and ψk . as 
in [5] and Hamiltonian Monte Carlo sampling for the variables πk .using the leapfrog 
technique in Sect. 4 with the energy function in Eq. (15).
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5 Results 

To demonstrate the utility of the graph-directed topic modeling, we apply the 
formulation to two data sets as described next. In both cases, we compare the results 
obtained with the LDA model [5]. 

5.1 Toy Example 

A simple data set is constructed following Griffiths and Steyvers work [17]. A set 
of ten topics ψk ., k = 1, . . . , 10. corresponding to horizontal and vertical bars in a 
5 × 5. grid is defined (Fig. 1). Random combinations of these topics are constructed 
generating different documents. Each pixel in the image corresponds to a unique 
word. A sample of documents can be found in Fig. 2. 

Recovered topics for LDA model and the graph-directed topic model can be seen 
in Figs. 3 and 4, respectively. A comparison of the topic mixture per document can 
be found in Fig. 5. In this case, an unweighted graph is constructed arbitrary such 
that documents 1–50 and documents 51–100 are connected. 

Fig. 1 Graphical representation of ten topics, each containing 25 pixels in a 5  x  5  grid.  Each  pixel  
in the image corresponds to a unique “word”

Fig. 2 Documents: 25 words represented as 5 x 5 pixel images. These correspond to random 
weighted combinations of the topics in the previous figure. White, high count of word; black, 0 
count of word
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Fig. 3 Topics calculated with the LDA model. The original topics are essentially recovered by the 
LDA model 

Fig. 4 Topics calculated with the graph-directed topic model. The original topics, or linear 
combinations, are recovered by the graph-directed topic model 

Fig. 5 Toy example: topic mixture per document. Colors indicate weight of topic in the document. 
(a) LDA model. (b) Graph-directed topic model. The graph-directed topic model recovers the same 
topics for documents 1–50 and documents 51–100, as expected. The LDA model recovers more 
noisy distributions for the 1–50 and 51–100 subgroups. The graph-directed topic model does not 
make use of topic 10, the least expressive of the topics found (see Fig. 4)
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5.2 Enron Data 

A subset of Enron data set is used for the topic model task. We note that stemming 
can influence the discovered topic models [34] and stemming was not used in this 
work. In this case, an unweighted graph is constructed such that documents that 
share the same folder are connected. A number of topics K = 30., roughly the 
double of available folders, are specified (Fig. 6). 

As noted in [38], one of the problems of topic models is that most frequent words 
tend to dominate all topics. However, the graph-directed representation is able to 
construct representations that are more descriptive and more robust to frequent 
words. Likewise, the topic distribution is more balanced through the corpus of 
documents (Fig. 7). Lists of words for the two most important topics in LDA and 
graph-directed models are displayed in Fig. 8. The lists include the probability of 
the word in the topic. 

Fig. 6 Enron data: topic mixture per document. Colors indicate weight of topic in the document. 
(a) LDA model. (b) Graph-directed topic model. The graph-directed topic model tends to recover 
more unique mixtures of topics per document, i.e., mixtures that include less topics, with relatively 
more weight per topic. The LDA model recovers more noisy topic distributions per document 

Fig. 7 Enron data: average weight of topic in the corpus. (a) LDA model. (b) Graph-directed 
topic model. All the topics have similar influence in the corpus when using the graph-directed 
topic model. In contrast, few topics dominate the corpus when using the LDA model
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LDA LDA + Graph 
Word Word Probability Word Word Probability 

please 0.0332594 enron 0.0828999 

louise 0.0263467 dynegy 0.0347854 

will 0.0260858 said 0.0331599 

thanks 0.0208687 company 0.0315345 

pm 0.0203469 stock 0.0156047 

(a) Most probable topic 

LDA LDA + Graph 
Word Word Probability Word Word Probability 

will 0.0287065 ceo 0.0320795 

get 0.0172239 president 0.0303183 

louise 0.016661 chairman 0.0179897 

message 0.0137341 new 0.0174865 

week 0.0136215 year 0.0142156 

(b) Second most probable topic 

LDA LDA + Graph 
Word Word Probability Word Word Probability 

will 0.0187032 don 0.0376162 

also 0.0092416 tax 0.0365836 

may 0.00902156 use 0.030388 

risk 0.0074813 may 0.0259625 

meeting 0.0073346 reserve 0.0215371 

(c) Third most probable topic 

LDA LDA + Graph 
Word Word Probability Word Word Probability 

message 0.0275497 energy 0.0343342 

original 0.0262532 will 0.029487 

please 0.0178263 power 0.0281406 

will 0.0178263 gas 0.0195234 

louise 0.01707 california 0.0164266 

(d) Fourth most probable topic 

Fig. 8 Enron data: word probabilities for the most important topics. LDA topics use more generic 
words. Graph-directed topics give more probability to specialized words, hence yielding more 
insightful representations 

6 Conclusion 

Graph-directed representations for the unsupervised learning methods of topic 
modeling and dictionary learning problems have been implemented. A common 
approach to topic modeling and dictionary learning is to include a sparsity inducing 
prior into the model, such as the Dirichlet prior in a Bayesian setting or a �0 . 
or �1 . regularization term in an optimization approach. Without any other prior 
information, the sparsity prior can yield insightful representations. 

Our results illustrate how a graph enforces known binary relationships in 
the data set, such that strongly connected data samples yield more informative 
representations. For example, by including the information that emails are sorted 
into folders by subjects, a more informative topic representation can be obtained. 
As Fig. 7 illustrates, even though we are using a Bayesian sparsity inducing prior, 
the graph learns a less sparse model. However, as Fig. 8 shows, this model is more 
representative of the information content. 

In this work, we used a quadratic energy function in Eq. (8) in order to integrate 
the graphical model with our topic models. A possible extension of this work is to 
use other graph �p . energy functions by replacing the square of the difference with 
the pth

.power of the difference. The computational complexity remains the same for 
1 <= p < ∞.; however, it is well known that graph segmentation is often improved 
when p = 1. [3]. 

A further extension of this work is the integration of graphical models with 
attention [37]. Note that Eq. (14) is the commonly used softmax function, which 
is often used to define attention. Using Eq. (15), it is straightforward to include a 
graphical model with attention. 
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Linear Independent Component Analysis 
in Wasserstein Space 

Shiying Li, Caroline Moosmüller, and Chuxiangbo Wang 

1 Introduction 

Independent component analysis (ICA) is a computational and statistical technique 
used to uncover independent components from multivariate data, also known as 
blind source separation [8, 18, 19]. It was first introduced in [1] and has gained much 
interest since then; see, e.g., [2, 13, 17]. Specifically, [7] highlighted the potential of 
ICA in mathematics and statistics. ICA has since become an essential tool in various 
fields, including signal separation of biological data [10, 28], MRI data [26], and 
audio and image noise reduction [16, 24]. 

The classical linear ICA problem assumes n independent random variables, 
which have been “mixed” by the application of an orthogonal matrix, and one 
only has access to N observations of this mixing process. From these observations, 
the aim is to identify the independent components and the matrix. This problem 
is usually formulated in Euclidean space, i.e., the independent components and 
the observations are elements of some Rk

.. In this paper, we study a version of 
linear ICA in the Wasserstein space, which is the space of probability measures; 
see [33]. In particular, we assume that the observed data consists of probability 
measures or point-clouds, which have been obtained by a linear mixing through 
Euclidean independent components. This setup is motivated by applications in 
which an instance of data is not naturally interpreted as a vector in some Rk

.,  but  
rather as a probability measure or point-cloud. Examples include imaging data [29], 
text documents [36], gene expression data [5, 22], and flow cytometry [3, 37]. 
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Fig. 1 Setup for linear ICA in Wasserstein space. Bottom panel (“classical” linear setting in 
R

k .): Independent components are drawn from U(−√
3,

√
3) × N(0, 1). (left plot). An unknown 

orthogonal transformation A is applied (right plot). The eigenvectors of the Laplacian built from 
the observed data (right plot) are used to uncover the independent components [31]. Top panel 
(proposed setting in Pp(Rn).): An almost isometric map E : Rk → Pp(Rn). is assumed; in this 
example, the map is E(ω) = N(ω, cI ). for c > 0. fixed. An unknown push-forward operator 
A� . based on orthogonal transformation A is applied to obtain the observable data in Wasserstein 
space (right plot). The eigenvectors of the Laplacian built from the observed data (right plot) with 
Wasserstein distances are used to uncover the independent components (bottom left); see Sect. 3. 
Note: The plots in the top panel are sketches for visualization purposes, i.e., we sampled a uniform 
grid with only a small number of points so that the Gaussians are visible. The blue-red coloring 
scheme is for visualization purposes only. For the actual numerical experiments, we sampled the 
means of the Gaussian from the bottom left plot; see Sect. 4 for details 

While there exists a large body of literature on linear ICA (in the Euclidean 
setting), we follow the ideas of [31], which uses the eigenvectors of a graph 
Laplacian built from the observed data to identify the independent components and 
the mixing matrix. This method naturally adapts to our setting, as we only need 
to reinterpret the graph Laplacian for point-cloud data. Essentially, we replace the 
Euclidean distance by the Wasserstein distance when building the graph Laplacian, 
which has shown success in other methods as well [5, 21–23, 35]. 

The contributions of this paper are twofold. We first describe a natural setting for 
linear ICA in Wasserstein space, where the observed data consists of probability 
measures. This idea mimics the classical linear ICA in Euclidean space and is 
outlined in Fig. 1. We then show that our method is successful in identifying the 
independent components as long as the observed point-cloud data is “close to” 
(almost isometric to) Euclidean data by using results on eigenvector perturbations.
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Here, we use a version of the classical Davis-Kahan theorem to derive eigenvector 
perturbation results [9, 34]. Improved bounds are possible for data with more 
structures; see, e.g., [11]. We present toy examples where the observed data are 
rotated Gaussians, and the independent components are their means. 

The paper is organized as follows. Section 2 presents the preliminaries on 
spectral linear ICA as introduced by [31] and gives a basic introduction to optimal 
transport and the Wasserstein distance. In Section 3 we show a natural setting for 
linear ICA in the Wasserstein space and provide the main result on recovery of 
the independent components in the almost isometric setting. Section 4 contains 
numerical toy examples to showcase our proposed method. 

2 Preliminaries 

2.1 Linear ICA via the Graph Laplacian 

For the linear ICA problem, we follow the setup and results from [31]. Here, we 
briefly summarize the main results needed. 

The linear ICA problem is formulated as follows. Let S = (S1, S2, . . . , Sn). 

be n unknown independent components (random variables) with zero mean and 
unit variance. Let A ∈ Rn×n

. be an unknown orthogonal mixing matrix. Consider 
observations of these random variables, denoted as S̄i ∈ RN

.. The observed data 
under the mixing matrix A is given b y

.X = AS̄T . (1) 

To recover the independent components S from X , [31] interprets the observed 
data points x1, . . . , xN . (column vectors of X) as the nodes of a graph. The weights 
of this graph are defined by 

.Wi,j = e
−‖xi−xj ‖2

2h , (2) 

where ‖ · ‖. denotes the Euclidean distance between xi . and xj . and h is the width 
parameter of the kernel. From this weight matrix, the normalized graph Laplacian,

.L = I − D−1W, (3) 

is constructed, where D is the diagonal degree matrix defined by D =
diag

(∑N
j=1 Wi,j

)
.. 

It is proved in [31] that the eigenvectors of the graph Laplacian approximate 
the independent components Si .. The main argument concerns the convergence of 
the graph Laplacian L to the backward Fokker-Planck operator as the number of 
samples N → ∞. and the fact that the Fokker-Planck operator separates into n 
one-dimensional operators when Si . are independent; see [31].
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2.2 Optimal Transport and Wasserstein Space 

In this paper, we focus on recovering the underlying independent components when 
probability measures or point-clouds undergo a linear mixing transformation. The 
optimal transport (OT) theory [20, 25] provides a natural framework for comparing 
probability measures. We introduce the necessary background here and refer the 
readers to [30, 33] for a thorough treatment of the subject. For an overview of the 
computational aspects of OT, see [27]. 

Let P(Rn). be a set of Borel probability measures on Rn
.. Consider the space of 

probability measures with bounded p (p ≥ 1.) moments, denoted by Pp(Rn).where 

.Pp(Rn) :=
{
μ ∈ P(Rn) :

∫

R
n
‖x‖p dμ(x) < +∞

}
. (4) 

For two probability measures α ., β . ∈.Pp(Rn)., the 2-Wasserstein distance is defined 
as 

.Wp(α, β) = min
π∈�(α,β)

(∫

R
n×Rn

‖x − y‖p dπ(x, y)

) 1
p

, (5) 

where �(α, β). denotes the set of transport plans (couplings) between α . and β ., i.e., 
π ∈ �(α, β). is a probability measure on Rn × Rn

.with first marginal α . and second 
marginal β .. Here, we refer to the metric space (Pp(Rn),Wp). as the Wasserstein 
space. 

In the case when α . is absolutely continuous, the minimizer π∗
.of Eq. (5) is unique 

and of the form (id, T ∗)�α ., where T ∗
. is called the optimal transport map between 

α . and β . (see, e.g., [32, Theorem 2.12]). Here, �. denotes push-forward operation 
between probability measures. Specifically, given g : Rn → R

m
., g�α ., often referred 

to as the push-forward measure of α . by g, is a measure in P(Rm). defined via 

.g�α(B) := α(g−1(B)), ∀ Borel sets B ⊆ Rm. (6) 

3 Linear ICA in Wasserstein Space 

We now describe a natural setup for linear ICA in the Wasserstein space. This 
is similar to ideas related to manifold learning in the Wasserstein space; see, 
e.g., [6, 14, 15]. As introduced in Sect. 2.1, the linear ICA problem for Euclidean 
data can be solved by analyzing the spectral properties of the normalized graph 
Laplacian L. (Eq. (3)). In the context of Wasserstein space, this process involves 
analyzing a Wasserstein-based graph Laplacian by leveraging the optimal transport 
(OT) framework and, more specifically, using the 2-Wasserstein distance to compare 
probability measures.
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Consider E : � → Pp(Rn). where � ⊆ R
n
. represents a set of governing 

parameters and the map E. describes a nonlinear process of generating probability 
measures from the parameters. Assume {ωj }Nj=1 . are the underlying parameters 
sampled from n independent components S = (S1, . . . , Sn). from �. and consider 
observed data of the form βj := A�E(ωj ), j = 1, . . . , N .. The probability 
measures βj . are obtained via the push-forward of E(ωj ). by a mixing orthogonal 
transformation A. Throughout this paper, we abuse notation by letting A represent 
both the orthogonal matrix and the linear transformation it induces. As the Euclidean 
distance is invariant under orthogonal transformations, the Wp . distance is invariant 
under the push-forward via orthogonal transformations. See the Appendix for the 
proof of the following: 

Lemma 1 Let p ≥ 1.. Let α, β ∈ Pp(Rn). and A be a n × n. orthogonal matrix. 
Then, Wp(α, σ ) = Wp(A�α,A�σ). for any α, σ ∈ Pp(Rn).. 

As in the linear setting (Sect. 2.1), the task is to uncover the independent 
components S1, . . . , Sn . from the observed data {βj }Nj=1 .. See Fig. 1 for an overview 
of this construction. We will focus on the following settings: 

(i) (Almost isometric E.): there exists some η > 0. such that 

. 

∣∣∣W 2
p(E(ω),E(κ)) − ‖ω − κ‖2

∣∣∣ ≤ η, ∀ ω, κ ∈ �

(ii) (Special case: isometric E.): Wp(E(ω),E(κ)) = ‖ω − κ‖,∀ ω, κ ∈ �.. 

Example 1 To illustrate the Wasserstein ICA setup, we give a basic example, 
which is discussed in more detail in Sect. 4 and is visualized in Fig. 1. Denote 
by N(m,�). the Gaussian in Rn

. with mean m and covariance � .. A possible 
map E. is ω �→ N(ω, cI )., where c > 0. is fixed. This is a simple way of 
generating probability measures from parameters. The observed data would then 
be A�N(ω, cI ) = N(Aω, cI)., i.e., pushing these Gaussians by an orthogonal 
transformation is equivalent to applying A to their means. Moreover, in this case,
(�, ‖ · ‖). is isometric to (E(�),W2)., where � ⊆ Rn

.. 

Remark 1 We assume that � ⊆ Rn
. and that support space for the probability 

measures is Rn
.. It is not necessary for those spaces to have the same dimension n; 

this is mostly for convenience of presentation. The results that follow still hold if 
the dimensions differ. 

To recover the independent components S1, . . . , Sn ., the idea is to utilize the 
graph Laplacian with Wasserstein distances between the observed probability 
measures {βj }Nj=1 . rather than the Euclidean distance used in Eq. (3). This is natural 
since we are dealing with objects in the metric space (Pp(Rn),Wp).. In particular, 
we construct the normalized graph Laplacian: 

.LWp = I − D̃−1W̃ , (7)
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where 

.W̃ij = e
−Wp(βi ,βj )2

2h , (8) 

and D̃ . is the degree matrix associated with W̃ .. 
Our goal is to understand to which extent the eigenvectors of LWp . approximate 

the independent components under the assumption that the parameter space (�, ‖·‖). 
is “almost” isometric to (E(�),Wp).. The recovery result follows from combining 
eigenvector perturbation results with results from [31]. The main theorem of this 
paper concerns the eigenvector perturbation under an almost isometry assumption. 

Theorem 1 (Almost isometric E.) Let p ≥ 1.. Let S1, . . . , Sn . be (real-valued) 
independent random variables and let A denote an n × n. orthogonal mixing matrix 
or the orthogonal transformation it induces. Assume that � ⊆ Rn

. such that S ∈ �.,1 

where S = (S1, . . . , Sn).. Let E : � → Pp(Rn).. Assume that there exists η ≥ 0. such 
that 

.

∣∣∣W 2
p(E(ω),E(κ)) − ‖ω − κ‖2

∣∣∣ ≤ η, ∀ ω, κ ∈ �. (9) 

Let {ωj }Nj=1 . be N instances of S and βj := A�E(ωj ).. Let L. and LWp . be the 

normalized graph Laplacian associated with {Aωj }Nj=1 . (see Eq. (3)) and associated 

with {βj }Nj=1 . (see Eq. (7)), respectively. Let λ1 ≤ . . . ≤ λN . and λ̃1 ≤ . . . ≤ λ̃N . 

be the eigenvalues of L. and LWp ., respectively. Fix 1 ≤ j ≤ N ., and assume that 
δj := min{λj − λj−1, λj+1 − λj } > 0.. Then, for the eigenvectors φj . and φ̃j . 

satisfying Lφj = λjφj . and LWpφ̃j = λ̃j φ̃j ., the following holds: 

. cos 
 (φj , φ̃j ) ≥ 1 − ε
1/2
max

2
rD

(
b + 23/2δ−1

j

(
aε−1

minrD + brDε
−1/2
min + br

1/2
D

))2
.

(10) 
Here, εmin = e− η

2h . and εmax = e
η
2h ., a = max{|εmax − 1|, |εmin − 1|}., b =

max{|ε−1/2
max − 1|, |ε−1/2

min − 1|}., and rD = Dmax
Dmin

. with Dmax = max
i

Dii ., Dmin =
min

i
Dii .. Here,  D is the degree matrix associated with {ωj }Nj=1 .. 

Proof We start by comparing the distances used in the kernel in the Wasserstein and 
Euclidean settings (see Eqs. (8) and (2)). The former uses the Wasserstein distance 
of the observed measures, i.e., W 2

p(βi, βj )., while the latter uses the Euclidean 

distances between the mixed parameters, i.e., ‖Aωi − Aωj‖2 .. Since A is an 
orthogonal matrix, by Lemma 1,  we  ha  ve

.Wp(βi, βj ) = Wp(A�E(ωi), A�E(ωj )) = Wp(E(ωi),E(ωj )).

1 Here, we abuse notation and do not differentiate the measurable function S from its function 
value. S ∈ �.means that the function values of S are in the set �.. 
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Since ‖Aωi − Aωj‖ = ‖ωi − ωj‖., it follows from Eq. (9) that 

.

∣∣∣W 2
p(βi, βj ) − ∥∥Aωi − Aωj

∥∥2 ∣∣∣ ≤ η, ∀ i, j = 1, . . . , N. (11) 

Denoting by W̃ ,W . the weight matrices associated with LWp . and L., respectively, 
we have that 

.e−η/2h ≤ W̃ij

Wij

≤ eη/2h. (12) 

The relationship between the corresponding eigenvectors ofLWp . and L. then follows 
from an eigenvector perturbation result, which we summarize in the Appendix; see 
Proposition 1. ��
Remark 2 Theorem 1 also holds when Wp . in (9) is replaced by any nonnegative 
function D : Pp(Rn) × Pp(Rn) → R

+
. satisfying D(A�α,A�σ) = D(α, σ). for 

any orthogonal transformation A : Rn → R
n
.. One example for another distance 

satisfying this property is the total variation distance D(α, σ) = supB∈B(Rn) |α(B)−
σ(B)|., where B(Rn). denotes the Borel sets of Rn

.. Similarly, the Kullback-Leibler 
(KL) divergence also satisfies this property, as it is nonnegative and invariant under 
orthogonal transformations. 

Remark 3 When E. defines an isometry, i.e., η = 0. in Eq. (9),  we  have  t  hat
εmin = εmax = 1., which implies that a = b = 0. and hence 
 (φj , φ̃j ) = 0.. 
Therefore, as expected in the isometric case, there is no difference between the 
Wasserstein and the Euclidean settings; hence, the angle between the eigenvectors 
is 0 (see Corollary 1). 

Remark 4 In general, the lower bound of cos 
 (φj , φ̃j ). given by the RHS of 
Eq. (10) depends on an interplay between the constants εmin, εmax, δj ., and rD .. 
In particular, when E. is an almost isometry, i.e., the perturbation η . between the 
distances is “small” such that εmin, εmax ≈ 1., one can expect that cos 
 (φj , φ̃j ) ≈ 1. 
(or equivalently, 
 (φj , φ̃j ) ≈ 0.), as long as δj . is reasonably large and rD . is 
reasonably small. However, the numerical experiments seem to be more robust 
than what this lower bound can predict. Remark 7 shows that the independent 
components can be recovered, even when the RHS in Eq. (10) is below − 1.,  in  
which case this bound is not useful in predicting the recovery performance. We 
leave the improvement of this lower bound for future w ork.

Remark 5 When 0 ≤ W 2
p(E(ω),E(κ)) − ‖ω − κ‖2 ≤ η ., we have that the constant 

εmax ≤ 1., and hence a ≤ 1.. 

Corollary 1 (Special Case: Isometric E.) Let S,A,�., E., and {ωj }Nj=1 . be as 
defined in Theorem 1. Assume that 

.Wp(E(ω),E(κ)) = ‖ω − κ‖ , ∀ ω, κ ∈ �. (13) 

Then, LWp = L. in Theorem 1.
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Proof In this case, W̃ij = Wij ., which implies LWp = L.. ��
Remark 6 (Recovery of independent components) From [31, Section 4.1], we 
know that in the Euclidean setting, the eigenvectors of the graph Laplacian L. 

approximate the independent components S1, . . . , Sn . up to errors coming from the 
sampling process (in the limit N → ∞.). Our Theorem 1 now states that in the 
almost-isometric setting, the eigenvectors of the Wasserstein-based Laplacian LWp . 

approximate the eigenvectors of L. up to the error (Eq. (10)). Putting this together, 
in the almost-isometric setting, the Wasserstein ICA recovers the independent 
components S1, . . . , Sn . up to these two approximation errors combined. 

4 Examples and Numerical Experiments 

In the following two numerical experiments, we use point-clouds drawn from 
Gaussian distributions that use independent sources as means, with fixed (isometric 
case; see Example 3) and varying (almost isometric case; see Example 4) covariance 
matrices (Figs. 2a, 3a). These Gaussians then undergo an unknown orthogonal 
transformation (Figs. 2b, 3b). The Wasserstein-based ICA method is then applied 
to the observed “linearly mixed” point-clouds, and the recovery of the independent 
components (the means) is presented. 

Figures 2 and 3 are illustrations of the two settings we consider (isometric and 
almost-isometric). We note that as with Fig. 1, these are sketches for visualization 
purposes and do not represent the actual data used to carry out the numerical 
experiments. The reason for using sketches only is to make sure individual 

Fig. 2 An illustration of the isometric case (Sect. 4.1). This is a sketch for illustration purposes; 
the actual numerical setup is described in Sect. 4.1.  (a) Independent components (the Gaussian 
means) are sampled on a square, and Gaussians with these means and the same covariance (are 
multiple of I ) are considered. (b) Gaussians from (a) are transformed with an orthogonal matrix A
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Fig. 3 An illustration of the almost-isometric case (Sect. 4.2). This is a sketch for illustration 
purposes; the actual numerical setup is described in Sect. 4.2.  (a) Independent components (the 
Gaussian means) are sampled on a square, and Gaussians with these means and the covariances of 
varying sizes are considered. (b) Gaussians from (a) are transformed with an orthogonal matrix A

Gaussians are visible (when means are densely and nonuniformly sampled, different 
Gaussians easily overlap making it hard to identify individual instances of data). 

4.1 Isometric Case 

We first look at the case when E.defines an isometry from the parameter space (�, ‖·
‖). to the space of probability measures (Pp(Rn),Wp). for p = 2., i.e., when η = 0. 
in Theorem 1. In this case, the Wasserstein ICA problem reduces to the Euclidean 
linear ICA problem, as the graph Laplacian using the Wasserstein distances of 
observed measures coincides with the graph Laplacian in the parameter space. The 
same approximation and recovery results for the independent components hence 
follow from [31]; see Corollary 1 and Remark 6. 

One way of generating measures for which isometry (e.g., Eq. (13)) holds can be 
obtained by the translation of a base measure. 

Example 2 (Isometric E.) Let α0 ∈ P2(Rn). and � ⊆ Rn
.. Define E : � → P2(Rn). 

by E(ω) = Tω�α0 ., where Tω(x) = x − ω. is a translation. It follows that E. is an 
isometry since W2(E(ω),E(κ)) = W2(Tω�α0, Tκ�α0) = ‖ω − κ‖.. 

We now consider a related example that is built from an example in [31]. 

Example 3 Consider n = 2., and generate parameters in �. by S = (S1, S2).with the 
independent components S1, S2 . given by 

. S1 ∼ U(−√
3,

√
3), S2 ∼ N(0, 1), (14)
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whereU(−√
3,

√
3). denotes uniform distribution on [−√

3,
√
3]. andN(0, 1). is the 

standard normal distribution. In all the numerical experiments performed, we have 
applied a filter on samples from S to remove the isolated outliers, similar to [31]. 

Let {ωj }Nj=1 . be N instances of S and generate point-clouds β̂j . sampled from 
A�N(ωj , cI ), j = 1, . . . , N .. Here, we choose c = 0.003. and 

.A =
[
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

]
, (15) 

which describes the orthogonal mixing matrix. The number of point-clouds is N =
600., each of which contains 30 points. 

The eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN . of the normalized graph Laplacian 
LW2 .are computed from {β̂j }Nj=1 .using the kernel (Eq. (2)) based on the W2 .-distance, 

i.e., W̃ij = e
−W2(β̂i ,β̂j )2

2h ., where the Wasserstein distances W2(β̂i , β̂j ). are computed 
using the Python Optimal Transport (POT) package [12] and h is set to 0.2. Here, D̃ . 

is the degree matrix associated with the weight matrix W̃ .. We use the eigenvectors 
φ̃2 . and φ̃3 ., which correspond to the first two nontrivial eigenvalues to recover the 
independent components. In Fig. 4c and d, we plot φ̃2 . and φ̃3 . and color them by 
the original independent components S1 . (Fig. 4c) and S2 . (Fig. 4d), respectively. We 
observe that the independent components are recovered since the eigenvectors are 
in one-to-one correspondence with the independent components (Fig. 4a, b), as is 
expected from Corollary 1. 

The term “one-to-one correspondence” means that φ̃2 . is an increasing function 
of S1 . and that φ̃3 . is an increasing function of S2 .. In particular, φ̃2 . is independent 
of S2 . and similarly, φ̃3 . is independent of S1 .. Visually, this is demonstrated by the 
coloring in Fig. 4. 

4.2 Almost-Isometric Case 

A more interesting case is when η . in Theorem 1 is small, i.e., the almost-isometric 
case. One way of generating measures such that Eq. (9) holds is by varying an 
isotropic Gaussian by its mean and variance. 

Example 4 Let � ⊆ Rn
..  Let c : � → [c1, c2]. where 0 < c1 < c2 .. Define 

E : � → Pp(Rn). by E(ω) = N(ω, c(ω)I).. Using the Wasserstein distance formula 
for Gaussians (see Lemma 3), we have 

.W 2
2 (E(ω),E(κ)) − ‖ω − κ‖2 = n

(√
c(ω) − √

c(κ)
)2

. (16) 

≤ n(
√

c2 − √
c1) 2. (17) 

≤ min{n(c2 − c1), 
n(c2 − c1)2 

4 c1
}, (18)
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Fig. 4 Illustration of the one-to-one correspondence between the eigenvectors of the graph 
Laplacian and the independent components described in Example 3 (isometric example). (a)  The  
independent components S = (S1, S2). are colored by the first nontrivial eigenvector φ̃2 ..  (b)  The  
independent components S = (S1, S2). are colored by the second nontrivial eigenvector φ̃3 ..  (c) 
The eigenvectors (φ̃2, φ̃3). are colored by the first independent component S1 ..  (d) The eigenv ectors
(φ̃2, φ̃3). are colored by the second independent component S2 . 

where the last inequality follows from the simple facts that
√

c2 − √
c1 ≤ √

c2 − c1 . 

and
√

c2 − √
c1 ≤ c2−c1

2
√

c1
.. Similar to Eq. (12), we get 

.e−η/2h ≤ W̃ij

Wij

≤ 1, (19) 

where η = min{n(c2 − c1),
n(c2−c1)

2

4c1
}. can be made small by choosing c2 − c1 . small. 

By Proposition 1, the relationship between the eigenvectors of LW2 . and L. is given 
by Eq. (10) with constants a = |1 − e−η/2h| ≤ 1. and b = |1 − eη/4h|.. 
In our numerical experiments, we again choose empirical measures corresponding 

to point-clouds β̂j . sampled from the observed Gaussians A�N
(
ωj , c(ωj )I

)
., where
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ωj . are instances of parameters sampled from the independent component vector 
S = (S1, S2, . . . , Sn)..2 

We follow a similar numerical setup as in Example 3. The dimension is n = 2., the  
parameters {ωj }Nj=1 .are generated from S = (S1, S2). specified in Eq. (14),N = 600., 

A is in Eq. (15), and h = 0.2.. Each point-cloud β̂j . contains 30 points sampled from 

A�N
(
ωj , c(ωj )I

)
., where c(ωj ). is chosen uniformly in [0.998, 1.002].. 

As in Example 3, the eigenvectors φ̃2 . and φ̃3 . of LW2 . corresponding to the first 
two nontrivial eigenvalues are used for the independent component recovery. 

In Fig. 5,  we  plot φ̃2 . and φ̃3 . colored by the original independent components 
S1 . (Fig. 5c) and S2 . (Fig. 5d), respectively. In Fig. 5a, b, the original parameters 
S = (S1, S2). are colored by φ̃2 . (Fig. 5a) and φ̃3 . (Fig. 5b), respectively. We 
observe that the eigenvectors are in one-to-one correspondence with the independent 
components, as expected from Remark 6. 

To obtain the theoretical bound in Eq. (10) from Theorem 1, we estimate εmin ., 

εmax . by Eq. (16) and hence use the min and max of
(√

c(ωi) − √
c(ωj )

)2
..  We  

observe that εmin, εmax ≈ 1. for the chosen parameter interval. The remaining 
constants rD, δj , j = 2, 3. are computed directly using W and L. (see Eq. (3)) 
associated with {Aωj }Nj=1 .. Taking the average of multiple numerical outputs, we 
obtain 

. cos 
 (φ2, φ̃2) ≥ 0.993, cos 
 (φ3, φ̃3) ≥ 0.989, (20) 

with standard deviation 0.006. and 0.012.. The two angles are around 6.8◦
. and 

8.5◦
., respectively. Based on the chosen example, small angles were expected; see 

Remark 4. 
The preceding example shows that when the covariance of the Gaussians varies 

by small constants, i.e., when max c(ω)
min c(ω)

≈ 1., then the independent components S1 . and 
S2 . are well approximated by the eigenvectors of the graph Laplacian and the error 
established in Theorem 1 (Eq. (10)) can be explicitly computed; compare Eq. (20). 
Even when the error bound (Eq. (10)) is not meaningful (e.g., when the lower bound 
is negative), the Wasserstein ICA method may still be successful in recovering the 
independent components. We now discuss one such case. 

Remark 7 Following the exact same setup as Example 4, we choose c(ωj ). uni-
formly from [0.00003, 0.3]. such that max c(ω)

min c(ω)
≈ 104 ., which indicates a significant 

size difference in {β̂j }Nj=1 .. The error established in Eq. (10) is computed but exceeds 
the range of cosine function due to small εmin . defined in Theorem 1 and is thus not 
insightful. However, the first two nontrivial eigenvectors φ̃2 . and φ̃3 . computed from 
LW2 . (Eq. (7)) are nevertheless in one-to-one correspondence with the independent 
components S1 . and S2 ., as illustrated by Fig. 6 in the Appendix.

2 Note here E(ωj ). is the empirical measure of a point-cloud sampled from N(ωj , c(ωj )I ).. 
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Fig. 5 Illustration of the one-to-one correspondence between the eigenvectors of the graph 
Laplacian and the independent components described in Example 4 (almost-isometric example). 
(a) Independent components S = (S1, S2). colored by the first nontrivial eigenvector φ̃2 .,  (b) 
independent components S = (S1, S2). colored by the second nontrivial eigenvector φ̃3 .,  (c) 
eigenvectors (φ̃2, φ̃3). colored by the first independent component S1 .,  and  (d) eigenvectors (φ̃2, φ̃3). 
colored by the second independent component S2 . 

5 Discussion 

We have presented a framework for applying linear independent component analysis 
when the observed data consists of probability measures or point-clouds. Our 
method mimics the classical Euclidean setting and shows that when the observed 
point-cloud data is almost isometric to Euclidean data, comparable recovery results 
can be achieved. We consider this paper a first step toward the development of 
a complete theory for ICA in the Wasserstein space. Topics of future interest 
concern going beyond the almost-isometry assumption and studying nonlinear ICA 
problems. 

Acknowledgments The authors thank the anonymous reviewers for their constructive comments.
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Fig. 6 Illustration of the one-to-one correspondence between the eigenvectors of the graph 
Laplacian and the independent components described in Remark 7.  (a) Independent components
S = (S1, S2). colored by the first nontrivial eigenvector φ̃2 .,  (b) independent components S =
(S1, S2). colored by the second nontrivial eigenvector φ̃3 .,  (c) eigenvectors (φ̃2, φ̃3). colored by the 
first independent component S1 .,  and  (d) eigenvectors (φ̃2, φ̃3). colored by the second independent 
component S2 . 
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Appendix 

Proposition 1 Let W, W̃ . be N × N . weight matrices built from Eqs. (2) and (8). 
Let L = I − D−1W . and L̃ = I − D̃−1W̃ . be the corresponding normalized 
graph Laplacians, with D and D̃ . being the associated degree matrices, respectively. 
Assume that W̃ij = εijWij . such that 

.0 < εmin ≤ εij ≤ εmax, i, j = 1, . . . , N. (21)
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Suppose λ1 ≤ . . . ≤ λN . and λ̃1 ≤ . . . ≤ λ̃N . are the eigenvalues of L and L̃., 
respectively. Fix j ∈ {1, . . . , N}., and assume that δj := min{λj − λj−1, λj+1 −
λj } > 0.. Then, for eigenvectors φj . and φ̃j . satisfying Lφj = λjφj . and L̃φ̃j = λ̃φ̃j ., 

. cos 
 (φj , φ̃j ) ≥ 1 − ε
1/2
max

2
rD

(
b + 23/2δ−1

j

(
aε−1

minrD + brDε
−1/2
min + br

1/2
D

))2
.

(22) 

where a = max{|εmax − 1|, |εmin − 1|}., b = max{|ε−1/2
max − 1|, |ε−1/2

min − 1|}., and 

rD = Dmax
Dmin

. with Dmax = max
i

Dii ., Dmin = min
i

Dii .. Here, D is the degree matrix 

associated with W .

Proof Let M = D−1W . and M̃ = D̃−1W̃ .. Since L and M (similarly , L̃. and M̃ .) 
have the same eigenvectors, it is equivalent to analyze the eigenvectors for M and 
M̃ .. We first look at eigenvectors for the symmetric matrices S = D1/2MD−1/2

. 

and S̃ = D̃1/2M̃D̃−1/2
.. It is not hard to verify that if V is an orthogonal matrix 

whose columns are eigenvectors of S, then the columns of D−1/2V . are eigenvectors 
of M corresponding to the same eigenvalue. Without loss of generality, assume that
φj = D−1/2vj .and φ̃j = D̃−1/2ṽj ., where vj .and ṽj .are unit eigenvectors of S and S̃ ., 
corresponding to eigenvalues λj . and λ̃j ., respectively. We will first bound ‖̃vj − vj‖. 

using Corollary 2. Observe that S = D−1/2WD−1/2
. and S̃ = D̃−1/2W̃ D̃−1/2

..  By  a  
direct computation, we have the follo wing bounds:

.‖D−1/2‖ ≤ D
−1/2
min , . (23)

‖D̃−1/2‖ ≤  ε−1/2 
min D

−1/2 
min , . (24)

‖W‖ ≤ ‖D‖‖D−1W‖ ≤  Dmax , . (25)

‖W̃ − W‖ ≤
√

‖W̃ − W‖1‖W̃ − W‖∞ = ‖W̃ − W‖1 ≤ aDmax, (26) 

where a = max{|εmax − 1|, |εmin − 1|}.. Here, ‖ · ‖. denotes the matrix 2-norm, and 
we have used the fact that ‖D−1W‖ ≤ 1. in Eq. (24) (since DW−1

. is nonnegative 
and row stochastic) and the fact that W̃ − W . is symmetric in Eq. (26). Similarly, 
since 

. (ε
−1/2
max − 1)(Dii)

−1/2 ≤ (D̃−1/2)ii − (D−1/2)ii ≤ (ε
−1/2
min − 1)(Dii)

−1/2,

we obtain 

.‖D̃−1/2 − D−1/2‖ ≤ bD
−1/2
min , (27)
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where b = max{|ε−1/2
max − 1|, |ε−1/2

min − 1|}.. By the triangle inequality, 

. ‖S̃ − S‖ ≤ ‖D̃−1/2W̃ D̃−1/2 − D−1/2WD̃−1/2‖
+ ‖D−1/2WD̃−1/2 − D−1/2WD−1/2‖. (28) 

For the first term in Eq. (28),  we  ha  ve

. ‖D̃−1/2W̃ D̃−1/2 − D−1/2WD̃−1/2‖ ≤ ‖D̃−1/2W̃ − D−1/2W‖‖D̃−1/2‖
≤

(
‖D̃−1/2W̃ − D̃−1/2W‖ + ‖D̃−1/2W − D−1/2W‖

)
‖D̃−1/2‖

≤ ‖D̃−1/2‖2‖W̃ − W‖ + ‖D̃−1/2 − D−1/2‖‖W‖‖D̃−1/2‖
≤ aε−1

minD
−1
minDmax + brDε

−1/2
min ,

where the last inequality follows from Eqs. (24)–(27). For the second term in 
Eq. (28),  we  ha  ve

. ‖D−1/2WD̃−1/2 − D−1/2WD−1/2‖ ≤ ‖D−1/2W‖‖D̃−1/2 − D−1/2‖
≤ ‖D1/2‖‖D−1W‖(bD

−1/2
min )

≤ bD
1/2
maxD

−1/2
min .

Hence, 

.‖S̃ − S‖ ≤ aε−1
minrD + brDε

−1/2
min + br

1/2
D , (29) 

where rD = Dmax
Dmin

.. 

Without loss of generality, assume that ṽT
j vj ≥ 0. (otherwise reverse the direction 

of one of the vectors). Then, by Corollary 2,  we  ha  ve

.‖̃vj − vj‖ ≤ 23/2‖S̃ − S‖
δj

≤ 23/2δ−1
j

(
aε−1

minrD + brDε
−1/2
min + br

1/2
D

)
. (30) 

Here, we have used the fact S has the same “eigenvalue gaps” (δj .’s) as L. (in the 
reversed order) since {1 − λj }Nj=1 . are eigenvalues of S. It follows that 

. ‖φ̃j − φj‖ = ‖D̃−1/2ṽj − D−1/2vj‖
≤ ‖D̃−1/2ṽj − D−1/2ṽj‖ + ‖D−1/2ṽj − D−1/2vj‖
≤ ‖D̃−1/2 − D−1/2‖ + ‖D−1/2‖‖̃vj − vj‖
≤ D

−1/2
min

(
b + 23/2δ−1

j

(
aε−1

minrD + brDε
−1/2
min + br

1/2
D

))
. (31)
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Moreover, it is not hard to show that ‖D−1/2v‖ ≥ D
−1/2
max ‖v‖. for any v ∈ RN

., 
which implies that ‖φj‖ = ‖D−1/2vj‖ ≥ D

−1/2
max . as ‖vj‖ = 1.. Similarly, ‖φ̃j‖ ≥

(εmaxDmax)
−1/2

..  Le  t θj . be the angle between φ̃j . and φj .. Then, 

. cos θj ≥ 1 − ‖φ̃j − φj‖2
2‖φ̃j‖‖φj‖

≥ 1 − ε
1/2
max

2
rD

(
b + 23/2δ−1

j

(
aε−1

minrD + brDε
−1/2
min + br

1/2
D

))2
.

��
Proof of Lemma 1 Let α, σ ∈ Pp(Rn).. It suffices to show that Wp(α, σ ) ≥
Wp(A�α,A�σ). for any orthogonal matrix A, which implies the reversed inequality 
by starting with Wp(A�α,A�σ). and applying A−1

..  Le  t γ . be an optimal transport 
plan between α . and σ .. It is not hard to see that (A,A)�γ . is a transport plan 
between A�α . and A�σ ., where (A,A) : Rn × Rn → R

n × Rn
. is defined by 

(A,A)(x, y) = (Ax,Ay).. Indeed, let π1, π2 : Rn × Rn → R
n
. be the projection 

functions mapping (x, y). to its first and second coordinates, respectively. Since 
π1◦(A,A) = A◦π1 .,  it  follows  that π1�

(
(A,A)� γ

) = A�(π1�γ ) = A�α .. Similarly, 
π2�

(
(A,A)� γ

) = A�σ .. By the change of variable formula, we have 

. W
p
p (A�α,A�σ) ≤

∫

R
n×Rn

‖x̃ − ỹ‖pd
(
(A,A)�γ

)
(̃x, ỹ)

=
∫

R
n×Rn

‖Ax − Ay‖pdγ (x, y)

=
∫

R
n×Rn

‖x − y‖pdγ (x, y)

= W
p
p (α, σ ).

��
Lemma 2 ([34, Corollary 3]) Let �, �̂ ∈ Rn×n

. be symmetric, with eigenvalues 
λ1 ≥ · · · ≥ λp . and λ̂1 ≥ · · · ≥ λ̂p ., respectively. Fix j ∈ {1, . . . , n}., and assume 
that min(λj−1−λj , λj −λj+1) > 0., where λ0 := ∞.and λn+1 := −∞.. If v, v̂ ∈ Rn

. 

satisfy �v = λjv . and �̂v̂ = λ̂j v̂ ., then 

. sin 
 (v̂, v) ≤ 2‖�̂ − �‖
min(λj−1 − λj , λj − λj+1)

.

Moreover, if v̂T v ≥ 0., then 

. ‖v̂ − v‖ ≤ 23/2‖�̂ − �‖
min(λj−1 − λj , λj − λj+1)

.

Here ‖ · ‖. denotes the matrix 2-norm.
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Lemma 3 (Wasserstein Distance Between Isotropic Gaussians) Let αi =
N(ωi, ciI ). and αj = N(ωj , cj I ). be two Gaussians supported on Rn

.. The W2 . 

distance between αi . and αj . is 

. W 2
2 (αi, αj ) = ‖ωi − ωj‖2 + n(

√
ci − √

cj )
2.

Proof By [27, Remark 2.31], the Wasserstein distance between two Gaussians α =
N(mα,�α). and β = N(mβ,�β). is given by 

. W 2
2 (α, β) = ‖mα − mβ‖22 + B(�α,�β)2

where 

. B(�α,�β)2 = Tr(�α + �β − 2(�1/2
α �β�1/2

α )1/2)

is the Bures distance; see, e.g., [4]. We let αi = N(ωi, ciI ). and αj = N(ωj , cj I )., 
which implies 

. W 2
2 (αi, αj ) = ‖ωi − ωj‖2 + B(ciI, cj I )2.

It is easy to see that B(ciI, cj I )2 = n(
√

ci − √
cj )

2
., from which the result follows. 

��
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Faster HodgeRank Approximation 
Algorithm for Statistical Ranking and 
User Recommendation Problems 

Shelby Ferrier, Junyuan Lin, and Guangpeng Ren 

1 Introduction 

Statistical ranking and user recommendation problems are central to a wide range 
of applications, including sports, web search, and literature search. Over the years, 
researchers have been searching for robust algorithms that can obtain accurate 
ranking [2, 4–6, 10–12, 16, 18]. Out of those methods, the HodgeRank algorithm, 
proposed by Jiang et al. [15], is able to derive a global ranking from subjective, 
incomplete data sets that contain voters (e.g., people who have reviewed some 
movies) and scored elements (e.g., the ratings each person gives to a movie). 
The HodgeRank algorithm, distinguished from other ranking methods, analyzes 
pairwise differences represented as edge flows on a graph using discrete or combi-
natorial Hodge theory. In Sect. 2, we provide a detailed summary of the HodgeRank 
algorithm proposed by Jiang et al. [15], particularly how the HodgeRank algorithm 
formulates the statistical ranking problems into linear least squares problems on 
graphs. 

In recent years, there have been several algorithms developed to approximate the 
HodgeRank ranking algorithm, with a primary focus on specific applications. Xu 
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et al. [25] propose a robust ranking framework that uses Hodge decomposition and 
focus on detecting outliers through sparse approximations in computer vision. Wei 
et al.’s [24] work applies HodgeRank model to characterize structural properties of 
biomolecules, with a focus on accuracy in identifying cycles, loops, and folding 
patterns within complex biological data while placing less emphasis on efficiency 
with large-scale data. 

By leveraging the graph properties, there are two main benefits to the problem 
of ranking data sets: (1) the HodgeRank algorithm can be applied to data sets 
that are incomplete and imbalanced; that is, not every voter rates every element, 
and not all elements get an equal amount of rates. This is done by forming each 
voter’s rating items into a fully connected subgraph and merging these subgraphs 
into a larger item graph with weighted edges. (2) The HodgeRank algorithm can 
be found particularly useful on data sets where the bias of the voters may need to 
be considered. For example, some people give most movies top ratings, whereas 
others may have higher standards for what a good movie is. The pairwise rankings 
in the HodgeRank algorithm resolves this by focusing on the difference one voter 
gives between two different elements, as opposed to their individual ratings. These 
pairwise differences are stored in the graph as edge flows. This feature contributes 
to the popularity of the HodgeRank algorithm among statistical ranking methods. 

Another significance of deriving the statistical ranking problems into linear least 
squares problems on graphs is that it provides a measurement for the quality of the 
global ranking. With the relationship to least squares problems on graphs, many 
mathematical solvers can be applied. A baseline solver to compute the least squares 
problems is a direct solve on the pseudo-inverse of an n × n. matrix where n is 
the number of elements to be ranked. The time complexity of this direct solve i s 
O(n3).; therefore, the HodgeRank algorithm becomes computationally limited as 
the number of items being rated increases. We measured run times of more than an 
hour as the number increased over 2000, which we show in Sect. 4. As a result, for 
very large sets of elements (more than 10,000), it is preferable to approximate the 
ranking rather than use the original algorithm. As mentioned in [3], the unsmoothed 
aggregation algebraic multigrid (UA-AMG) [21] as a preconditioner for conjugate 
gradient (CG) yields efficient computation of the least squares problems. In [3], 
authors used the algebraic multigrid (AMG) method [9] to cut down on run time to 
O(n log n). while closely approximating the universal ranking. 

To further reduce the computation complexity, in Sect. 3, we present a new  
method to cut down the time complexity of HodgeRank, which sections the data 
into groups before computing the ranking. We tested the grouping method on IMDb 
movie rating data [1] and found the resulting ranking to be a strong approximation 
for the Hodge ranking. Additionally, we saw that the accuracy of the results was 
generally dependent on how many groups were used, with fewer groups producing 
more accurate results. Finally, we analyze the time complexity of the method and 
discuss the trade-off between run time and accuracy when picking the best group 
size.
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Table 1 Example ratings 
from patients 1–3 on four 
symptoms. *The “X” in the 
above data set represents a 
missing value 

Fever Sore throat Cough Nausea 

Patient 1 3 2 2 5 

Patient 2 7 8 9 X* 

Patient 3 2 2 1 3 

2 Method and Model 

The goal of the HodgeRank algorithm is to obtain a relative ranking of elements in 
a set, based on ratings given to them by individual voters. 

To demonstrate the method created by Jiang et al. [15], we take an example 
through the method in Table 1. Suppose we aim to rate the symptoms of COVID-19 
by severity; thus, we survey three patients on a set of symptoms (fever, sore throat, 
cough, and nausea): 

A straightforward approach would be to rank the severity of symptoms by 
computing the mean of each column. In this data set, the mean of each column 
is four, which implies that each symptom is equally as severe. However, examining 
the data reveals that some symptoms should be rated higher than others: nausea, for 
example, is rated the most severe by every patient who reviewed it. To get a more 
accurate ranking, we use the HodgeRank method instead. 

2.1 Terminology 

There is some terminology needed to understand HodgeRank, which we detail here. 
Following the notation used in Jiang et al. [15] and Colley et al. [3], we define �. to 
be the set of voters and V to be the set of elements that are voted on. For α ∈ �., we  
denote Vα . to be the set of elements rated by voter α .. Similarly, we let �ij . denote 
the set of voters who rated both elements i and j . 

In our example, we have the following: 

. � = {Patient 1, Patient 2, Patient 3}
V = {Fever, Sore Throat, Cough, Nausea}

VPatient 2 = {Fever, Sore Throat, Cough}

Also, we define the rankings as R : � × V → R.. For example, if voter α . gave 
element i a score of 5, we would say R(α, i) = 5.. 

Using this terminology, we find a universal rating, which is a rating that applies 
to all elements that have been voted on.
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2.2 Graph Building 

The HodgeRank method involves building a complete graph with |V |. nodes that 
encodes information from our entire data set. In graph theory, a complete graph is a 
graph that has an edge connecting every pair of nodes. To build a graph that encodes 
the entire data set, we create one graph for each voter. 

Using the elements in Vα . as nodes, we form a complete graph for every voter 
where each node represents an element (see Fig. 1). Note in the example below that 
we replace the name of each symptom (fever, sore throat, cough, nausea) with letters 
(A, B, C, D), respectively. 

Let E denote the set of all edges. For every edge, we define an orientation by 
indiscriminately designating one node to be the sink node and the other to be the 
source node. To keep things simple, we let nodes that are indexed earlier be the 
source nodes (Fig. 2). 

The relationship between pairs of nodes is described with the pairwise compari-
son function, f α(i, j)., where α . is a voter. 

.f α(i, j) = R(α, j) − R(α, i) (1) 

We can now define one graph, G, pertaining to all voters’ data. G is a complete 
graph containing every alternative in V , so long as it has been voted on, as well as (|V |

2

)
. edges. 

Fig. 1 Complete graphs for patients 1–3. The letters represent symptoms as follows: A (fever), B 
(sore throat), C (cough), and D (nausea) 

Fig. 2 Patient 2’s graph with pairwise comparisons. The orientation and weights are defined by 
the pairwise comparison function. An example of how the score is calculated
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Fig. 3 The edge flow of the 
entire group’s graph based on 
the ratings in Table 1. The  
letters are symptoms. The 
orientation and weights are 
defined by the pairwise 
comparison function 

We should take into higher consideration pairs of elements that were voted on by 
many people. With this in mind, we define the weights for each edge as the number 
of voters who rated both alternatives: 

.ωij = |�ij | (2) 

where �ij . is the set of voters who rated both i and j . 
The edge flow of the entire group’s graph, f : V × V → R ., represents the 

average pairwise difference of each edge: 

.f (i, j) = 1

|�ij |
∑

α∈�ij

f α(i, j) (3) 

We show the edge flow of the aforementioned example in Fig. 3. 
Later in this paper, we’ll refer to the edge flow as the vectorized version of f , 

indexed by the set of edges E, such that f ∈ R|E|
.. 

2.3 Least Squares Problem 

Our goal is to find a universal rating r : V → R . that maps every element to its 
relative rating. By comparing r to the data processed in our graph, we can evaluate 
the efficacy of our rating. A good choice for r should agree highly with our edge 
flow, so for each pair of nodes, we aim to minimize 

.f (i, j) − (r(j) − r(i)) (4) 

We also take into account the number of voters who evaluated both i and j : ωij .. 
Edges corresponding to item pairs rated by many voters should be given greater
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weight than those rated by few. This handles the imbalanced nature of our data. 
Thus, we arrive at the function we use to judge the efficacy of any ranking r: 

.

∑

i,j∈V

ωij (f (i, j) − (r(j) − r(i))2 (5) 

Notably, multiplying by ωij . does not boost any element’s rating. Instead, it places 
more importance (or lack thereof) on the balance of f (i, j). and the difference of the 
universal ratings. 

2.4 Assessing Inconsistencies in the Graph 

In many data sets, there are contradictions in the graph; paradoxical cycles often 
arise in G, especially when each voter only reviews some of the elements in V . Let  
Fig. 4 be a graph processed using Hodge, where the values along the edges are edge 
flows. 

In Fig. 4, the edge flows suggest that element A should be scored lower than 
element B, which should be scored lower than element C, which should be scored 
lower than element A. This is paradoxical. Thus, defining a consistent global ranking 
becomes infeasible in such scenarios. In their paper proposing the HodgeRank 
algorithm, Jiang et al. [15] propose a method to quantify the extent of local 
inconsistencies in a vector, which we call c.. A detailed derivation of c. is not shown 
in this work, but for interested readers, we provide the basic algorithm in Sect. 2.6. 

For reference later in this paper, c. is indexed by C where C is the set of all 3-
cycles in the graph G. Similar to the set edges, we arbitrarily define an orientation 
for each 3-cycle in C. Also, we can observe that any paradoxical cycle of arbitrary 
length can be decomposed into a combination of 3-cycles since 3-cycles are the 
simplest type of cycle. Therefore, it is sufficient to only consider 3-cycles for any 
inconsistency in t he graph. 

Fig. 4 Example of edge 
inconsistency. The letters are 
voted elements. The 
orientation and weights are 
defined by the pairwise 
comparison function
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2.5 Hodge Decomposition 

In this section, we demonstrate how Hodge decomposition is used to show that it is 
possible to find a ranking r ∈ R|V |

. (where r. is the vectorized form of r indexed by 
V ) and local consistency c ∈ R|C|

. for any edge flow f ∈ R|E|
.. Local consistency 

means that any 3-cycles in the graph should not create contradictions with each 
other or the larger structure. 

First, we must define the boundary operators of the graph. 
The negative divergence, denoted by ∂1 : R|E| → R|V |

., is defined as 

. (∂1)ij =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if vi is the source node in ej ,

1, if vi is the sink node in ej ,

0, else.

Note that the divergence is simply ∂T
1 .. 

The curl, ∂2 : R|C| → R|E|
., is defined as 

. (∂2)ij =

⎧
⎪⎪⎨

⎪⎪⎩

1, if ei ∈ Cj with same orientation as Cj ,

−1, if ei ∈ Cj with same orientation as Cj ,

0, else.

The 1-Hodge Laplacian is L1 = ∂T
1 ∂1 + ∂2∂

T
2 .. Due to Hodge decomposition [3, 15, 

19], we can show the following: 

. R|E| = im(∂T
1 ) ⊕ ker(L1) ⊕ im(∂T

2 )

R|E|
. denotes the vector space of all edge flows in the graph. im(∂T

1 ). is the subspace 
of edge flows that are gradient flows of the score function. ker(L1). is the kernel 
of the Laplacian operator L1 . on edges. It corresponds to the space of harmonic 
edge flows that are both curl-free and divergence-free, representing equilibrium 
conditions in the graph. im(∂T

2 ). corresponds to the curl operator, the subspace of 
locally cyclic pairwise rankings with nonzero curls. 

Therefore, for any f ∈ R|E|
., we can find r ∈ R|V |

., c ∈ R|C|
., and xh ∈ ker(L1). 

such that 

. f = ∂T
1 r + ∂2c + xh

This shows that for any  f., one is able to find a ranking r. and a local consistency 
c.. An extensive explanation of Hodge decomposition can be found in Lim et al.’s 
work [19], with implementations demonstrated in [3, 15].
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2.6 Solving with Linear Algebra 

Using linear algebra, the minimization problem from Sect. 2.3 can be rewritten. 
First, let ω . be the vectorized version of ω. indexed by E. Using the negative 
divergence of the system, the minimization becomes 

. min
r∈R|�|

||f − ∂T
1 r||2W (6) 

where W ∈ R|E|×|E|
. is the diagonal matrix whose entries are ω.. 

Using some basic calculus, the minimization reduces to the following: 

.∂1W∂T
1 r = ∂1W f (7) 

The only unknown in this equation is r., so this is an Ax = b. problem. The matrix 
∂1W∂T

1 . is a well-studied matrix called the graph Laplacian, which has no inverse, 
so when solving for r., the pseudo-inverse must be taken. The time complexity of 
this operation is O(n3). where n = |V |.. 

Following a similar derivation, the solution of c. follows the same pattern. The 
minimization problem reduces to 

. min
c∈R|E|

||f − ∂2c||2W (8) 

Similarly, this reduces to 

.∂T
2 W∂2c = ∂T

2 W f, (9) 

This equation has one unknown, c., which can be solved with complexity O(n3)., 
where n = |E|.. 

It should be noted that while r. represents the universal ranking on the set of rated 
elements, c. represents the consistency of the graphical model created from the raw 
data. Thus, the two are calculated independently. 

2.7 Methods to Reduce Run Time 

The usability of this method is impacted by the potentially great computational run 
time. The most computationally expensive step of the method is taking the pseudo-
inverse of the graph Laplacian, which is an operation of order O(n3). where n is |V |.. 

There are a few established methods to reduce the cost of solving for r. in 
∂1W∂T

1 r = ∂1W f.. 
One is the algebraic multigrid (AMG) method, which lets x ∈ Rn

. be approx-
imated with linear complexity, O(n)., where x. is the only unknown in Ax = b.. 
Furthermore, the work can be done in parallel across multiple machines, making it 
an ideal choice for implementing HodgeRank when the number of elements to be
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ranked is very large. In short, the method is a successive subspace correction method 
that recursively partitions the solution space to approximate the best solution. More 
information can be found in the article by Falgout et al. [9], which introduces the 
method, as well as in more recent advancements of the adaptive AMG [14] and 
spanning tree-based AMG [13] for better convergence results. 

Tai et al. [22] detail a successive subspace correction method (SSC), which is a 
general convex optimization algorithm that decomposes the original problem into a 
number of smaller optimization problems. 

Additionally, there is a method created by Drineas et al. [7, 8], which employs a 
row sampling method to approximate large-scale matrix multiplication and reduce 
graph size. 

We introduce a new method in Sect. 3 that falls under the umbrella of dimensional 
reduction and is specifically suited to reduce the run time of the least squares solver 
on universal ranking problems. 

3 Grouping Method 

In this section, we propose an algorithm that reduces the computational cost of the 
method by reducing the size of the matrix that we take the pseudo inverse of. 

The key idea is that partitioning the data into smaller subsets can significantly 
reduce overall run time. An in-depth description of the method is given in the next 
section. 

3.1 Naive Ranking 

The first step in the grouping method is to obtain a naive ranking of elements, which 
we denote r0 : V → R .. Several strategies can be employed for this initial step.

• Arithmetic mean of rating: In this ranking, elements are ordered by their 
average rating. This is similar to sorting search results by “top rated”: 

.r0(i) =
∑

α∈�i
R(α, i)

|�i | (10)

• Arithmetic mean of edge flow: Here, r0 . is the result of averaging the edge flow 
between one node and every other node. The edge flow refers to f , which we 
defined in Eq. 3: 

.r0(i) = 1

|V |
∑

j∈V

f (j, i) (11)
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• Weighted arithmetic mean of edge flow: Here, r0 . is the average edge flow 
between one node and every other node weighted by ω.: 

.r0(i) =
∑

j∈V ωijf (j, i)
∑

j∈V ωij

(12) 

Defining the naive rank as the weighted arithmetic mean of the edge flow yielded 
better empirical results, as we include in the later section. We assume this is the 
case because it incorporates the edge flow and the edge weight, which are both key 
components of the final step of the HodgeRank. 

3.2 Splitting into Groups 

Next, we evenly split the group into k subgroups by their naive rank; that is, 
the highest-scoring elements and lowest-scoring elements are kept together. See 
expression (13) for an example where the elements in V , which are indexed by 
their naive ranking, are split into three s ubgroups: 

.V = [v1, v2, v3, v4, v5, v6, v7, v8, v9] �⇒
V1 = {v1, v2, v3}
V2 = {v4, v5, v6}
V3 = {v7, v8, v9}

(13) 

It is possible to run the HodgeRank on each of the groupings to achieve a 
universal rating, but doing so omits much data (see Fig. 5). 

To demonstrate this, we count the number of edges omitted. The graph that might 
be formed in the normal HodgeRank algorithm has n nodes and 

(
n
2

)
. edges. Splitting 

the elements into k groupings and building graphs for each of the groupings with 

�n
k
�. nodes results in a total of at most k

(� n
k
�

2

)
. edges. The number of edges that would 

be dropped is 

Fig. 5 Running the HodgeRank on smaller groups; all omitted edges in black
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. 

(
n

k

)
− k

(�n
k
�

2

)
≈ n(n − 1)

2
− n(n

k
− 1)

2
= n(n − n

k
)

2

Ideally, all edges should contribute to the final ranking. To resolve this issue, 
we introduce pseudo-nodes into each subgroup, which will be placeholders for 
subgroups connections to other subgroups. 

3.3 Adding Pseudo-nodes 

Let V be the set of elements and {V1, V2, . . . , Vk}. be the set of subgroups. Then, we 
let Wn . for n ∈ 1, 2, . . . , k . denote the set of nodes that HodgeRank will run on such 
that Wn = {v, Vm|v ∈ Vn,m 
= n}.. We modify the definitions of edge flow and edge 
weight to suit the introduction of subgroups as pseudo-nodes (see example in Fig. 6): 

.f (i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
|�ij |

∑
α∈�ij

f α(i, j)
∑

v∈i

[
1

|�vj |
∑

α∈�vj
f α(v, j)

]

∑
v∈i,u∈j

[
1

|�vu|
∑

α∈�vu
f α(v, u)

]
(14) 

.w(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

|�ij |
∑

v∈i |�vj |
∑

v∈i,u∈j |�vu|
(15) 

where the first situation for both Eqs. 14 and 15 is when i and j represent single 
nodes, the second situation is when i represents a subgroup and not j , and the third 
situation is when i and j represent subgroups.

Fig. 6 Groupings with pseudo-nodes; V1 . represents the elements in the first group {v1, v2, v3}., 
and similarly for V2 . and V3 .. Edges on the right represent all edges between respective nodes, 
with thicker edges representing more edges from the original graph. Pseudo-nodes represented by 
squares
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Fig. 7 Universal ranking from grouping method. Note that pseudo-nodes are omitted from the 
final ranking 

Finally, HodgeRank is executed independently on each Wn ., yielding k rankings. 
We achieve our final ranking by stacking the groupings’ rankings on top of each 
other according to their order from the naive rank (see example in F ig. 7). 

4 Results 

To test the grouping method, we used the IMDb movie data set [1]. The accuracy 
of a rating found using HodgeRank with grouping is measured by its similarity to 
the ranking found using the original HodgeRank algorithm. We employ the rank-
biased overlap (RBO) [23], which we detail later in the paper. Finally, from our 
experimentation, we discuss how to pick the best group size by balancing accuracy 
and run time. 

4.1 Data 

For our experimentation, we used the IMDb movie data set, which is a collection of 
IMDb movies updated on 27 December 2020 including their UserID, MovieID, and 
ratings collected by Vahid Baghi and uploaded to IEEE Dataport [1]. The data set 
offers 4,669,820 ratings from 1,499,238 users to 351,109 movies. 

4.1.1 Preprocessing 

Since the HodgeRank algorithm uses pairwise differences to build edge flows in 
the graphs, inspired by how Page et al. [20] handled dangling links by removing 
them, we first filter out users who have only voted for one movie, since the user
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subgraph would only be one node. To ensure all the movie ratings are statistically 
meaningful, we also filter the movies by requiring they get ratings from at least two 
different users. 

Then, we derive the diagonal weighted matrix W and the negative divergence 
matrix ∂1 . based on the HodgeRank with the selected movies and the users who 
rated them. We define the edge flows f. according to the ratings that are related 
to the filtered movies. We formulate the matrix L = ∂1W∂T

1 ., which is the graph 
Laplacian, and b = ∂1W f., which is the right-hand side in Eq. 7. The largest 
connected component of the graph Laplacian in the IMDb movie data set is taken 
out and analyzed. After filtering, the set contains a total of 62,917 movies, including 
29,945 movies that were rated by at least two people in this set. To test the grouping 
method outlined in Sect. 3, we also select different sizes of graphs corresponding 
to different divides of MovieID ranging from 1000 to 20,000 and only maintain the 
largest connected component of the subgraph. Thus, we can test the performance of 
the proposed algorithm on various sizes n for its robustness and accuracy. Finally, 
we produce the ranking r. by solving each small HodgeRank linear system Lr = b. 

using AMG, as suggested in the paper by Colley et al. [3], which implements AMG 
directly with HodgeRank. 

4.1.2 Organizing by Popularity 

Figures 8 and 9 present breakdowns of the number of voters per the n’th most 
popular movie. Upon running the grouping method on the IMDb data set, we 
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Fig. 8 Average number of voters for first n most-rated movies (all movies)
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Fig. 9 Average number of 
voters for first n most-rated 
movies (top 10,000 movies) 
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observe that the average number of voters varies significantly across the data set. 
The most-rated movie has 1441 total reviews, while the least-rated movie receives 
around 5 reviews. This imbalanced data set motivates us to organize the data set 
by popularity before truncating them into different sizes. We believe that the most-
rated movies contain more information across the different users and potentially 
help preserve the accuracy of the approximated rankings. 

4.2 Computing Environment 

The numerical tests are conducted with a 1.80 GHz Intel Core i7-8550U CPU, a 
quad-core processor, and 16 GB of RAM. 

4.3 Accuracy 

To evaluate ranking accuracy, we employ the rank-biased overlap (RBO) statistical 
method [23] to compare our approximated rankings resulting from the grouping 
method with the traditional HodgeRank ranking. RBO is a similarity measure for 
ranked lists, which takes into account the position of items in ranked lists. Therefore, 
it is a more appropriate measure of ranking similarity than Kendall rank correlation 
coefficient (Kendall’s tau) [17], which scores similarity of two rankings through 
pair-wise concordance of elements found in both lists. RBO uses weights for each 
rank position, which are derived from a convergent series. The goals of RBO
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are to handle non-conjointness, weight high ranks more heavily than low, and be 
monotonic with increasing depth of evaluation: 

. RBO(S, T , p) = (1 − p)

∞∑

d=1

pd−1Ad

where S and T are two distinct ranked lists and d is the depth of the list. Ad . is the 
agreement between S and T by the proportion of the overlap size over the depth, 
essentially XS,T ,d

d
., where Xd = |IS,T ,d |. such that I is the intersection between 

the subset of lists S and T such that each subsetted list contains the top d ranked 
elements. 

The parameter p represents the steepness of decline in weights. For example, a 
smaller p indicates a more t op-weighted metric. 

The RBO score falls into the interval of [0, 1], where 0 means disjoint (i.e., no 
correlation) and 1 means identical (i.e., perfect correlation). 

The following is our derivation of RBO, which changes the infinite summation 
into a finite one. Starting from the original RBO, we have 

. RBO(S, T , p) = (1 − p)

∞∑

d=1

pd−1Ad

Taking data up to some finite depth of k, we have  

. RBOtruncated(S, T , p, k) = (1 − p)

k∑

d=1

pd−1Ad

To account for the ranks beyond k, we assume that the pattern observed up to depth 
k continues. Let Xk = ∑k

d=1 Ad . be the cumulative agreement up to depth k. Then, 
the average agreement up to depth k is Xk

k
., which we assume that it holds for all 

depths beyond k as well. Therefore, the agreement beyond k can be written as 

. RBObeyond(S, T , p, k) = (1 − p)

∞∑

d=k+1

pd−1 · Xk

k

Using geometric series, we obtain 

.

∞∑

d=k+1

pd−1 = pk
∞∑

d=0

pd = pk

1 − p
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Fig. 10 The effect of the number of groups on ranking accuracy 

We can rewrite the agreement beyond k as the follo wing: 

. RBObeyond(S, T , p, k) = Xk

k
· pk

We can combine with the truncated RBO: 

. RBO(S, T , p, k) = Xk

k
· pk + (1 − p)

k∑

d=1

pd−1Ad

Letting Ak = Xk

k
., we have  

. RBO(S, T , p, k) = Akp
k + (1 − p)

k∑

d=1

pd−1Ad

Figure 10 shows higher RBOs when very few groups are assigned for the trials 
with 1000, 2000, 4000, 5000, and 10,000 movies. This is expected, as when group 
size k = 1., it is essentially applying the HodgeRank algorithm on some most-
rated movie subsets, and the ranking should be highly correlated to the HodgeRank 
ranking on the entire movie set. As the number of groups k grows, the RBO scores 
for all sets drop and most of them converge to around 0.4. This is because, as k 
grows to the size of the movie set, the ranking would reflect the naive rank instead 
of the HodgeRank, resulting in a low RBO score with the HodgeRank.
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Another observation is that when the movie set size is smaller (e.g.,n = 1000.), 
increasing the group number k does not seem to drop the RBO by a lot. This likely 
occurs because the group with 1000 movies has more movies that were rated by 
more people than the other sets. The accuracy of the proposed grouping method 
hinges on the comparison of ratings among distinct movie groups. Consequently, 
when a movie has ratings from users spanning diverse groups, the edge flows across 
these groups become more representative, culminating in a higher overall rating 
accuracy . 

Overall, the rankings found using the grouping method show a high correlation 
with the ranking found using just the HodgeRank. As we see in the next section, the 
run time is greatly reduced by using groupings. 

4.4 Run Time 

First, we calculate the theoretical time complexity for this method and recommend 
a general formula for selecting the optimal number of groups. 

Since the most computationally expensive step in both algorithms is taking the 
pseudo-inverse, we focus on this operation. The complexity of directly computing 
the pseudo-inverses during HodgeRank with grouping is 

.O(k(
n

k
+ k − 1)3) (16) 

Here, n
k

+ k − 1. is the number of nodes including the pseudo-nodes in each group, 
and directly solving this group’s pseudo-inverse is O(n

k
+ k − 1)3

.. Since we have to 
solve it for all k even groups, O(k(n

k
+ k − 1)3). is the total complexity. 

The selection of k gives us freedom in balancing accuracy and efficiency. As 
mentioned before, when k is small, the ranking algorithm is more similar to 
HodgeRank and takes more time. However, a large k results in a fast naive ranking. 
When the item set is relatively small and accuracy is the priority, we recommend 
using as few groups as possible, with two groups being ideal, while maintaining 
a sufficiently small run time. As the number of items being ranked increases, it 
may not be feasible to compute the universal ranking with two groups; thus, we 
generally recommend using k = log21(n)., where k is the number of groups. This 
recommendation comes from our empirical observation of the group size, which 
will balance high conformance to the original ranking with feasible compute times; 
however, it is recommended to use the least number of groups as their computational 
resources allow . 

Plugging our recommended k into Eq. 16, the run time of approximating the 

ranking drops from O(n3). to O( n3

log2
21(n)

)., even when using a direct solve.
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Fig. 11 Sample size versus time 

Using the IMDb movie rating data set, we obtained the following run times. All 
run times are measured on trials where k = 2., which gave the most accurate results. 
One can increase the group size k for more robust approximations. 

As Fig. 11 shows, the run times of all trials, which used the grouping method, 
took less than an hour to run, whereas the longest run time for the original 
HodgeRank algorithm is 13.85 hours, for 10,000 movies. 

In our pre-processing, we used the n movies that were voted on by the greatest 
number of people for evaluation of HodgeRank with grouping, where n is the sample 
size. Thus, as sample sizes become bigger, the resulting graphs are more and more 
sparse. Although the sparsity of our graph may be negatively correlated with run 
time improvements, we clearly see that the most sparse data set we tested on (sample 
size = 10,000.) saw major improvements in run time. 

5 Conclusion 

HodgeRank is an algorithm that provides a ranking on data sets that may feature 
bias and incompleteness. It also offers a metric for judging the correctness of the 
ranking as well as a quantization of inconsistencies in the graph. 

We propose a new group-based method to decrease time complexity while 
upholding ranking integrity. This approach entails segmenting the set into distinct 
groups to diminish the matrix inversion’s dimensionality. Concretely, we achieve 
fast ranking through naive ranking methods, partition the item sets into groups 
guided by the naive ranking, and introduce pseudo-nodes to each subgraph to retain
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cross-group connections. This strategy effectively dissects the extensive Laplacian 
system generated by the HodgeRank algorithm into more manageable components, 
each amenable to efficient processing. 

The proposed grouping method introduces a group size parameter k, which 
controls whether the resulting ranking is more similar to the HodgeRank or the 
naive rank. When choosing a smaller group size k, the grouping method yields a 
ranking that is highly correlated to the original HodgeRank while decreasing its run 
time. When setting k at a higher value, the resulting ranking is closer to the naive 
rank, which drifts away from the HodgeRank results. The choice of k represents the 
balance between accuracy and efficienc y. 

Since the grouping method is meant to address issues with data sets with many 
elements, we theoretically analyzed its run time and showed that the complexity of 
direct solving the least squares is reduced from O(n). to O(k(n

k
+ k − 1)3)., where n 

is the number of rated items and k is the number of groups. Picking a good number 
of groups is important to reduce runtime while maintaining accuracy; for n nodes, 
we found that a practical number is k = log21 n. to yield better numerical results. 

Further work on the grouping method might address the issue of edge cases, 
where nodes that are sorted into the wrong tier at the start cause errors in the 
final ranking. Splitting up the groups in a more sophisticated way, such as adaptive 
splitting and groups with overlapping elements instead of evenly splitting, may help 
address this issue. Additionally, it would be interesting to look into the performance 
and run time of embedded groupings for data sets with a great number of elements. 
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A Comparison Study of Graph Laplacian 
Computation 

Michela Marini, Haiyan Cheng, Cristina Garcia-Cardona , Weihong Guo, 
Sara Hahner, Yuan Liu, Yifei Lou, and Sui Tang 

1 Introduction 

In recent years, graph signal processing has become popular in many data-driven 
applications [4, 8, 15, 18, 22, 23], offering a versatile framework for representing and 
analyzing relationships within complex datasets. By using nodes to signify entities 
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and edges to denote connections between them, graphs can model a wide array of 
structures, from social networks and biological systems to transportation grids and 
recommendation engines. 

Consider a collection of data points {xi}ni=1 ⊆ R
ν
., where n is the number 

of points and ν . is the dimension of each feature vector. One constructs a graph 
G(V,E). by treating each point as a vertex vi ∈ V ., i = 1, . . . , n., and E an edge 
connectivity representing specific relations between vertices. E can be represented 
by a matrix, called an adjacency matrix. Specifically, for a graph with n nodes, 
the adjacency matrix, denoted by A,  is  an n × n. matrix where each element aij . 

indicates whether there is an edge from node i to node j..The value of aij . is typically 
either 1 (indicating the connection) or 0 (no connection). A generalization of the 
adjacency matrix is a similarity matrix W associated with a weighted graph where 
each edge is characterized by a real weight wij . representing application-specific 
meanings, usually a measure of how similar nodes i and j are. This paper focuses 
on an undirected and unsigned graph corresponding to a symmetric and nonnegative 
weight function, i.e., wij = wji ≥ 0,∀1 ≤ i, j ≤ n.. 

The graph Laplacian, derived from the similarity matrix of a weighted graph, 
is a fundamental tool in spectral graph theory [11]. Let the degree matrix D be 
a diagonal matrix where each diagonal element is defined by dii = ∑

j wij ..  The  
unnormalized graph Laplacian L, defined as L = D − W ., encapsulates important 
structural properties of the graph, such as connectivity and the presence of clusters. 
For data science applications, it is widely recognized [4, 18] the computational and 
performance advantages of deploying the symmetric normalized Laplacian, which 
is defined as 

.Ls = I − D−1/2WD−1/2 . (1) 

The eigenvalues and eigenvectors of Ls . are particularly useful, providing insights 
into graph partitioning [9], clustering [4, 19, 22, 26], machine learning [8, 13], and 
the behavior of diffusion processes on the graph [10]. 

However, it is computationally intensive to obtain the similarity matrix and 
the graph Laplacian, often becoming a bottleneck in dealing with “big data.” 
Specifically, the computational complexity of constructing a graph Laplacian is of 
the order O(n2)., making it intractable when n is extremely large. In addition, when 
the graph Laplacian is used in certain applications [4, 23], the eigendecomposition 
and/or singular value decomposition (SVD) is often required, which is in the 
computational complexity of O(n3).. Consequently, accelerating the construction 
of the graph Laplacian together with its decompositions is essential for handling 
large-scale graph-based applications. 

This paper studies three methods to approximate Ls .. The first method, called K-
nearest neighbors (KNN), involves creating a sparse approximation by computing 
a small number of pairwise weight functions for each node, resulting in a sparse 
matrix. The other two methods focus on low-rank approximations and are called 
Nyström method [14] and its variant using the QR decomposition [6]. Our empirical 
evaluation of the methods yields the following observations:
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• Nyström methods (the original one and its QR-based variant) provide good 
approximations to the eigendecomposition of the Laplacian for the fully con-
nected graph while considerably reducing computation times since they require 
computations for only a handful of samples in the dataset. This is observed in 
both benchmarks and high-dimensional datasets. 

• Both Nyström-based methods are particularly advantageous when an eigen-
decomposition is required for downstream tasks, as they provide efficient 
algorithms for computing accurate approximations without increasing time 
demands. 

• The KNN method provides an excellent approximation to the Laplacian of the 
fully connected graph (given that the similarity metric is sufficiently smooth), 
but requires computations over the entire dataset, which can become intractable 
for datasets with a large number of nodes. 

The rest of the paper is organized as follows. Section 2 provides a brief review 
of the methods: KNN, Nyström , and QR-based Nyström . We then investigate the 
performance of these approximations in Sect. 3 in terms of accuracy to approximate 
the fully connected graph, computational time, and efficiency in applications of 
classification, clustering, and CT reconstruction. Finally, the conclusions are given 
in Sect. 4. 

2 Method Review 

A fully connected weighted graph can be represented via a dense weight matrix 
W of dimensions n × n., where every pair of nodes is connected with an assigned 
similarity value. In this work, we use the Gaussian similarity metric, where each 
weight entry is defined as 

.wij = exp

{
−d(xi , xj )

2

2σ 2

}

, i, j = 1, . . . , n, (2) 

with d(xi , xj ). being the Euclidean distance between the two samples (i.e., vertices) 
xi . and xj ., which can be computed as dE(xi , xj ) = ‖xi − xj‖2 ., i.e., the conventional 
measure for calculating the distance between two points in the Euclidean space. 
Note that σ > 0. controls the smoothness of the similarity metric, providing more 
drastic differences when its value is small and more gradual transitions when its 
value is large. Note that the diagonal element wii = 1. follows the definition in 
Eq. (2), which is reasonable due to self-similarity. 

When dealing with big data, e.g., hyperspectral data where the number of 
pixels in the image could be in the order of 106 ., the weight matrix presents 
computational challenges and requires significant storage space. We review three 
ways to approximate the weight matrix, namely, K-nearest neighbor [12], Nyström 
method [14], and QR-based Nyström decomposition [6]. In the experimental 
section, we compare their performance in terms of accuracy and efficiency.
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2.1 K-Nearest Neighbor Graph 

The K-nearest neighbor (KNN) graph is frequently used in machine learning and 
data analysis, particularly in pattern recognition, classification, and clustering tasks 
[24, 27, 29]. As the name suggests, KNN constructs a graph by connecting each 
node to its K-nearest neighbors based on a chosen distance metric. To do this, one 
must first determine an appropriate distance metric and select a value for K . 

For each data point, a distance metric is computed between this point and the 
other points, followed by Eq. (2) to obtain the similarity measures between any pair. 
Subsequently, weights are only stored for the K-nearest neighbors, corresponding 
to the K largest similarity values. This process results in a sparse weight matrix W 
with each row having at most K(� n). nonzero elements. 

The naive KNN does not guarantee a symmetric matrix, since the node i being 
in the top K neighbor of j does not entail j being in the top K neighbor of i.. To 
make the weight symmetric, we adopt a simple approach by taking the average of 
the weight and its transpose, i.e., W ← 1

2 (W + W
).. Another alternative is the 
mutual KNN [20], which is out of the scope of this paper. 

2.2 Nyström Method 

To reduce the time/space complexity, Fowlkes et al. [14] proposed the Nyström 
method to approximate the eigenvalues and eigenvectors of W ∈ Rn×n

. by using 
only p sampled data points with p � n.. Up to permutations, we adopt a block-
matrix form to represent the weight matrix W as follo ws: 

.W =
[
W11 W12

W21 W22

]

, (3) 

where W11 ∈ Rp×p
. is the weight (similarity) matrix between the sampled data 

points, W12 = W

21 . is the one between the sampled points and the unsampled points, 

and W22 . is the one between the unsampled points. The idea of Nyström extension 
is to approximate the matrix W and its corresponding normalized graph Laplacian, 
Ls . defined in Eq. (1),  using W11 . and W12 ., thereby avoiding the computation of the 
relatively large matrix W22.. Since the matrix Ls . involves the degree matrix, we 
begin by normalizing W so that its degree matrix becomes the identity. In particular, 
we define a m atrix 

.W =
[
W11 W


21
W21 W21W

−1
11 W


21

]

, (4) 

and its row-sum vector in a block form:



A Comparison Study of Graph Laplacian Computation 175

. 

[
d1
d2

]

= W1n =
[
W11 W


21
W21 W21W

−1
11 W


21

] [
1p

1n−p

]

,

where 1k . denotes the k-dimensional all one vector. Denoting s1 = √
d1 . and s2 =√

d2 ., we can normalize the matrices W11 . and W21 . by 

.W̃11 = W11 � (s1s
1 ) W̃21 = W21 � (s1s
2 ), (5) 

where �. denotes the componentwise division. In the same block format as W,. we 
define 

.W̃ =
[
W̃11 W̃


21
W̃21 W̃21W̃

−1
11 W̃


21

]

. (6) 

By definition, the degree matrix corresponding to W̃ . becomes the identity, and the 
symmetric normalized graph Laplacian becomes 

.L̃s = I − W̃ . (7) 

Next, we describe the SVD of W . and use it to represent the symmetric 
normalized graph Laplacian L̃s ..We assume W̃11 . is positive definite (by choosing a 
proper value of σ . in Eq. (2)); then it is invertible and we further denote W̃

1/2
11 . as its 

square root. We can express W̃ . in the following way: 

. W̃ =
[
W̃11

W̃21

]

W̃−1
11 [W̃11 W̃


21]

=
{[

W̃11

W̃21

]

W̃
−1/2
11 U�−1/2

}

�

{

�−1/2U
W̃
−1/2
11 [W̃11 W̃


21]
}

, (8) 

for any diagonal matrix � . and unitary matrix U,. both of which can be determined 
by the requirement that V 
V = I .with 

. V :=
[
W̃11

W̃21

]

W̃
−1/2
11 U�−1/2.

We elaborate on this requirement by expressing it into 

. I = V 
V =
{

�−1/2U
W̃
−1/2
11 [W̃11 W̃


21]
}{[

W̃11

W̃21

]

W̃
−1/2
11 U�−1/2

}

.

Multiplying the above equation from the left by U�1/2
. and from the right by 

�1/2U

. yields
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. U�U
 = W̃11 + W̃
−1/2
11 W̃


21 W̃21 W̃
−1/2
11 ,

which implies that U and � . can be obtained by the SVD of the matrix W̃11 +
W̃

−1/2
11 W̃


21W̃21W̃
−1/2
11 .. In summary, we have W̃ = V �V 


.with V 
V = I.. 

Using the SVD of W̃ ., we further approximate L̃s ., defined in Eq. (7),  b  y  

.L̃s ≈ V (I − �)V 
 = V �V 
, (9) 

with � = I − � .. This is an approximation, as V V 

. is generally not the identity 

matrix. An improvement, originally suggested in [7], is to use the decomposition 
to approximate I − Ls . instead, i.e., L̃s ≈ I − V �V 


.. We denote this alternative 
approximation as Nyström (I − Ls .). In Sect. 3, we compare the performance of the 
two Nyström-based alternatives to compute L̃s . through numerical experiments. 

Overall, the Nyström approach significantly reduces the computational costs by 
computing pairwise similarities only for a subset of the dataset, resulting in the 
computational complexity and storage requirements of O(n). instead of O(n2).,  as  p 
is negligible compared to n. 

2.3 QR-Based Nyström Decomposition 

The Nyström method requires W̃11 . to be positive definite so that its square root is 
well-defined in Eq. (8) to calculate the SVD of the corresponding normalized graph 
Laplacian. If W̃11 . is indefinite, Fowles et al. [14] provided a feasible solution based 
on [3], but unfortunately, this approach incurs additional computational cost and is 
prone to numerical errors. 

Inspired by the work of [1] that used a recompression technique in [2]  for  
computing a fully connected graph Laplacian, Budd et al. [6] employed the 
QR decomposition instead of SVD when approximating the normalized graph 
Laplacian. Specifically, we consider the thin QR decomposition of 

.

[
W̃11

W̃21

]

= QR, (10) 

where W̃11 . and W̃12 . are obtained in Eq. (5), Q ∈ Rn×p
. is orthonormal, and R ∈

R
p×p

. is upper triangular. Then, we have the eigendecomposition: 

.RW̃−1
11 R
 = ���
, (11) 

where � ∈ Rp×p
. is orthonormal and � ∈ Rp×p

. is diagonal. We define � = Q�., 
which is orthonormal and adopt the following eigendecomposition of the symmetric 
normalized Laplacian:
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Table 1 The computational complexity for KNN and Nyström methods for obtaining a normal-
ized graph Laplacian of size n × n., with K as the internal parameter for KNN and p for both 
Nyström methods 

Method Complexity 

KNN O(Kn). 

Nyström O(np2 + p3). 

QR O(n2p + p3). 

.Ls ≈ �(I − �)�
 = ���
. (12) 

Please refer to [2, 6] for more details. 
Similar to the Nyström case, the decomposition can be used to approximate I −

Ls . instead, i.e., Ls ≈ I − ���

.. We denote this alternative approximation as QR 

(I − Ls .). In Sect. 3, we compare the performance of the two QR-based alternatives 
to compute L̃s . through numerical experiments. 

2.4 Summary 

The choice of method depends on the specific requirements of the task, such as the 
size of the dataset, the desired accuracy, and the available computational resources. 
KNN is a simple and intuitive method for computing the weight matrix. It is 
effective for processing data with a clear local structure, but it can be sensitive to 
the choice of K and less effective for large, nonuniform datasets. Both Nyström 
methods can achieve good approximations for the symmetric normalized graph 
Laplacian with a relatively small number of columns, though random selection 
can sometimes lead to poor performance. The QR variant of the Nyström method 
enhances numerical robustness in the approximation but comes with higher com-
putational costs compared to the standard Nyström method. The computational 
complexity of each method is provided in Table 1. 

3 Numerical Experiments 

We conduct numerical experiments on two benchmark datasets and one high-
dimensional dataset to evaluate the efficacy of three graph Laplacian computation 
approaches, including KNN, Nyström, and QR-based Nyström (QR in short). The 
two benchmark datasets are obtained from the Scikit-learn library [21], while a 
high-dimensional dataset is the low-dose CT dataset [17] as processed for CT 
reconstruction in [28].
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3.1 Benchmark Datasets 

We use two benchmark datasets from Scikit-learn, namely, the two-moon and digits 
datasets. For each dataset, we compute (i) a fully connected graph with Gaussian 
similarity for the weight matrix W defined in Eq. (2), (ii) the symmetric normalized 
Laplacian Ls . defined in Eq. (1), and (iii) the corresponding eigendecomposition via 
the eigh function of the linalg utilities of the NumPy Python package. This matrix 
Ls . and its eigendecomposition become the ground truth with respect to which the 
performance of the methods is evaluated. We compare the performance of the three 
aforementioned methods, including the variant of approximating (I − Ls)..  Note  
that KNN computes a sparse approximation to the weight matrix W,. followed by 
the symmetric normalization to obtain the graph Laplacian Ls .. In this case, we 
again compute the corresponding eigendecomposition via the eigh function of the 
linalg utilities of NumPy. In contrast, Nyström and QR-based Nyström directly 
compute an eigendecomposition of Ls .. 

The results reported include a comparison of the eigendecomposition obtained 
for each method, approximation errors, computation times, and accuracy obtained 
for unsupervised (clustering) and supervised (classification) tasks using the eigende-
composition as a pre-processing step. For the eigendecomposition, we report results 
obtained under different σ 2

. values in Eq. (2) to reveal a stability issue in the original 
Nyström method. For the remaining comparisons, we examine two values of σ 2

., 
and for each value, we vary the number of neighbors (K). in KNN and the number 
of sample data points (p). in Nyström methods. For each combination of parameters, 
we report mean and standard deviations over 30 repetitions of the whole processing 
pipeline, consisting of the following steps: 

1. Generate data. 
2. Split into training (70%) and testing (30%) partitions. 
3. Construct Laplacians and their eigendecompositions using the training partition. 
4. Evaluate clustering accuracy (over training partition). 
5. Evaluate classification accuracy (over testing partition). 

Approximation Error The approximation error is computed in terms of the 
relative Frobenius distance: 

.Er = ‖L̂s − Ls‖F

‖Ls‖F

, (13) 

where Ls . is the ground truth, i.e., symmetric normalized Laplacian for the fully 
connected graph, and L̂s . is the approximation, which, as a reminder, corresponds 
to 

• KNN: L̂s = I − D̃1/2W̃ D̃1/2
., with W̃ . the similarity matrix including only 

K-nearest neighbors. 
• Nyström: L̂s = V �V 


., computed using p sampled data points. 
• Nyström (I − Ls).: L̂s = I − V �V 


., computed using p sampled data points.
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• QR-based Nyström: L̂s = ���

., computed using p sampled data points. 

• QR-based Nyström (I − Ls).: L̂s = I − ���

., computed using p sampled 

data points. 

Computation Time Computation times reported were obtained on a 2.4 GHz 8-
Core Intel Core i9 MacBook Pro. 

Clustering Accuracy We use spectral clustering [26], i.e., K-means over the 
eigenvectors of Ls ., as an unsupervised graph-based method to partition data into 
clusters. In each case, we only select a handful (5–25) of the top eigenvectors 
(i.e., the eigenvectors associated with the 5–25 smallest eigenvalues of matrix Ls .). 
Since this is an unsupervised method, we do not make use of the class labels. To 
evaluate the accuracy, we only use the training data (i.e., the data used to build the 
graph Laplacian) and make use of the Scikit-learn [21] rand_score metric, which 
computes the rand index, a similarity measure between two clusterings based on 
“considering all pairs of samples and counting pairs that are assigned in the same or 
different clusters in the predicted and true clusterings. ” 

Classification Accuracy We apply the support vector machine (SVM) technique 
for classification [16] using the Scikit-learn [21] functionality. SVM classification 
is a supervised learning algorithm that tries to find a maximum margin separating 
hyperplane, i.e., a hyperplane that separates the classes and has the maximum 
distance between data points in disparate classes. Instead of using the data points 
in the original domain, we project them onto a subspace defined by the eigenvectors 
of a Laplacian matrix, i.e., X̃ = XU
,.where X is a matrix with rows corresponding 
to the data points and U is the matrix that is composed of eigenvectors of Ls ..  We  
only use a subset of eigenvectors corresponding to the dimensionality of the data. 
In this way, we can project both training and testing partitions. We also use a linear 
kernel, to evaluate the usefulness of the eigendecomposition as a pre-processing 
mechanism. To evaluate the accuracy, given that we know the true labels, we use 
the testing data and make use of the Scikit-learn accuracy_score metric, which 
computes the fraction of correctly classified samples. 

3.1.1 Two -Moons Dataset 

The two-moons dataset comprises a total of 2000 samples. Each sample is a point 
in a 2D plane, following the arch of a moon. As shown in Fig. 1, the dataset is 
divided into two classes, purple and yellow points, each containing 1000 samples. 
Additionally, each class comprises 500 points where the true moon samples have 
been perturbed with a 10% noise level, and another 500 points where the true moon 
samples have been perturbed with a 20% noise level.
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Fig. 1 Two-moons dataset 
from one random realization 
of the noise distribution. Each 
sample is a 2D vector 
belonging to one of two 
classes: either purple or 
yellow 

Fig. 2 Eigenvalues of the 
symmetric normalized 
Laplacian obtained by KNN 
(K = 10). and Nyström 
methods (p = 250). on the 
two-moons dataset with 
σ 2 = 0.01.. Note that 
Nyström methods completely 
overlap and only QR, which 
lays on top of original 
Nyström, is visible in the 
plots 

Eigendecomposition 

Figure 2 compares the eigenvalues obtained by the three methods with σ 2 = 0.01,. 
K = 10. nearest neighbors for KNN and p = 250. sampled points for both 
Nyström methods. It is clear that all the eigenvalues approximate the ones for the 
fully connected graph (labeled by “Full” in Fig. 2). The inset is included to remark 
that Nyström methods produce a rank p approximation to the eigendecomposition, 
thereby making only p eigenvalues available for these methods. Similarly, Fig. 3 
compares the Nyström and Nyström (I − Ls). approximations (left) as well as QR 
and QR (I − Ls). approximations (right). Both methods with two approximation 
variants display a good agreement with the eigenvalues of the fully connected graph. 

We then examine the top three eigenvectors (i.e., the eigenvectors associated with 
the smallest eigenvalues) of Ls . obtained by all the methods in Fig. 4. As the original 
two-moons data is in 2D, we can plot the distribution of the training set in the x-y 
plane and color each point according to the value of a specific eigenvector. The row 
ordering of the input data X establishes the row correspondence to the eigenvector 
components. Note that the first eigenvector (first row), in which Ls . is related 
to the normalized degree [26], remains consistent between fully connected graph 
and Nyström approximations. In contrast, it remains almost constant for KNN, as 
expected, since the normalized degree should be similar for graphs with the same 
number of nearest neighbors. Likewise, Fig. 5 compares the Nyström , Nyström
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Fig. 3 Eigenvalues of the symmetric normalized Laplacian obtained by Nyström methods (p =
250). on the two-moons dataset with σ 2 = 0.01.. Note that the methods completely overlap and 
only (I − Ls). variants, which lay on top of the direct Ls . approximation, are visible in the plots 

Fig. 4 Top three eigenvectors of the symmetric normalized Laplacian obtained by KNN (K = 10). 
and Nyström methods (p = 250). on the two-moons dataset with σ 2 = 0.01. 

(I − Ls)., QR, and QR (I − Ls). approximations, showing a good agreement among 
these methods. In summary, Figs. 4 and 5 illustrate that, aside from sign differences 
in the eigenvectors, all the Nyström variants produce a good approximation to 
the first eigenvectors. The KNN method, on the other hand, produces much more 
localized patterns. The errors in the approximations given by Eq. (13) are 0.127935 
for KNN, 0.927003 for Nyström , 0.022307 for Nyström (I − Ls)., 0.926823 for 
QR, and 0.021647 for QR (I − Ls).. From these error estimations, it is clear that the 
(I − Ls). variant of the Nyström methods produces much better approximations to 
the full symmetric normalized Laplacian than the direct Ls . approximations. 

We investigate the eigenvalues obtained by the competing methods under 
different values of σ 2

.; specifically, σ 2 = 0.005, 0.01, 0.07. and 0.1. are considered 
in Fig. 6, showing that the smaller σ 2

. is, the larger error to the fully connected 
graph is made by the Nyström approximations. For simplicity, we omit the (I −Ls). 

approximation variants from Fig. 6, because they fall on top of the graphs for the
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Fig. 5 Top three eigenvectors of the symmetric normalized Laplacian obtained by Nyström 
methods (p = 250).with the two approximation variants on the two-moons dataset with σ 2 = 0.01. 

2 = 0.005 2 =  0.01  

2 =  0.07  2 =  0.1  

Fig. 6 Eigenvalues of the symmetric normalized Laplacian obtained by KNN (K = 10). and 
Nyström methods (p = 250). on the two-moons dataset under different values of σ 2 .. Note that 
Nyström methods completely overlap and only QR, which lays on top of original Nyström , is 
visible in the plots
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Table 2 Comparison of the approximations errors, i.e., Er . defined in (13), made by KNN ( K =
10.) and Nyström method (p = 250.) on the two-moons dataset under different values of σ 2 ..  NaN  
indicates that the original Nyström method fails at σ 2 = 0.1. when the submatrix W11 . is not 
positive definite 

σ 2 . 

Method 0.005 0.01 0.07 0.1 

KNN 0.180776 0.127935 0.066262 0.058065 

Nyström 0.940897 0.927003 0.911308 NaN 

Nyström (I − Ls). 0.068371 0.022307 0.000006 NaN 

QR 0.941037 0.926823 0.911150 0.910177 

QR (I − Ls). 0.069773 0.021647 0.000008 0.000005 

direct Ls . approximation when plotted. On the other hand, both variants of the 
original Nyström method fail for larger values of σ 2,. e.g., σ 2 = 0.1. and p = 250. 
used here, as the submatrix W11 . is not positive definite. Note that both QR-based 
variants succeed in this case. Table 2 records the approximation errors for these four 
values of σ 2

.. Note that, in general, the (I − Ls). variants yield better approximation 
results. 

Approximation Errors 

The approximation errors with respect to a range of K-nearest neighbors in KNN 
and p sampled data points in both Nyström methods, using both approximation 
variants, are plotted in F ig. 7 for σ 2 = 0.01. and σ 2 = 0.07.. The results are averaged 
over 30 random trials. Since the ranges of K and p are different, the plots include 
two x-axis: the top one in red corresponds to the K values for KNN, while the 
bottom one in black corresponds to the p values for Nyström methods. Figure 7 
clearly illustrates that the approximation given by the Nyström methods improves 
as the number of sample points p increases. It also shows that the Nyström method 
does not converge for larger values of p, where only results for p ≤ 250. can be 
computed. Since the original Nyström and QR mostly overlap, it is difficult to 
observe the lack of convergence of the original Nyström from these error plots. 
However, the other plots, especially Fig. 9, make this observation more apparent. 
The approximation errors for the KNN method are generally smaller than the 
Nyström methods (for the direct Ls . approximation) and are relatively independent 
of K . The Nyström methods that approximate (I − Ls). produce smaller errors, 
compared to KNN. The performance of Nyström methods on downstream tasks 
involving the eigendecomposition is better than the KNN method as shown in Figs. 9 
and 10.
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Fig. 7 Error in Ls . approximation for KNN as a function of K (top axis) and Nyström methods 
as a function of p,  for σ 2 = 0.01. (left) and σ 2 = 0.07. (right), on the two-moons dataset. 
The results are averaged over 30 random trials and computed means are reported. The standard 
deviation computed is very small, with practically no-shaded region distinguishable. Note that 
Nyström methods completely overlap (up to where the original Nyström is stable, i.e., p ≤ 800. 
(left) and p ≤ 200. (right)), and only QR results, which fall on top of the original Nyström (same 
phenomenon for the QR methods), are visible in the plots 

Fig. 8 Computation times for KNN as a function of K (top axis) and Nyström methods as a 
function of p,  for σ 2 = 0.01. (left) and σ 2 = 0.07. (right), on the two-moons dataset. The results 
are averaged over 30 random trials and computed means are reported. The shaded region in the 
plots represents the standard deviation calculated over the random trials 

Computation Time 

Under the same setup as the approximation error, the computation times are plotted 
in Fig. 8, where the standard deviations calculated over 30 random trials are depicted 
as a shaded region. Note that the times reported for KNN include the eigendecom-
position stage, which is naturally included in the Nyström class. Figure 8 shows 
that the QR-based Nyström is slightly faster than the original Nyström method, and 
their difference becomes larger as p or σ 2

. increases. In addition, the KNN method, 
utilizing the nearest neighbors routine from the giotto-tda Python package [25], 
ensures stable computation times, remaining almost constant across the range of 
K ∈ [2, 75].most probably due to its exploitation of multi-core parallelism. Figure 8
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Fig. 9 Accuracy of spectral clustering for KNN as a function of K (top axis) and Nyströmmethods 
as a function of p,  for σ 2 = 0.01. (left) and σ 2 = 0.07. (right), on the two-moons dataset. The 
results are averaged over 30 random trials and computed means are reported. The shaded region in 
the plots represents the standard deviation calculated over the random trials 

Fig. 10 Accuracy of SVM classification for KNN as a function of K (top axis) and Nyström 
methods as a function of p,  for σ 2 = 0.01. (left) and σ 2 = 0.07. (right), for the two-moons dataset. 
The results are averaged over 30 random trials and computed means are reported. The shaded 
region in the plots represents the standard deviation calculated over the random trials. Note that 
Nyström methods completely overlap (up to where the original Nyström is stable, i.e., p ≤ 800. 
(left) and p ≤ 200. (right)), and only QR, which lays on top of original Nyström, is visible in the 
plots 

reveals that there is a range where substantial computation savings can be obtained 
by using the Nyström approximation methods, without a significant sacrifice in 
performance (see accuracy plots, e.g., Figs. 9 and 10). 

Unsupervised Task 

We report the performance of the weight approximation methods in a downstream 
task: unsupervised clustering. Specifically, averaged accuracy results obtained by 
spectral clustering over 30 random trials are plotted in Fig. 9 for σ 2 = 0.01. and 
σ 2 = 0.07.. The standard deviations calculated over the random trials are depicted



186 M. Marini et al.

Fig. 11 Representative samples from each of the ten-class digits dataset. Each sample is an 8 ×.8 
pattern that can be flattened to a 64-dimensional vector. The training set used has about 1250 
samples 

as a shaded region in the plots. Given that the eigenvectors tend to be more localized 
in KNN, 25 eigenvectors are used for the spectral clustering, while only five 
eigenvectors are used for Nyström methods. It is clear in Fig. 9 that projecting on the 
eigendecomposition of the Nyström methods produces better results than KNN, but 
no major improvements are observed for approximations using larger K or p. These 
plots also make more evident that no results are reported for Nyström p > 800. (left 
plot) and for p > 250. (right plot) due to the invalid partial computations (i.e., 
submatrix W11 . not positive definite or unstable inversion). 

Supervised Task 

Another downstream task given by the SVM classification is examined in Fig. 10, 
showing that supervised learning contributes to a large improvement in the clas-
sification results compared to unsupervised clustering. It is also interesting to 
note that although the Nyström methods that directly approximate Ls . yield larger 
approximation errors than KNN (see Fig. 7), the classification accuracy is similar 
and relatively high for all the weight approximation methods, probably due to the 
supervised nature of this task. 

3.1.2 Digits Dataset 

The digits dataset comprises a total of 1797 images of handwritten digits ranging 
from 0 to 9. Each image is of dimension 8 × 8. and hence can be represented by a 
64-dimensional array of gray-scale intensity values, vectorized from a 2D image. 
This dataset is a copy of the test set of the UCI ML handwritten digits datasets.1 An 
illustration of the images in each class can be found in Fig. 11.

1 https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits 

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
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Fig. 12 Eigenvalues of the 
symmetric normalized 
Laplacian for the digits 
dataset for each of the 
methods with σ 2 = 1.0., 
K = 10. for KNN, and 
p = 250. for Nyström 
methods. Note that Nyström 
methods completely overlap 
and  only  QR,  which  lays  on  
top of original Nyström, is 
visible i n the plots 

Fig. 13 Eigenvalues of the symmetric normalized Laplacian obtained by Nyström methods (p =
250). on the digits dataset with σ 2 = 1.0.. Note that the methods completely overlap and only 
(I − Ls). variants, which lay on top of the direct Ls . approximation, are visible in the plots 

Eigendecomposition 

Figure 12 compares the eigenvalues obtained by three methods with σ 2 = 1.0., 
K = 10. nearest neighbors for KNN, and p = 250. sampled points for both Nyström 
methods. All the eigenvalues approximate the ones for the fully connected graph, 
except that the Nyström methods start to show a slight deviation from the ground 
truth. Figure 13 compares the Nyström, Nyström (I − Ls)., QR, and QR (I − Ls). 

approximations, showing a very good agreement between them. 
Following the two-moons example, we examine the top three eigenvectors of Ls . 

obtained by all the methods in Figs. 14 and 15. As it is difficult to directly visualize 
the distribution of the original 64-dimensional data in the x-y plane, we plot each 
eigenvector as a function of the row index and color each component according to 
the value of such index. Again, the row ordering of the input data X establishes 
the row correspondence to the eigenvector components. Similar to the two-moons 
case, the first eigenvector (first row), which is related to the normalized degree [26], 
is consistent between fully connected graph and all the Nyström approximations, 
while it is almost constant for KNN. Briefly, Figs. 14 and 15 illustrate that, aside 
from sign differences in the eigenvectors, both Nyström variants produce a good 
approximation to the first eigenvectors, while the KNN method produces different
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Fig. 14 Eigendecomposition of the symmetric normalized Laplacian for the digits dataset for each 
of the methods with σ 2 = 1.0., K = 10. for KNN, and p = 250. for Nyström methods 

Fig. 15 Eigendecomposition of the symmetric normalized Laplacian obtained by Nyström meth-
ods (p = 250).with the two approximation variants on the digits dataset with σ 2 = 1.0. 

patterns. The errors in the approximations given by Eq. (13) are 0.071614 for 
KNN, 0.906414 for Nyström , 0.031120 for Nyström (I − Ls)., 0.906467 for QR, 
and 0.030089 for QR (I − Ls).. Similar to the two-moons case, from these error 
estimations, it is clear that the (I − Ls). variants of the Nyström methods produce 
much better approximations to the full symmetric normalized Laplacian than the 
direct Ls . approximations. 

We investigate the eigenvalues obtained by the competing methods under 
different values of σ 2

.; specifically, σ 2 = 0.5, 1.0, 5.3. and 10.3. are considered in
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2 =  0.5  2 =  1.0  

2 =  5.3  2 =  10.3  

Fig. 16 Eigenvalues of the symmetric normalized Laplacian obtained by KNN (K = 10). and 
Nyström methods (p = 250). on the digits dataset under different values of σ 2 .. Note that Nyström 
methods completely overlap and only QR, which lays on top of original Nyström, is visible in the 
plots 

Table 3 Comparison of the error Er . (13) of the approximation methods for the digits dataset for 
different σ 2 . and for K = 10. (KNN) and p = 250. (Nyström methods) 

σ 2 . 

Method 0.5 1.0 5.3 10.3 

KNN 0.337764 0.071614 0.007724 0.003838 

Nyström 0.925103 0.906414 0.896262 0.895787 

Nyström (I − Ls). 0.264682 0.031120 0.000317 0.000063 

QR 0.922371 0.906467 0.896263 0.895788 

QR(I − Ls). 0.270744 0.030089 0.000296 0.000068 

Fig. 16, showing that the smaller σ 2
. is, the larger error to the fully connected graph 

is made by the Nyström approximations. However, in contrast with the two-moons 
case, for all these σ 2

. values used, both the original Nyström and QR-based Nyström 
succeed. Table 3 records the approximation errors for these four values of σ 2

..  Note  
again that the (I − Ls). variants yield small approximation errors.



190 M. Marini et al.

Fig. 17 Error in Ls . approximation for KNN as a function of K (top axis) and Nyström methods 
as a function of p,  for σ 2 = 1.0. (left) and σ 2 = 10.3. (right), on the digits dataset. The results 
are averaged over 30 random trials and computed means are reported. The standard deviation 
computed is very small, with practically no-shaded region distinguishable. Note that Nyström 
methods completely overlap and only QR results, which fall on top of original Nyström , (or 
QR(I − Ls).which  fall  on  top  of  Nyström (I − Ls).), are visible in the plots 

Approximation Errors 

The approximation errors with respect to a range of K-nearest neighbors in KNN 
and p sampled data points in both Nyström methods are plotted in F ig. 17 for σ 2 =
1.0. and σ 2 = 10.3.. The results are averaged over 30 random trials. Since the ranges 
of K and p are different, the plots include two x-axis: the top one in red corresponds 
to the K values for KNN, while the bottom one in black corresponds to the p values 
for Nyström methods. For this dataset, the Nyström method produces valid results 
across all the parameters tested. Figure 17 agrees with the observations made for the 
two-moons datasets, showing again that the approximations obtained via Nyström 
methods improve as the number of sample points p increases and that the error of 
the KNN method is smaller than the Nyström methods that directly approximate Ls . 

and is relatively independent of K . Nyström methods that approximate (I − Ls). 

produce smaller errors. The performance of Nyström methods on downstream tasks 
involving the eigendecomposition is better (see Fig. 19) or matches (see Fig. 20)  the  
performance of the KNN method. 

Computation Time 

Under the same setup as the approximation error, the computation times are 
plotted in Fig. 18, where the standard deviations calculated over 30 random trials 
are depicted as a shaded region. As before, the times reported for KNN include 
the eigendecomposition stage. Figure 18 shows that the QR-based Nyström is 
slightly faster than the original Nyström method and that the KNN computation 
(via giotto-tda routine [25]) ensures stable computation times, remaining almost 
constant across the range K ∈ [2, 75].. Figure 18 reveals that there is a range
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Fig. 18 Computation times for KNN as a function of K (top axis) and Nyström methods as a 
function of p,  for σ 2 = 1.0. (left) and σ 2 = 10.3. (right), on the digits dataset. The results are 
averaged over 30 random trials and computed means are reported. The shaded region in the plots 
represents the standard deviation calculated over the random trials 

Fig. 19 Accuracy of spectral clustering for KNN as a function of K (top axis) and Nyström 
methods as a function of p,  for σ 2 = 1.0. (left) and σ 2 = 10.3. (right), on the digits dataset. 
The results are averaged over 30 random trials and computed means are reported. The shaded 
region in the plots represents the standard deviation calculated over the random trials. Note that 
Nyström methods completely overlap and practically only QR(I − Ls)., which falls on top of the 
other Nyström variants, is visible in the plots 

when substantial computation savings can be obtained by using the Nyström 
approximation methods, without a significant sacrifice in performance (see accuracy 
plots, e.g., Figs. 19 and 20). 

Unsupervised Task 

We report the performance of the weight approximation methods in the downstream 
task of unsupervised clustering. Averaged accuracy results obtained by spectral 
clustering over 30 random trials are plotted in Fig. 19 for σ 2 = 1.0. and σ 2 = 10.3.. 
The standard deviations calculated over the random trials are depicted as a shaded 
region in the plots. Given that the eigenvectors tend to be more localized in KNN-
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Fig. 20 Accuracy of SVM classification for KNN as a function of K (top axis) and Nyström 
methods as a function of p,  for σ 2 = 1.0. (left) and σ 2 = 10.3. (right), on the digits dataset. The 
results are averaged over 30 random trials and computed means are reported. The shaded region 
in the plots represents the standard deviation calculated over the random trials. Note that Nyström 
methods completely overlap and only QR, which lays on top of original Nyström, is visible in the 
plots 

based decompositions, 25 top eigenvectors were used for the spectral clustering, 
while only five top eigenvectors were used for Nyströmmethods. It is clear in Fig. 19 
that projecting on the eigendecomposition of the Nyström methods produces good 
results, with around 90% accuracy, and these are much better than what is obtained 
with KNN. Nevertheless, in this case, major improvements in accuracy are observed 
for using a larger number of neighbors K in the KNN method. 

Supervised Task 

We also evaluate the downstream task of SVM classification and report results in 
Fig. 20. As observed before, the supervised learning improves the classification 
results, and again, even when the approximation to Ls . computed by the Nyström 
methods has a larger error than KNN (see Fig. 17), the accuracy results are similar 
and deemed satisfactory in all cases. 

3.2 CT Reconstruction 

To test and compare the algorithms in different downstream processing tasks, we use 
a low-dose CT reconstruction problem with real image data of high dimensionality 
(256 ×. 256). In particular, we follow the MAGIC (manifold and graph integrative 
convolution network) approach [28], which unrolls a gradient descent algorithm into 
a neural network, using a convolutional neural network (CNN) to preserve pixel-
level features and a graph convolutional network (GCN) to extract the nonlocal 
features from a patch-based manifold space. The graph is constructed by treating
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every pixel of the CT image as a node and computing the weight using the Eq. (2) 
measured by the Euclidean distance between two small patches, whose top-left 
corner corresponds to the respective nodes. Then, the graph Laplacian is used in 
the GCN component of MAGIC to define the spectral graph convolution [5]. Here, 
the matrix composed of eigenvectors of the normalized graph Laplacian, i.e., V 
in Eq. (9), is analogous to the Fourier transform in standard spatial convolution, 
following the convolution theorem. 

In what follows, we use three methods, KNN, Nyström, and QR-based Nyström, 
to approximate the computation of Ls . for the GCN component of MAGIC and 
evaluate the obtained reconstructions in terms of peak signal-to-noise ratio (PSNR), 
structural similarity index measure (SSIM), and computational time. In all cases, we 
build the similarity matrix using a Gaussian similarity, Eq. (2), with σ 2 = 5.7..  Note  
that given the high dimensionality of the data, we do not even attempt to build a fully 
connected graph for this case. We do not run Nyström variants that approximate 
(I − Ls). since we expect similar performance to the one obtained with the direct 
Ls . approximations. We follow the MAGIC work and use the same architecture and 
training parameters. For a proof of concept, we enact the following simplifications: 
(i) we use a reduced set of ten training images, (ii) we train for 50 epochs using a 
batch size of 2, and (iii) we test the trained model on ten test images different from 
the training set. We compare results for dose levels of 0.01 and 0.1 (see more details 
about the dose levels in the original work [28]). 

Table 4 displays performance results for the reconstructions for the two dose 
levels or each of the three methods for computing Ls .. The mean and standard 
deviations over the testing set are reported. Note that PSNR results are computed 
assuming a signal range in [0, 1]., not the actual dynamic range. It can be observed 
that the results are very similar for all three methods, and of course, better results 
are obtained for measurements using a large dose level. Specific visual results are 
shown in Figs. 21 and 22 for dose levels of 0.01 and 0.1, respectively. Results for the 
lower-dose level have more granular artifacts, while results for the high-dose level 
are smoother (it may be necessary to zoom over the figures to note the difference). 
Finally, Fig. 23 shows a comparison of computation times on a GPU cluster (one 
node, eight NVIDIA GeForce RTX 2080 Ti GPUs), obtained for the three methods 
when approximating the symmetric normalized Laplacian for the coarse stage of the 

Table 4 CT reconstruction 
comparison under two dose 
levels (0.01 and 0.1) for 
K = 5. (KNN) and p = 50. 
(Nyström methods) 

PSNR [dB] SSIM 

Dose level Method Mean Std Mean Std 

0.01 KNN 35.60 0.38 0.9133 0.0066 

Nyström 35.60 0.38 0.9118 0.0063 

QR 36.04 0.39 0.9252 0.0057 

0.10 KNN 41.36 0.36 0.9676 0.0033 

Nyström 41.33 0.37 0.9670 0.0033 

QR 41.13 0.38 0.9654 0.0036
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Fig. 21 Visual results of CT reconstruction under 0.01 dose level. From left to right: ground truth, 
KNN, Nyström, and QR 

Fig. 22 Visual results of CT reconstruction under 0.1 dose level. From left to right: ground truth, 
KNN, Nyström, and QR 

MAGIC reconstruction, using different numbers of p sampled data patches for the 
Nyström methods and different numbers of K patch neighbors for the KNN method. 
It is seen, consistent with results presented in previous sections, that the Nyström 
methods considerably reduce the computation time without significantly decreasing 
performance. Also, note that the QR-based Nyström method is slightly faster than 
the original Nyström method, which aligns with the observation in the synthetic 
case.
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Fig. 23 Computation times 
for KNN as a function of K 
(top axis) and Nyström 
methods as a function of p 
when approximating the 
symmetric normalized 
Laplacian for the coarse stage 
of the MAG IC reconstruction 

4 Conclusions 

Through extensive numerical experimentation, including benchmarks as well as 
high-dimensional real datasets, we confirm the advantages of the Nyström methods 
for approximating the eigendecomposition of the symmetric Laplacian. Briefly, 
these methods provide accurate approximations of the eigenvalues and eigenvectors 
of a fully connected graph. Additionally, significant time savings are achieved by 
computing approximations based on eigendecompositions using subsets of data 
samples. The direct computation of eigenvalues and eigenvectors also facilitates 
the analysis of the graph structure, which is beneficial for downstream tasks such 
as clustering, classification, or graph-based signal filtering. We also observe that the 
QR method is slightly faster than the original Nyström method. However, the latter 
can become unstable or yield nonvalid solutions when a “large” number of data 
samples or a “large” value of σ 2

. (resulting in the weight matrix being low rank) is 
used. It also seems the case that the Nyström approximations to the fully connected 
graph become worse when a “smaller” value of σ 2

. is used. The problem, however, 
is that typically there is no a priori way to determine what “small” or “large” means 
in this context since it is heavily dataset-dependent. Overall, the QR-based method 
seems like a good alternative for more robust and faster approximations. Moreover, 
variants that approximate (I − Ls). have much smaller approximation errors to the 
fully normalized symmetric Laplacian. It is also worth noticing that the relative 
Frobenius distance Er . can provide a somewhat misleading idea of the quality of 
the approximations, in particular when comparing the relative errors of KNN and 
Nyström methods. Although Nyström methods that directly approximate Ls . seem 
to have worse errors compared to KNN and Nyström methods that approximate 
(I − Ls). have much smaller approximation errors, their performance can be similar 
in downstream tasks. 
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Supervised Dimension Reduction via 
Local Gradient Elongation 

Jannatul Ferdous Chhoa , Longxiu Huang , Anna Little , 
Aimee Maurais , Kirsten D. Morris , Maria D. van der Walt , 
Geetika Verma , and Rongrong Wang 

1 Introduction 

This chapter explores a geometric approach for supervised dimension reduction 
(SDR), where we assume we have features x1, . . . , xn . together with observations 
of a response variable y1, . . . , yn ., where yi ≈ f (xi). for some unknown function 
f . In general, the goals are twofold: (1) obtain a low-dimensional representation 
of the data using an embedding/process guided by the response variable Y , which 
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leads to more effective exploratory analysis, and (2) perform prediction of unknown 
labels, which can be significantly improved by appropriate choice of SDR algorithm. 
In the linear case, SDR is a well-studied problem: therein, the goal is to restrict 
features to the active subspace, i.e., project out any data dimensions that contain 
no information useful for predicting Y [15, 16, 54], and apply a nonparametric 
regression for prediction in the active subspace. Seminal works include sliced 
inverse regression (SIR) [18], which discovers the active subspace by finding the 
conditional expectation of the predictors, conditioned on the response, as well 
as [17, 21, 64, 65], which eliminate some of the restrictive assumptions of SIR. 
Unfortunately, these useful tools fail when the underlying relevant domain is 
nonlinear. One possible approach in the case of a nonlinear active manifold is to 
apply nonparametric manifold regression [7, 12]; however, these methods are not 
targeted to the regime where the data manifold has many coordinates irrelevant to Y , 
and thus are not truly nonlinear SDR methods. A number of methods have thus been 
developed, which extend supervised dimension reduction to the nonlinear/manifold 
case, including neural-network-based approaches [24, 38, 67], methods designed 
for discrete labels [1, 13, 20, 23, 25, 28, 34, 53, 62, 66], and methods applicable to 
a continuous response variable [5, 10, 13, 51, 52, 57] as considered in the current 
chapter; see also [11, 26, 40, 47, 50]. 

We propose a novel geometric approach to nonlinear SDR that utilizes the 
local gradients of a (generally continuous) response variable to stretch the data 
in directions useful for prediction and shrink the data in uninformative directions. 
More specifically, when the response y ∈ R. is univariate, we define (locally) the 
following metric: 

.dY,τ (xi, xj )
2 = (1 − τ)‖xi − xj‖2 + τ‖yi − yj‖2 . (1) 

The parameter 0 ≤ τ ≤ 1. controls the extent to which the labels y impact the 
distance. In practice, if the labels are noisy, i.e., if yi = f (xi) + εi ., it may be 
advantageous to use the following formulation: 

. d∇Y,τ (xi, xj )
2 = (1 − τ)‖xi − xj‖2 + τ

2

(
〈∇yi, xi − xj 〉2 + 〈∇yj , xi − xj 〉2

)

(2) 

where ∇yi ≈ ∇f (xi). is an approximation of the gradient of the response at xi .. 
Note in the noiseless case, these two definitions are locally essentially identical for 
smooth C2

. functions, since by Taylor’s Theorem: 
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. yi − yj = 〈∇yi, xi − xj 〉 + O(‖xi − xj‖2)
= 〈∇yj , xi − xj 〉 + O(‖xi − xj‖2)

	⇒ (yi − yj )
2 = 〈∇yi, xi − xj 〉2 + O(‖xi − xj‖3)

= 〈∇yj , xi − xj 〉2 + O(‖xi − xj‖3)

	⇒ (yi − yj )
2 = 1

2

(
〈∇yi, xi − xj 〉2 + 〈∇yj , xi − xj 〉2

)
+ O(‖xi − xj‖3) .

However, writing the metric as (2) leads to some insight, since it illustrates that 
the metric is elongating in the direction of the gradient. When τ . is small, ∇y . does 
not impact the metric, and one recovers Euclidean distance; when τ . is large, local 
connections are adjusted to shrink distances in the directions of ∇y⊥

.. When data 
points are sampled from a Riemannian manifold (M, g). and τ < 1., this stretching 
in fact corresponds to a new Riemannian metric tensor g̃ . on M. defined by the 
following modified inner product {U,V }x . on the tangent plane TxM.: 

. {U,V }x := τ 〈∇f (x), U 〉x〈∇f (x), V 〉x + (1 − τ)〈U,V 〉x
for U,V ∈ TxM., where 〈U,V 〉x . is the inner product corresponding to the original 
Riemannian metric g(x).. 

Equation (2) is thus a local approximation of the geodesic distance under g̃ .. 
Utilizing the theory in [6] for anisotropic kernels, the work [5] proposes an iterative 
nonlinear SDR algorithm for the τ . small case. Although it is based on insightful 
geometric principles, the algorithm is too complex to be practical in real data 
applications, and the theoretical framework is not applicable when τ = 1.;  in  this  
case, there is a collapse of geometry since g̃ . is no longer full-rank and M. becomes a 
sub-Riemannian manifold. This chapter explores the utility of the gradient elongated 
metric (2) for supervised dimension reduction, focusing specifically on the two key 
tasks of visualization and prediction. 

2 Methodology 

We first leverage (2) to develop an algorithm for visualization as described in 
Sect. 2.3; we then propose an algorithm for prediction of unlabeled data points by 
combining (2) with Laplacian learning as described in Sect. 2.4. 

2.1 Notation and Assumptions 

Throughout the chapter, we assume that a set of n feature vectors X = {x1, . . . , xn}. 
are sampled from a compact Riemannian manifold M. of intrinsic dimension d 
embedded in RD

..  We  let y1, . . . , yn . denote the corresponding labels, which can
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be observed or unobserved, and either discrete or continuous. We let Ilabel/I
C
label . 

denote the indices of the labeled/unlabeled points, m = |Ilabel|. denote the number 
of labeled points, and Xlabel = {xi : i ∈ Ilabel}. and ylabel = {yi : i ∈ Ilabel}. denote 
the feature and response values of the labeled points. We let NNk(x,X). denote the 
set of k Euclidean nearest neighbors of x in the set X.

In the noiseless setting, we assume yi = f (xi). for some function f and that we 
have access to (xi, yi). for i ∈ Ilabel .. However, we will also evaluate the prediction 
methodology proposed in Sect. 2.4 in the presence of feature or label noise and thus 
consider the following two noise models. 

Model 1 (Noisy Labels) We assume 

.yi = f (xi) + σyηi , (3) 

where the ηi .are independent standard normal random variables, σy > 0. is the noise 
level, and the xi . are sampled from M.. We assume access to (xi, yi). for i ∈ Ilabel . but 
only to xi . for i ∈ IC

label .. 

Model 2 (Noisy Features) We assume 

.yi = f (mi) , xi = mi + σxξi , (4) 

where the ξi . are independent multivariate normal random vectors with mean zero 
and covariance ID ., σx > 0. is the noise level, and the mi . are sampled from M..  We  
assume access to (xi, yi). for i ∈ Ilabel . but only to xi . for i ∈ IC

label .. 

2.2 Estimation of ∇f (xi). 

To compute d∇Y,τ (xi, xj ). as introduced in (2), it is essential to estimate ∇yi . 

and ∇yj .. We utilize a similar least squares fitting procedure as in locally linear 
regression [48] as described below. Given the labeled dataset (xi, yi). for i ∈ Ilabel . 

and the specific data feature x, we denote the k Euclidean nearest neighbors (k-NNs) 
of x within the labeled dataset as (x1(x), y1(x)), . . . , (xk(x), yk(x)).. 

Notice that given a smooth function f : RD → R. and a, b ∈ RD
. sufficiently 

close to each other, the approximation f (a) ≈ f (b) + ∇f (b)
(a − b). holds. 
For each neighbor point of x, we use this linear approximation to predict the 
label yi(x) = f (xi(x)) ≈ f (b) + ∇f (b)
(xi(x) − b) = f (b) − ∇f (b)
b +
∇f (b)
xi(x) ≡ c + ∇f (b)
xi(x)., i = 1, . . . , k ., where we set c = f (b) −
∇f (b)
b.. To identify c and ∇f (b)., we use the following least squares fitting 

.ĉ, Ĝ = arg min
c∈R,G∈RD

k∑
i=1

‖yi(x) − c − G
xi(x)‖2
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and assign ∇f (b) = Ĝ. to be the estimated gradient. 
The closed-form solution of the above minimization is 

. Ĝ =
⎡
⎢⎣

(x̄ − x1(x))

...

(x̄ − xk(x))


⎤
⎥⎦

† ⎡
⎢⎣

y − y1(x)
...

y − yk(x)

⎤
⎥⎦ .

where x̄ = 1
k

∑
xi(x). and ȳ = 1

k

∑
yi(x).. In our numerical experiments, we 

eliminate the small singular values from the coefficient matrix

⎡
⎢⎣

(x̄ − x1(x))

...

(x̄ − xk(x))


⎤
⎥⎦. 

prior to calculating the pseudo-inverse to improve the stability of our algorithm. 

2.3 Visualization 

We create a kNN graph G = (X,E,W). of local connections based off of the 
features xi ., in which each point is connected to its Euclidean nearest neighbors, but 
the corresponding edges are weighted according to the gradient-adjusted metric (2), 
i.e., the edge weights depend on the response y. More specifically, if xi, xj . are 
Euclidean nearest neighbors, we define Wij = d∇Y,τ (xi, xj ).;  else Wij = 0.. We then 
define a new metric by computing shortest path distances within this graph: 

.�∇Y,τ (a, b) := inf
(x0,...,xs )

s−1∑
i=0

d∇Y,τ (xi, xi+1) , (5) 

where the infimum is taken over all sequences of points x0, . . . , xs . in X with x0 = a ., 
xs = b., and consecutive xi . connected in G.. Note when τ = 1. and the number of 
sample points n → ∞., we expect that �∇Y . converges to the following geodesic 
distance (see, e.g., [4]): 

.L∇Y (a, b) = inf
γ

∫ 1

0
|〈∇f (γ (t)), γ ′(t)〉| dt = inf

γ

∫ 1

0

∥∥∥∥
df (γ (t))

dt

∥∥∥∥ dt, (6) 

where the infimum is taken over all differentiable curves γ : [0, 1] → R
D

. satisfying 
γ (0) = a . and γ (1) = b.. As seen in (6), curves that remain in a level set of f will be 
measured as having distance zero: one can travel along the level sets “for free,” but 
cost is incurred when the value of f changes, i.e., when the path has a component 
in the direction of ∇f .. 

Once the (supervised) distances (5) are computed between all points in X, 
we use these distances within unsupervised dimension reduction algorithm for
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visualization. Specifically, we employ these distances within both classic multi-
dimensional scaling (CMDS), a linear method introduced in [60]  (se  e [8] for an 
overview), as well as the t-distributed stochastic neighbor embedding (t-SNE), a 
nonlinear method developed in [32], to obtain reduced-dimensional visualizations 
of X. 
Related work on data-driven metrics and unsupervised dimension reduction The 
proposed algorithm can be thought of as a generalization of the classic Isomap 
[59] algorithm, which approximates manifold geodesic distance dM(a, b).by classic 
shortest path distance in a graph of local connections, i.e., by inf(x0,...,xs )

∑s−1
i=0 ‖xi−

xi+1‖., where the infimum is taken over paths (x0, . . . , xs). connecting a, b.. Recent 
work has also focused on the analysis of power weighted shortest path distances , 
[22, 27, 33, 42, 61], where the distances are computed as inf(x0,...,xs )

∑s−1
i=0 ‖xi −

xi+1‖p
. for some p ≥ 1.. If data points are i.i.d. samples from a probabil-

ity measure with density ρ . on M., then this discrete distance (appropriately 
normalized) converges to a density-reweighted geodesic distance Lp

ρ (a, b) =
infγ

∫
ρ(γ (t))

1−p
d |γ ′(t)| dt ., where the infimum is once again over all differentiable 

curves on M. connecting a, b.. Such metrics stretch the manifold geometry according 
to the data density, an adjustment that can be highly useful for clustering [43]  as  
well as topological data analysis [22]. This chapter investigates a similar geometric 
approach, but the manifold is stretched according to a response variable instead of a 
density function. Alternatively, one could adjust data geometry utilizing a diffusion 
process [14, 39, 44, 58]. The novelty of our approach is utilizing the metric (6), 
and although we use CMDS and t-SNE for visualization, this choice is somewhat 
arbitrary, and the metric could be combined with other embedding algorithms such 
as metric MDS [9], Laplacian Eigenmaps [3], diffusion maps [14], UMAP [2], etc. 
In addition, recent studies have explored alternative metrics for graph Laplacian 
embeddings, including the use of optimal transportation [63] and Wasserstein-based 
isometric mappings [29]. These approaches offer more flexible and robust geometric 
frameworks for analyzing high-dimensional data, which align with the objectives of 
our supervised dimensionality reduction model. 
Related work on supervised dimension reduction We employ a supervised version 
of dimensionality reduction techniques. The majority of SDR algorithms are 
designed for discrete label information. For example, these algorithms might define 
dissimilarity according to: 

. dis(xi, xj ) =

⎧⎪⎪⎨
⎪⎪⎩

√
1 − e

− ‖xi−xj ‖2
β xi, xj in the same class√

e
− ‖xi−xj ‖2

β − α xi, xj in different classes

for parameters α, β ., where β . generally depends on the feature distances and α . 

determines the degree of supervision. In contrast, the proposed method of this 
chapter is very natural in the case of a continuous response, i.e., for problems
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of prediction and not just classification. Other methods for continuous response 
variables include [5, 10, 13, 57]. In addition, embedding methods based on random 
forest proximities have been proposed, which can be applied to either discrete or 
continuous labels [30, 41, 51, 52]. However since decision trees leverage individual 
features, resulting methods may not perform as well when the response is a linear 
combination of features (e.g., y = x1 + x2 .) or a more complex nonlinear function 
of features. Although random forests can partially address this issue by aggregating 
multiple trees, our method may offer an advantage in this setting. 

The two works most relevant to the current chapter are [10] and [13]. The work 
[10] utilizes the same mathematical framework we are suggesting (Figs. 2c, f, 3c, 
and f are visualizations of an active manifold as described in [10]). However, unlike 
[10], which defines an active manifold as a submanifold of the original domain 
by following a gradient flow on a high-dimensional grid, we propose to compute 
an active manifold via simple embeddings of gradient-based path distances. This 
new approach allows one to lift some of the restrictive assumptions in [10] such 
as connected level sets (indeed, this restriction rules out some very interesting 
examples like evolutionary processes). The work [13] defines an SDR embedding 
by minimizing 

. C(Q) = ρKL(P ||Q) + (1 − ρ)KL(O||Q)

over embedding coordinates {zi} ⊆ Rp
., with p < D ., where P,O,Q ∈ Rm×m

. 

are similarity matrices computed over the features {xi}mi=1 ., labels {yi}mi=1 ., and 
embedding coordinates {zi}mi=1 .with entries given by 

. pj |i ∝ exp
(
−‖xi − xj‖2/2σ 2

i

)
, oj |i ∝ exp

(
−‖yi − yj‖2

)
,

qij ∝ (‖zi − zj‖2 + 1)−1, i �= j

and pi|i = oi|i = qii = 0.. KL(·‖·). is the discrete Kullback-Leibler divergence, and 
ρ ∈ [0, 1]. weighs the contributions of the feature divergence and label divergence 
to C. The authors refer to this method as supervised t-SNE (St-SNE) as it is an 
extension of t-SNE (t-SNE can be viewed as St-SNE with ρ = 1.). As we are 
proposing, they balance between finding an embedding Q that is representative 
of the features (first term) with finding an embedding that is representative of 
the response (second term). However, we demonstrate that this approach will not 
be capable of simultaneously discarding irrelevant features and preserving the 
geometry of y—as ρ . decreases, all points with similar y-values will be “glued 
together,” and the underlying structure of the response variable will be lost. See 
Figs. 2 and 3 and the accompanying descriptions for an illustration.
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2.4 Prediction 

We propose a new method for transductive semi-supervised learning, which com-
bines the gradient-elongated metric (2) with Laplacian regularization, an effective 
interpolation method used in machine learning for estimating values on a graph 
structure. Specifically, given n data points consisting of both labeled and unlabeled 
features, Laplacian regularization predicts the unknown labels by s olving:

.yLL = arg min
y∈Rn

‖P labely − ylabel‖22 + λyT Ly, (7) 

where P label . is a projection matrix that selects the labeled data from the full label 
vector y, ylabel . is the vector of known labels, and L ∈ Rn×n

. is the graph Laplacian 
matrix defined using pairwise distances of features of all the data points. The method 
thus extends the given label information in a smooth way across the graph and is 
particularly useful in areas involving social networks [35], sensor networks [68], 
or image restoration [56]. The graph Laplacian is used to impose a smoothness 
constraint on the interpolation process, ensuring that the interpolated values change 
gradually along the graph’s edges. This regularization helps in producing more 
accurate and reliable interpolations, especially in scenarios where the data points 
are sparsely distributed across the graph. However, if the knowledge of the graph 
structure used in graph Laplacian regularized interpolation is not accurate, it may 
greatly impact the accuracy of the interpolation. 

We apply the Laplacian regularization procedure but define L = L(d∇Y,τ ). using 
the local gradient metric (2)1 with partially observed label information incorporated. 
Specifically, we define a graph of local connections among the features weighted 

by Wij = exp
(
− d∇Y,τ (xi ,xj )2

ε

)
., where gradients are approximated for all features 

using the training data and the method of Sect. 2.2, and ε > 0. is a scale parameter. 
Even though the gradient approximations are not very accurate when the number 
of training points is small, we demonstrate the method still provides a significant 
improvement over local linear regression and standard Laplacian regularization. 

For comparative analysis, we evaluate our prediction approach against several 
existing methods, specifically K-nearest neighbors (KNN) regression [31], local 
linear regression (LLR) [48], traditional Laplacian learning (TLL) [45], and non-
linear level-set learning (NLL) [67]. We have summarized these methodologies as 
follows: 

1. KNN regression (kNN): Each unlabeled data point is paired with its k nearest 
neighbors among the labeled points, determined by Euclidean distance. The label

1 In the numerical experiments, the local gradient metric is calculated using the normalized data 
xi−x̄√

1
m

∑m
i=1 ‖xi−x̄‖2

. and yi−ȳ√
1

|Ilabel |
∑|Ilabel |

i=1 ‖yi−ȳ‖2
.where x̄ = 1

m

∑m
i=1 xi ., ȳ = 1

|Ilabel |
∑|Ilabel |

i=1 yi .. 
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for the unlabeled point is assigned based on the average label of these k nearest 
labeled neighbors.

2. Local linear regression (LLR): the label of the point x is defined as

. y(x) = 1

k
1

k yknn +

(
x − 1

k
Xknn1k

)
(
X

knn − 1

k
X


knn1


k 1k

)†

(yknn − 1k1


k yknn)

where 1k ∈ Rk
. is a vector with all 1s, Xknn . is the matrix with each column 

corresponding to the feature information of the k nearest neighbors (kNNs) of x, 
and yknn . denotes the label vector for the kNNs of x. 

3. Traditional Laplacian learning (TLL): we approach the task of estimating labels 
for unlabeled data by solving the optimization problem (7), where L = D − W . 

is a graph Laplacian matrix, with W being the similarity matrix defined on all the 
data points and D being the associated degree matrix. The construction of the 
similarity matrix is carried out in the follo wing manner:

(a) Initialize Wij = exp
(
−‖xi−xj ‖2

ε

)
., where ‖xi − xj‖. signifies the Euclidean 

distance between points xi . and xj . and ε > 0. is a scale parameter as before. 
(b) For every row in W , maintain only the k highest values, setting the remainder 

to zero and ensuring that each row contains at most k non-zero elements.
(c) Symmetrize W by constructing W̃ ∈ R

n×n
. according to W̃ij =

max(Wij ,Wji)., i, j = 1 . . . , n.. Note that other approaches can also be 
used to symmetrize W , including W̃ = W + WT

. or W̃ij = min(Wij ,Wji).. 
Finally, set W = W̃ .. 

4. Supervised Laplacian learning (SLL): This approach employs Laplacian learning 
method for label estimation of unlabeled data, with the modification that 
d∇Y(xi, xj ). (2) is substituted for the Euclidean distance in construction of the 
similarity matrix W . 

5. Nonlinear level-set learning (NLL): In the NLL approach of [67], a neural 
network is trained to identify a nonlinear embedding g : RD → R

D
. of input data 

x ∈ RD
. such that the first few coordinates g(x)1:p ., where p < D ., are highly 

predictive of f (x) ∈ R.. The remaining coordinates g(x)p+1:D . are not predictive 
of f , and g(x)1:p . can be used as a reduced-dimensional embedding of x.  The  
embedding g : RD → R

D
. is parametrized as a neural network and trained using 

a loss that drives the first few coordinates of the embedding, g(·)1:p . to capture 
directions orthogonal to level sets of f , and the last coordinates g(·)p+1:D . to 
capture directions parallel to the level sets of f . Under these conditions, the 
value of f will change with perturbations in the direction of g(x)1:p . but will 
not change with perturbations in the directions of g(x)p+1:D .. Evaluation of the 
loss requires evaluations of f and its gradient ∇f .; hence, for our experiments in 
Sect. 3, we approximate the needed gradients using the method of Sect. 2.2
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3 Numerical Results 

3.1 Visualization 

In this section, our goal is to visualize the geometry or structure of given datasets, 
as described in Sect. 1. We start by considering two toy datasets. Specifically, we 
consider a tree with three branches (Small Tree) and a tree with seven branches (Big 
Tree). The datasets are created by first sampling points mi . along a one-dimensional 
tree structure, defining the label of mi . to correspond to the geodesic distance from 
the root of the tree to mi .; noise was then added to produce the noisy data points xi ., 
which are plotted in Fig. 1 (here we consider noise according to Model 2); the plots 
are colored by the response variable. 

Results for Small Tree are shown in Fig. 2.  In  the  first  two  rows  of Fig. 2,  we  
show the results of applying CMDS and t-SNE (respectively) to visualize in two 
dimensions the path distance �ΔY,τ . for different values of τ . in (2). For comparison, 
the third row of Fig. 2 shows a visualization obtained with St-SNE from [13]  for  
different values of ρ .. Note how, as supervision increases (increasing τ . in our method 
with CMDS and t-SNE or decreasing ρ . in St-SNE), our method is able to denoise 
the tree while preserving the underlying structure of the data. In contrast, the St-
SNE visualization does not remain faithful to the true geometry—the branches of 
the tree are glued together. 

Various visualizations of the Big Tree dataset are shown in Fig. 3. As before, 
the first two rows show CMDS and t-SNE embeddings of the path distance �ΔY,τ . 

for different values of τ .; the third row shows a St-SNE visualization for different 
values of ρ .. Note again the visual confirmation that our method is able to faithfully 
represent the true geometry of the data even as τ . increases, as opposed to St-
SNE with decreasing ρ .. Also note that a three-dimensional CMDS embedding 
is necessary to accurately display the finer branches at the endpoints of the big 
branches. Note we also computed the MDS embedding of the random forest-based 

Fig. 1 Noisy tree datasets, colored by the response variable
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Fig. 2 Two-dimensional visualization of the path distance �ΔY,τ . calculated on the small tree 
dataset by applying a CMDS embedding (top row) and a t-SNE embedding (middle row) for 
different values of τ .. The last row shows a comparison with St-SNE for different values of ρ . 

proximities (RF-GAP) proposed in [52] to the small and big tree datasets; see Fig. 8 
in Appendix “Further Visualization Results”. However, the geometry of the tree 
structure is lost. 

In addition, we display visualization results on two real-world datasets: one 
concerning severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and 
one concerning the differentiation of embryoid bodies (EB) [44]. In a recent study 
published in [55], the authors want to quantify the neurological phenotypes induced 
by the SARS-CoV-2 spike protein in neurons, as measured by in-vitro multi-well 
micro-electrode arrays. To this end, a visualization of how much different instances 
and exposures of the SARS-CoV-2 spike protein affect neurons is of great value. 
Figure 4 displays a visualization of �ΔY,τ . with τ = 0.8. (top row) as measured 
on the SARS-CoV-2 dataset referenced in [55], by applying a t-SNE embedding. In 
each subfigure, blue represents instances of control neurons, while yellow represents 
exposed neurons, with the exposure ranging from 1 to 100 ng. Note how the 
separation becomes clearer as the spike protein exposure increases, which supports 
the hypothesis that the neurons are affected under exposure to the SARS-CoV-2
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Fig. 3 Visualization of the path distance �ΔY,τ . calculated on the big tree dataset by applying a 
CMDS embedding (top row) and a t-SNE embedding (middle row) for different values of τ ..  The  
last row shows a comparison with St-SNE for different values o f ρ . 

spike protein. For comparison, we also show in Fig. 4 visualizations obtained with 
t-SNE (second row), St-SNE with ρ = 0.75. (third row), and MDS of RF-GAP [52] 
(bottom row). The fourth row of Fig. 4 shows visualizations obtained with PCA; 
our method more clearly depicts the separation as the exposure increases while 
maintaining the underlying geometry observed in the unsupervised case. 

Next we apply our method to the EB dataset, which tracks the development of 
human stem cells as they differentiate into various embryoid bodies. Measurements 
are taken every 3 days over a 27-day period, and cells were sequenced with the 10x 
chromium platform; see [44] for more details. We consider a subset of 35,000 cells 
and use the day the cell was sequenced (i.e., time) as the response variable; the goal 
of applying our methodology is to emphasize the features that are changing in time, 
i.e., the ones relevant to differentiation, and to de-emphasize features not changing 
in time, which are not relevant for a visualization of differentiation. Figure 5 (top 
row) shows the results of applying CMDS to visualize �ΔY,τ . for various values of τ .: 
as τ . is increased, the separation of the time periods becomes more clear, as expected, 
but one also sees a larger spread of values for higher label values, which reflects the
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Fig. 4 Visualization of the SARS-CoV-2 dataset. In each case, blue indicates the control, and 
yellow indicates the SARS-CoV-2-exposed neurons 

fact that the stem cells are developing into a variety of embryoid bodies. Although 
supervised t-SNE (third row) clearly separates classes as ρ . is decreased, it fails to 
reflect this geometry of small-to-large variances for larger values of ρ ., and thus the 
embedding is not as biologically meaningful. Combining our metric �ΔY,τ . with t-
SNE (second row) yields cleaner class separation than our metric with CMDS (top 
row), but it does not reflect the global geometry as accurately as CMDS. Finally, we 
also compare with the MDS embedding of RF-GAP proximities [52]; see Fig. 5(i).
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Fig. 5 Visualization of the EB dataset. Colors indicate the number of days the embryonic bodies 
have grown, where the progression from blue to yellow corresponds to a progression from 1 day 
to 5 days 

To quantitatively assess the quality of supervised dimension reduction algorithms 
is a difficult task, but we attempt to do so by calculating the variable importance 
correlation metric proposed in [51]. This metric computes scores quantifying the 
importance of each predictor variable for predicting the response and also for 
predicting the embedding coordinates and then calculates the correlation between 
the importance scores; the goal is to assess the preservation of the structure of the 
predictor variables. The correlation metrics of all of the EB embeddings shown in 
Fig. 5 are given in Table 1. The highest score was obtained by supervised t-SNE 
with small ρ . (0.777); we emphasize however that it is clear from Fig. 5(i) that the
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Table 1 Variable importance 
correlation metric from [51] 
on EB dataset [44] 

CMDS of �ΔY,τ . τ = 0.2. 0.695 

τ = 0.5. 0.729 

τ = 0.8. 0.733 

t-SNE of �ΔY,τ . τ = 0.2. 0.693 

τ = 0.5. 0.672 

τ = 0.8. 0.651 

Supervised t-SNE ρ = 0.8. 0.627 

ρ = 0.5. 0.650 

ρ = 0.2. 0.777 

MDS of RF-gap 0.644 

PCA (unsupervised) 0.591 

t-SNE (unsupervised) 0.582 

embedding oversimplifies the geometry, collapsing all the various embryoid bodies 
into the small yellow cluster; the second highest score was obtained by our gradient-
elongated metric with CMDS for large τ . (0.733). 

3.2 Prediction 

In this section, we investigate the utility of the SLL method proposed in Sect. 2.4 
for prediction of unknown labels on both synthetic and real-world datasets. 

3.2.1 Synthetic Datasets 

We first consider prediction on the following six synthetic datasets. For each 
dataset, we sample n = 1000. points; we assume access to 100 labeled points and 
measure predictive performance on the remaining points. The datasets are described 
below: 
(i) Small Tree d8: dataset is generated by forming a small tree (three branches) 

in the first two dimensions and then sampling from a d = 8.-dimensional tube 
about this tree. The response variable is y = 8(x2 − 1)3 ., i.e., it depends on the 
tree structure/direction of elongation. 

(ii) Big Tree d4: dataset is generated by forming a large tree (seven branches) in 
the first two dimensions and then sampling from a d = 4.-dimensional tube 
about this tree. The response variable is y = (5x4)3 ., i.e., it does not depend on 
the tree structure/direction of elongation. 

(iii) Cube: data is sampled from a d = 5.-dimensional unit cube, and the response 
variable is defined by y = 4(x1 + x2)

4
.. 

(iv) Sphere: data is sampled from the d = 4.-dimensional unit sphere S4 ., and the 
response is defined by y = θ4 ., where θ . is the angle formed with a fixed polar 
cap.
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(v) Swiss Roll: data is sampled from a d = 2.-dimensional Swiss Roll, and the 
response variable is y = �21 ., where �1 . is an intrinsic manifold coordinate. 

(vi) Annulus: data is sampled from a d = 4.-dimensional annulus; specifically, all 
points satisfy 1 ≤ ‖x‖ ≤ 3., and the response variable is y = r2 = ‖x‖2 .. 

3.2.2 Noiseless Experiments on Synthetic Data 

In this section, we present the outcomes of our experiments where we compared 
supervised Laplacian learning (SLL) with prevalent methods such as k-nearest 
neighbors regression (kNN), local linear regression (LLR), and traditional Laplace 
learning (TLL) on the synthetic datasets without noise. For each dataset and for 
each method, we test a wide range of parameters as outlined in Appendix “Local 
and Laplacian-Based Methods” and in this section report the lowest relative error 
across all parameter settings for each dataset/method combination. 

We also compare our proposed method to the result of using a one-dimensional 
embedding generated by the nonlinear level set learning (NLL) of [67] as an input to 
local linear regression (LLR) or k-nearest neighbors regression (kNN). Specifically, 
because the output y ∈ R. in each of the synthetic datasets depends only on a one-
dimensional function of the input coordinates x ∈ RD

.,  we  use  NLL  to  lea  rn an
embedding g : RD → R

D
. and then use g(x)1 ∈ R. as a predictor for y ∈ R. within 

LLR and kNN. For further experimental details, see Appendix “Nonlinear Level-Set 
Learning”. 

For each example and parameter configuration, the dataset was randomly 
partitioned into a training set of Ntrain = 100. points, used to train the prediction 
methods, and a test set of Ntest = 900. points over which the mean relative error 
of the prediction method was computed. The relative errors and runtimes reported 
in Table 2 correspond to optimal choices of parameters—that is, the parameters 
yielding minimal mean relative error—for each method/example and are averages 
over ten independent trials for each method/example combination, i.e., ten different 
partitions of the data into training and test sets. 

The computational tasks in this study were executed on a MacBook Pro or 
MacBook Air equipped with an Apple M1 chip, featuring 8 cores split between 
4 performance cores and 4 efficiency cores, and 16 GB of RAM. From Table 2,  we  
see that the SLL approach demonstrated minimal relative error among all methods 
across all datasets. The runtime required for SLL is also quite reasonable, clocking 
in at <0.1.s on a standard laptop computer across all examples—this runtime stands 
in particular stark contrast to the NLL method, which requires training of a neural 
network. 

On all of the above examples, supervised Laplacian learning (SLL) outperforms 
all competing methods in the noiseless setting, except on the Swiss Roll where SLL 
and TLL work equally well (perhaps because the intrinsic dimension is so small) 
and on the Annulus where SLL and the NLL-based methods work equally well. The 
minimum relative error among all examples (9.82%) is achieved on the Swiss Roll 
dataset, which also features the fewest optimal nearest neighbors and the smallest τ .
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Table 3 Relative error in 
noiseless label prediction for 
fixed λ., τ .,  an  d ε . (average over 
ten trials). The best results 
are emphasized in bold 

λ = 0.01, τ = 1., Relative error 

ε = 0.005. kNN LLR TLL SLL 

Small tree 0.3719 0.1781 0.9678 0.1309 
Big tree 0.7838 0.4138 0.7916 0.1530 
Cube 0.4488 0.3971 0.9034 0.1782 
Sphere 0.3471 0.2225 0.8582 0.1641 
Swiss roll 0.4857 0.3648 0.1186 0.1071 
Annulus 0.7434 0.6859 0.8773 0.2723 

value. We posit that this predictive power and parsimony in parameters may be due 
to the simpler, lower-dimensional structure of the Swiss Roll. The relative errors for 
the other datasets ranged between 12.42 and 27.43%. 

To compare methods across the same parameters, we fix λ = 0.01., τ = 1., and 
ε = 0.005. and compare relative error accordingly as seen in Table 3. Across all 
methods we either see the best relative error with the SLL method or have a tie for 
lowest relative error for the Swiss Roll dataset. 

3.2.3 Noisy Experiments on Synthetic Data 

In this section, we compare the prediction efficacy of the SLL method against kNN, 
LLR, and TLL on the synthetic datasets in the presence of additive noise, either on 
the labels as described by Model 1 or the features as described by Model 2. We do 
not include a comparison to the NLL-driven prediction methods in the noisy setting, 
as we saw previously that their performance was no better than SLL (and sometimes 
quite worse) and their runtimes were roughly four orders of magnitude higher than 
SLL, owing to the need to train a neural network. 

With σ . denoting the noise level (σ = σx . in the case of noisy features and σ = σy . 

in the case of noisy labels), we incorporate additive noise as given by Models 1 
and 2. We do this for the noise on data features or on data labels separately. In each 
case, we tune the parameters of each method across the collection of parameters as 
described in Appendix “Local and Laplacian-Based Methods” and then choose the 
best parameters for each method. However, we do fix τ = 1. and λ = 10−2

. in all 
experiments, as optimal performance of our method is almost always for τ . large, 
and results were insensitive to choice of λ.. We then plot the results of the relative 
error of each method against the varying σ . levels in both cases, as seen in Fig. 6 
(noise on features) and Fig. 7 (noise on labels). 

For both noise models, as the noise level increases, the relative error increases 
across all methods. However, our proposed SLL method significantly outperforms 
all other methods across all noise levels, with the exception of nearly identical 
performance between our SLL method and traditional Laplace learning on the Swiss 
Roll as seen in Figs. 6e and 7e. As in the noiseless case, we again posit that this may
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Fig. 6 Relative errors vs. noise levels σ . for noise on data features (Model 2) 
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Fig. 7 Relative errors vs. noise level σ . for noise on data labels (Model 1) 

be due to the low intrinsic dimension of the Swiss Roll. Overall, our SLL method 
remains highly robust to noise on both the data features and on the labels. 

3.2.4 Experiments on Real-World Datasets 

Here we consider the problem of predicting house prices and other variables using 
the following real-world datasets. For each dataset, we assume access to 10%. of the
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Table 4 The evaluation of relative error and runtime performance in label prediction using various 
algorithms across real-world datasets for fixed lambda, tau, and epsilon 

Lambda =. 0.01, Tau =. 1, Relative error 

Epsilon =. 0.005 kNN LLR TLL SLL 

Abalone 0.7314 0.6984 0.7570 0.6719 

Ames housing 0.4699 0.4363 0.8080 0.4002 

California housing 0.6046 0.5219 0.6429 0.5056 

labels and measure predictive performance on the remaining points. The datasets 
used in this study are described as follows: 

(i) Abalone: The Abalone dataset consists of 4, 177. samples with 8 features and 
can be accessed from [46]. It is used to predict the age of abalone from physical 
measurements such as length, diameter, and shell weight. For simplicity, we 
chose to ignore the categorical “sex” variable in this analysis. This dataset has 
been a benchmark in regression tasks. 

(ii) Ames Housing: This dataset contains 2, 930. samples with 82 selected features. 
It provides detailed information about residential properties in Ames, Iowa, 
and is commonly used for regression tasks predicting house prices based on 
various physical and locational attributes[19]. We accessed this dataset from 
Kaggle [36], and the features were selected with an absolute correlation greater 
than 0.3 with the target variable, SalePrice, to ensure the inclusion of only the 
most relevant predictors. 

(iii) California Housing: With 20, 433. samples and 9 features, the California 
Housing dataset is used to predict house prices based on demographic and 
geographic data from California [49]. This dataset was accessed from Kaggle 
[37], and to keep the analysis more straightforward, we excluded the categori-
cal “ocean proximity” variable. 

The results across all datasets demonstrate that our method outperformed the 
other algorithms, although the error was rather high for all methods with so few 
labels (Table 4). For these datasets, SLL significantly outperformed TLL, but 
there was only a small improvement over LLR; we conjecture that this is because 
the response variable is (locally) fairly linear, whereas our synthetic examples 
were constructed to have strong nonlinearities. Overall, the findings highlight the 
effectiveness of SLL in leveraging the structural relationships within the data while 
also reaffirming the competitiveness of traditional methods. 

4 Conclusion 

This chapter explores a geometric approach to supervised dimension reduction, 
where local gradient information is used to elongate useful dimensions. By com-
puting and embedding geodesic distances under this local gradient stretching, we
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obtain supervised visualizations capable of simultaneously denoising the data while 
preserving global geometric information. By incorporating this metric into a graph 
Laplacian construction, we obtain a supervised graph Laplacian, which is used for 
prediction in a Laplacian learning framework. Extensive numerical experiments 
indicate the utility of this approach when the number of labels is small and the 
data is noisy. Since shortest path distances can be sensitive to noise, future work 
will explore whether combining diffusion-based algorithms such as PHATE [44] 
with our local metric can produce more noise-robust visualizations. Future work 
will also explore a more rigorous theoretical analysis of the convergence of d∇Y,τ . to 
the continuum limit (6), a theoretical analysis of supervised Laplacian learning, and 
the application of our prediction methodology on more real-world data. 
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Appendix: Supporting Results 

Further Visualization Results 

Figure 8 shows the MDS embedding of RF-GAP proximities on the Small Tree and 
Big Tree datasets. 

Fig. 8 MDS embeddings of RF-GAP proximities on tree datasets
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Local and Laplacian-Based Methods 

For each synthetic dataset, we tune the parameters of the kNN, LLR, and TLL 
methods along with our SLL method across a wide range and report the best relative 
error. The parameter sets are given in Table 5. 

Based on this parameter tuning, the optimal parameters returning the lowest 
relative error for our SLL method are shown in Table 6. 

For the noisy experiments, we again tune the parameters of the kNN, LLR, and 
TLL methods along with our SLL method and report the resulting best relative error. 
The parameter sets are given in Table 7. 

Table 5 Parameters used for the noiseless cases 

Parameter Value 

ε . set 10−3 ., 2 × 10−3 ., 3 × 10−3 ., 4 × 10−3 ., 5 × 10−3 ., 6 × 10−3 ., 7 × 10−3 ., 8 × 10−3 ., 
9 × 10−3 ., 10−2 . 

NN set 2, 3, 4, 6, 8, 12, 16, 23, 32, 46, 64, 91 

λ. set 10−6 ., 10−4 ., 10−2 ., 1.0., 102 . 

τ . set 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 

Table 6 Optimal parameters for supervised Laplacian learning (SLL) 

Data SLL error Nearest neighbor ε . λ. τ . 

Small tree (d = 8). 0.1300 23 0.006 0.01 1 

Big tree (d = 4). 0.1160 91 0.002 0.01 1 

Cube (d = 5). 0.1607 64 0.003 0.01 1 

Sphere (d = 4). 0.1828 32 0.006 0.0001 1 

Swiss roll (d = 2). 0.0982 6 0.008 0.0001 0.1 

Annulus (d = 4). 0.2743 23 0.006 0.01 1 

Table 7 Parameters used for the noisy cases 

Parameter Value 

ε . set 10−3 ., 2 × 10−3 ., 3 × 10−3 ., 4 × 10−3 ., 5 × 10−3 ., 6 × 10−3 ., 7 × 10−3 ., 8 × 10−3 ., 
9 × 10−3 ., 10−2 . 

σx . set 10−3 ., 2 × 10−3 ., 4 × 10−3 ., 8 × 10−3 ., 1.6 × 10−2 ., 3.2 × 10−2 ., 6.4 × 10−2 ., 
0.128, 0.256 

σy . set 10−3 ., 2 × 10−3 ., 4 × 10−3 ., 8 × 10−3 ., 1.6 × 10−2 ., 3.2 × 10−2 ., 6.4 × 10−2 ., 
0.128, 0.256 

NN set 2, 3, 4, 6, 8, 12, 16, 23, 32, 46, 64, 91 

λ. 10−2 . 

τ . 1 

Trials 10
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Nonlinear Level-Set Learning 

For each of the synthetic datasets of Sect. 3.2, we apply the nonlinear level-
set learning (NLL) method of [67] in the noiseless setting to obtain a nonlinear 
embedding g : RD → R

D
. such that g(x)1 ∈ R. is highly predictive of y = f (x) ∈

R.. As the output y ∈ R. only depends on a one-dimensional function of the input 
coordinates x ∈ RD

. in each example, a one-dimensional embedding of x, which 
is entirely predictive y, exists in each example. Following [67], we parametrize g 
as seven-layer reversible neural network with “time-step” h = 0.25. and hyperbolic 
tangent activation. We train the network using the loss in [67] (Equations 9–11), 
computed over 100 training data points and parametrized with anisotropy weights 
ω = (0, 1, 1, . . . , 1) ∈ RD

.. These anisotropy weights serve to drive the first 
coordinate of the embedding to be orthogonal to level sets of f , which on an intuitive 
level corresponds to embedding as much information as possible about how f (x). 

changes with x into the first coordinate of g(x).. We weight the two loss terms 
in Equation (11) of [67] equally. Training is performed using stochastic gradient 
descent with learning rate α = 0.01. and stopped when the loss drops below 0.0001. 
or after 20,000 steps are taken, whichever occurs first. After the embedding g has 
been obtained in this way, we test the efficacy of g(x)1 . in predicting y = f (x). 

via k-nearest neighbors regression (KNN) and local linear regression over the 900 
remaining test data points. 

As the NLL loss depends on evaluations of ∇f ., which for most practical 
applications we will not have access to, we approximate the gradient of f using 
the k-neighbors method of Sect. 2.2. We vary the number of neighbors kgrad . used in 
gradient computation, as well as the number of neighbors kkNN . used in the subse-
quent prediction via k-nearest neighbors and the number kLLR . used in prediction via 
local linear regression, within the set {1, 2, . . . , 25}. and for each example report best 
kNN and LLR relative error over all combinations (kgrad, kkNN). and (kgrad, kLLR)., 
as averaged over ten independent trials (i.e., ten different partitions of the data into 
training and test sets). The minimal relative errors for each example, along with the 
optimal combinations of kgrad ., kkNN ., and kLLR . and corresponding training times, 
can be found in Table 8. 

Table 8 Relative error, embedding training times, and optimal parameters for prediction on NLL 
embeddings via k-nearest neighbors and local linear regression 

k-nearest neighbors regression Local linear regression 

Relative 
error kgrad . kkNN . 

Training 
time (s) Relative error kgrad . kLLR . 

Training 
time (s) 

Small tree 0.2900 23 2 1256 0.2528 25 6 896 

Big tree 0.1519 25 4 568 0.1791 25 11 568 

Cube 0.5749 6 4 679 0.6495 6 5 679 

Sphere 0.6236 6 8 708 0.6914 6 25 708 

Swiss roll 0.6437 4 10 492 0.5645 11 25 488 

Annulus 0.3006 17 7 493 0.2971 22 23 503
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Reducing NLP Model Embeddings for 
Deployment in Embedded Systems 

Karolyn Babalola, Arnaja Mitra, and Jing Qin 

1 Introduction 

The latest advancements in natural language processing (NLP) have revolutionized 
the way technology represents and replicates human communication. In partic-
ular, transformer-based models have marked a major turning point in NLP by 
enabling large-scale statistical representations of semantics and syntactic rules 
[36]. Transformer-based technologies underlie many state-of-the-art large language 
models, such as ChatGPT [6] and its variants, LLaMa [33], and BERT [10]. They 
significantly outperform previous NLP approaches by networking several layers of 
encoding networks that comprise hundreds of millions to billions of parameters. 
The growth of NLP technology has undoubtedly relied heavily on the increasing 
availability of high-performance computing resources. To overcome the associated 
computational bottlenecks, our hypothesis focuses on finding a balance between 
model efficiency and performance, with the goal of developing smaller, faster 
models that maintain high levels of accuracy. 

The compute-intensive structure of state-of-the-art NLP models has restricted its 
application in resource-limited environments. Embedded systems, such as FPGAs 
[5], network-restricted applications, the Internet of Things (IoT), and edge devices, 
often impose restrictions that make deploying large language models virtually 
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impossible without significant reductions in model size. To that end, various 
methods, such as distillation and pruning, exist to achieve this reduction. 

Distillation is a size-reduction method that involves transferring knowledge 
from a “teacher” model to a smaller “student” model, which is a copy of the 
teacher model with several layers removed. Distillation occurs by training the 
student on the loss over the soft target probabilities of the teacher. DistilBERT [28] 
and TinyBERT [16] are well-known examples of distilled BERT models. While 
the original base BERT model comprises 110M parameters and uses 431MB of 
memory, DistilBERT contains 66M parameters requiring approximately 259MB of 
memory, and TinyBERT has a remarkable 14.5M parameters, which would require 
approximately 60MB of memory. Despite their reduced size, distilled models 
retain comparable performance as the base BERT model on bench-marking tasks. 
Consequently, several pre-trained versions of distilled models have been made 
available for fine-tuning on more specific NLP tasks such as intent classification, 
sentiment classification, and named-entity recognition [30]. 

Pruning is another technique for reducing the size of a model by removing model 
weights and their respective synapses. In practice, one takes a pre-trained model, 
such as BERT or RoBERTa [18], and selectively masks or ablates the weights 
within the attention heads of each encoding layer. This can be achieved using greedy 
methods, such as magnitude weight pruning [13], or those mentioned in [20], and/or 
entropy methods as explored in [29]. 

Distilled and pruned models have shown considerable robustness in their overall 
performance but still exhibit some degradation compared to their original models. 
Because previous studies focus on maximizing benchmarking performance of 
reduced models, it is unclear about how to effectively balance model reduction 
and fine-tuning techniques for specific NLP tasks in terms of size and performance 
trade-offs. Recent investigations have begun to explore the performance trade-offs 
of iterative model reduction using distillation and pruning [29]. In addition, effective 
dimensionality reduction techniques have been shown for fixed word embeddings in 
text analysis applications [26, 27, 31]. Building on this promise, we hypothesize 
that because categorical features of the corpus are preserved in the pre-trained 
BERT models’ token embedding, dimension reduction methods that preserve a 
significant percentage of the variance could help maintain performance as model 
size decreases. In this work, we aim to explore the trade-offs of model reduction 
by applying dimensionality-reduction techniques to the embedding layer of BERT 
models. 

1.1 NLP Tasks in Embedded Systems 

The process of documenting NLP task performance trade-offs for size-reduced 
transformer-based models was initiated in [29]. In this case, three tasks, intent 
classification, sentiment classification, and named-entity recognition, were chosen 
based on a simple robot arm apparatus that the authors chose. However, the chosen
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tasks embody a range of use cases that have relevant applications in compute-
constrained environments. 

Intent classification (IC) is a natural language understanding (NLU) task that 
involves classifying a user’s intention from either a predefined set of utterances or 
a summary of text input. In [29], they were using intent-classification to control the 
output of a robot arm based on a user’s input. They tested the accuracy of the chosen 
models using a well-defined public IC dataset called HurIC [35]. HurIC is a pre-
defined corpus of utterances used to define human-robot interaction in house service 
robots. Interestingly enough, the HurIC dataset has a well-defined classification; 
thus, models of many sizes produce relatively high performances. 

The sentiment classification NLP task is defined as interpreting a predefined 
set user’s utterances into a set of sentiment labels. In [29], the authors use this to 
classify user emotion in combination with intent to determine how to program the 
actions of a robot. They use the dataset called GoEmotions1 to test their models’ 
performance in different environments [7]. This dataset has been tested in several 
other use cases and provides a useful test bed to expand beyond the use case in 
[29]. Furthermore, GoEmotion presents a relatively challenging task that produces 
a range of performance outcomes for different models. 

Finally, in [29], named-entity recognition (NER) is used to enable the robot arm 
use case to target entities in its environment on which to direct user instructions. 
This is a widely used NLP task with many applications. In this use case, they 
tested entity recognition using two different datasets, i.e., CoNLL-2003 [32] and 
WNUT17 [8]. WNUT17 is a dataset comprised of user-generated social-media data 
that was developed for the task of identifying previously unseen and unusual entities 
in ongoing discussions. The authors chose the WNUT17 due to its similarity to user 
utterance data and its shared task of recognizing unknown entities; however, the 
overall task of WNUT17 is quite difficult and tends to produce low performance 
for many models. CoNLL-2003 is a dataset of annotated entities generated from 
Reuters news stories published between August 1996 and August 1997. CoNLL 
has similarly high-performance outcomes as the HuRIC, but it provides a useful 
benchmarking task for NER. 

While [29] documents the performance trade-offs of the three aforementioned 
NLP tasks, we focus our study testing a range of dimensionality-reduction tech-
niques on NER and particularly the CoNLL-2003 dataset, since its relatively high 
performance lends itself well to demonstrating degradation.

1 https://huggingface.co/datasets/go_emotions 

https://huggingface.co/datasets/go_emotions
https://huggingface.co/datasets/go_emotions
https://huggingface.co/datasets/go_emotions
https://huggingface.co/datasets/go_emotions
https://huggingface.co/datasets/go_emotions
https://huggingface.co/datasets/go_emotions


230 K. Babalola et al.

1.2 Extended Exploration of Model Size Reduction and 
Performance 

In [29], the authors tested the performance of two large BERT models, i.e., BERT 
and RoBERTa, and two distilled models, namely, DistilBERT and TinyBERT; all 
models were fine-tuned on the aforementioned NLP tasks [29]. These models’ 
performance stats were contrasted with their own custom-pruned models. The 
custom models were pruned by measuring the entropy of the attention heads within 
a given each layer of the model and masking the heads with the lowest entropy. If 
the masked heads produced an F1 score above a predefined threshold, it would be 
removed, and the masking and removal process would iterate until the minimum F1 
threshold was reached. This process resulted in models ranging in sizes from 75.9M 
parameters and 303.5MB to as small as 34.1M parameters and 136.4MB. 

This investigation replicates the methodological approach demonstrated in [29] 
to reduce BERT models to fit certain resource and performance constraints. 
However, rather than pruning BERT models, this study investigates whether one 
could achieve comparable performance by manipulating the token embedding layer 
and, thus, models’ overall hidden size. The initial reasoning for this approach is 
a predicated fact that reducing the embedding size by any factor is advantageous 
because it automatically reduces the model’s total parameter space by the same 
factor, e.g., reducing the embedding layer from 768 by a factor of 3–256 would 
reduce the DistilBERT parameter space to 22M. This chapter discusses the results 
and challenges faced while exploring this idea. 

The remainder of the chapter is organized as follows. In Sect. 2, we introduce the 
token embedding layer in BERT type of models, briefly present the four dimension 
reduction methods that we employ, and our proposed embedding dimension-reduced 
NLP pipeline. A variety of numerical experiments on named-entity recognition test 
with DistilBERT are conducted and described in Sect. 3 to discuss the impacts 
of reduced dimension, batch size, and learning rate on recognition accuracy and 
training runtime. Finally, we conclude the chapter and outline future work in Sect. 4. 

2 Proposed Methodology 

In this work, we apply various dimension reduction methods to reduce the model 
token embedding size, so as to produce new embedding vectors that maximize 
the variance of its components in a smaller vector space. In particular, we chose 
principal components analysis (PCA), truncated singular value decomposition 
(TSVD), agglomerative clustering (AC), and uniform manifold approximation and 
projection (UMAP).
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2.1 Embeddings in BERT 

Tensor representations of chunks of text, referred to as tokens, form foundation of 
quantitative NLP. Such numerical representations range from large, sparse categori-
cal representations of words in a corpus, such as the one-hot encoding [22], to corpus 
frequency representations such as TF-IDF [1]. Selecting an appropriate numerical 
representation of words and tokens has often been the first step in optimizing the 
performance of a task-specific NLP model. For instance, historically topic models, 
such as LDA [4], often relied on generating a bag-of-words representation that infers 
a “global” word distribution and presumes exchangeability [2]. 

More recent topic models have replaced sparse representation of words with 
embeddings. Generated by neural network models, embeddings are vectors that 
encode categorical features of words or tokens into a multidimensional space [3]. 
Algorithms such as Word2Vec [21] and GloVe [25] have been used to train on 
corpuses in specific domains and are a means of sharing pre-trained embeddings 
to perform vector-based search tasks or to precede a downstream classifier or 
clustering model. Even topic models received more recent updates, using embedding 
representations [11, 17]. 

BERT transformer models leverage token embeddings; however, they are a 
fixed part of its first layer (cf. Fig. 1). The token embedding is summed with a 
position embedding and a token type embedding in the first layer. The position 
embedding encodes the position of each word in a fixed input sequence, typically 
512. The token type embedding encodes to which sequence a token belongs; for 
instance, in sequence-to-sequence training, the token type would label the inputs 
as either sequence “A” or sequence “B,” whether the sequence is the input or the 
output respectively. Unlike word2vec and GloVe, the token embedding in BERT 
models is initialized as Wordpiece embeddings [37] and trained with the entire 
model to generate a contextual language representation in output of the final 
(hidden) layer. The models are then further fine-tuned for specific tasks, such as 
classification and question/answering. Therefore, pre-trained BERT models have 
their own unique token embeddings. Nonetheless, the token embedding alone still 
effectively represents the categorical features of the corpus; this can be demonstrated 

Fig. 1 BERT input representation highlighting the token embeddings [9]
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by contrasting the cosine similarity of embeddings corresponding to words in the 
corpus that are similar in meaning to those that are not [9]. 

Previous studies have shown effective dimensionality reduction for fixed word 
embeddings with text analysis applications [26, 27, 31]. Extending this idea, we 
assume that since categorical features of the corpus are preserved in the pre-trained 
BERT models’ token embedding, it follows that dimension reduction methods that 
preserve a significant percentage of the variance could help maintain performance 
as the model size decreases. 

2.2 Dimension Reduction Methods 

In this section, we briefly introduce the dimension reduction methods employed 
in this study. For a given token embedding matrix X ∈ Rm×n

., where m is the 
number of tokens and n is the dimension of token features, we intend to reduce 
its dimensionality. The default dimension n = 768. is quite large, which not only 
leads to the increased storage requirement but also slows down computation or 
retrieval speeds. There are many dimensionality reduction approaches that have 
been developed to convert high-dimensional datasets into their low-dimensional 
representations while retaining the most important data features. 

PCA was first proposed in [24] as an analogue of the principal axis theorem in 
mechanics and was later independently developed and named by Harold Hotelling 
[14]. As one of the most popular dimensionality reduction methods, PCA uses a 
linear transformation to project the high-dimensional embedding matrix into its low-
dimensional representations with the size m×k ., where k < n. such that the variance 
of the low-dimensional representations is maximized. 

Another method that we apply is truncated singular value decomposition 
(TSVD), which comes naturally with the singular value decomposition of a matrix 
and has been widely used for low-rank matrix approximation [12]. If an embedding 
matrix X is assumed to be low rank with a relatively small rank k < min{m, n}., 
then we can use the following way to approximate X: 

. ̂X =
k

∑

i=1

σiuT
i vi ,

where σi . are the singular values of X arranged in the descending order and ui . and 
vi . are the left and right singular vectors. In fact, we can show that ̂X . achieves the 
smallest Frobenius norm in the following sense: 

.̂X = argmin
Y∈Rm×n: rank(Y )≤k

‖X − Y‖F .
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As one important hierarchical clustering method, agglomerative clustering (AC) 
[15] is a “bottom-up” approach, where each data point starts as its cluster and 
pairs of clusters are merged as one moves up the hierarchy. The iterative algorithm 
terminates until all points belong to a single cluster or a stopping criterion is 
satisfied. In this method, the similarity between two clusters is typically measured 
by the distance between the closest members of the clusters, which is called the 
single linkage; the farthest members, which are called the complete linkage; and 
the average distance between all pairs of members, called the average linkage,  or  
other metrics. In addition, agglomerative clustering yields a dendrogram, i.e., a tree 
structure indicating the merges that can generate the final clustering result. In this 
work, we apply agglomerative clustering to reduce the feature numbers in the token 
embedding matrix while preserving the most distinguishable f eatures.

More recently, uniform manifold approximation and projection (UMAP) has 
been proposed as a powerful nonlinear dimensionality reduction technique [19]. 
By visualization, it resembles the T-distributed stochastic neighbor embedding 
(t-SNE) [34], but it assumes that the data is uniformly distributed on a locally 
connected Riemannian manifold with the Riemannian metric being locally constant 
or approximately locally constant. This assumption may not be valid in NLP, which 
prevents the training on the reduced dataset from achieving high accuracy (see 
Sect. 3 for more justifications). Note that unlike PCA, UMAP can preserve nonlinear 
overall variance of the dataset, but it typically projects the data onto 2D or 3D 
spaces for visualization. In our experiments, UMAP is much slower than the other 
counterparts for training, so we exclude it from comparison. 

2.3 Embedding Reduced NLP Method 

In this work, we extract the pre-trained token embedding from a fine-tuned Distil-
BERT model and retrain a reconfigured DistilBERT model with token embedding 
reduced using the dimensionality reduction methods described above. We explore 
whether the information retained in the token embedding layer is significant enough 
to help maintain some portion of the performance of the original model size. In lieu 
of our initial goal, to train and test reduced models on the three NLP tasks stated in 
Sect. 1.1, we opted to focus on the NER task while adding a demonstration of the 
effect of hyperparameter tuning on the performance. 

3 Numerical Experiments 

In this section, we illustrate the influence of dimension reduction methods applied 
to the token embedding matrix of DistilBERT on the overall performance of an 
NER task, including the accuracy and training runtime. Although hyperparameter 
optimization may seem less critical for models trained infrequently and deployed in
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Table 1 Overview of the CoNLL-2003 dataset 

English data German data 

Data type Articles Sentences Tokens Articles Sentences Tokens 

Training set 946 14,987 203,621 553 12,705 206,931 

Development set 216 3,466 51,362 201 3,068 51,444 

Test set 231 3,684 46,435 155 3,160 51,943 

embedded systems, it is still essential for achieving optimal performance. A well-
tuned model improves prediction accuracy and generalizability, directly enhancing 
application reliability. While training may require more resources, optimizing 
for efficient inference is crucial, as this phase runs continuously in embedded 
environments. Even small improvements in tuning can significantly impact runtime, 
power efficiency, and accuracy, which is particularly important for applications 
where low latency and power consumption are critical. Motivated by these facts, 
our investigation here aims to future-proof the DistilBERT model for potentially 
more resource-constrained or larger-scale applications where runtime and hardware 
efficiency become more pronounced. 

Our main question arises: Can reducing the size of a model by manipulating 
the embedding size using dimensionality reduction methods produce performance 
results comparable to that of the original model? In addition, we observe whether 
we can map reduction methods to expected performance trade-offs. To answer this, 
we train the model DistilBERT to perform one of the NLP tasks mentioned above, 
i.e., named-entity recognition (NER), on one benchmark dataset. 

All the numerical experiments are implemented on Python 3 in a desktop 
computer with Intel CPU i9-9960X RAM 64GB and GPU Dual Nvidia Quadro 
RTX5000 with Windows 10 Pro. 

Throughout the section, we focus on the CoNLL-2003 dataset [32], which 
comprises eight files covering two languages: English and German. These files 
are annotated with four types of named entities: persons, locations, organizations, 
and miscellaneous entities that do not belong to the previous three groups. For 
each language, there exists a training file, a development file, a test file, and a 
large file with unannotated data, offering a standardized framework for training and 
evaluating NER models. The English data was sourced from news articles within the 
Reuters corpus, spanning stories from August 1996 to August 1997. Likewise, the 
German data was extracted from the August 1992 issues of the German newspaper 
Frankfurter Rundschau. Refer to Table 1 for the distribution of various categories 
and subsets in the CoNLL-2003 dataset. 

We have fine-tuned the DistilBERT model using the aforementioned dataset 
collected from Hugging Face2 to perform the NLP task NER while maintaining 
the following hyperparameter setup: batch size among {8, 16, 32, 64}., number 
of epochs as 7, learning rate among {10−6, 10−5, 10−4}., and weight decay rate

2 https://huggingface.co/ 

https://huggingface.co/
https://huggingface.co/
https://huggingface.co/
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between 0.01. and 0.3. To evaluate the performance, we use the standard metrics for 
classification: precision, recall, F1 score, and accuracy [23]. Let FP , FN , T  P , and 
T  N  denote the respective number of false positives, false negatives, true positives, 
and true negatives. Then the four metrics a re defined as follows:

• Precision is the ratio of relevant instances among the retrieved instances, given 
by Pr = T P/(T P + FP).. 

• Recall is the ratio of relevant instances that were retrieved, given by Re =
T P/(T P + FN).. 

• F1 Score (or F-measure) is the harmonic mean of precision and recall, given by 
F1 = 2PrRe/(P r + Re).. 

• Accuracy is the ratio of correct predictions to the total number of predictions, 
defined as acc = (T P + T N)/(T P + FN + FP + T N).. 

3.1 Experiment 1: Vary Reduced Dimension 

In our initial experiment, we set the batch size to 8 and the learning rate to 10−4
..  We  

first ran the DistilBERT without data dimension reduction as a baseline in Table 2. 
We then evaluated each dimension reduction method using various dimensions: 128, 
256, 512, and 768. Table 3 shows the overall precision, recall, F1 score, accuracy, 
and training runtime for PCA. Similar results for TSVD, AC, and UMAP are 
presented in Tables 4, 5, and 6, respectively. 

Tables 2, 3, 4, 5 and 6 show that data compression may cause very modest 
drops in accuracy despite very substantial drops in F1 score. The F1 score, which 
emphasizes both false positives (incorrectly predicted entities) and false negatives 
(missed entities), is particularly sensitive to small errors in named-entity recognition 
(NER) tasks. As data dimensionality decreases, imbalances in entity types, e.g., 

Table 2 Evaluation results without dimension reduction with batch size 8 and learning rate 10−4 . 

Dim Overall precision Overall recall Overall F1 Overall accuracy Train runtime (s) 

128 0.516295 0.515718 0.516006 0.882060 2101.14 

256 0.572505 0.612149 0.591664 0.903490 2738.20 

512 0.633252 0.664280 0.648395 0.918455 4375.02 

768 0.920866 0.928180 0.924508 0.981270 6615.40 

Table 3 Evaluation results from PCA with batch size 8 and learning rate 10−4 . 

Dim Overall precision Overall recall Overall F1 Overall accuracy Train runtime (s) 

128 0.526883 0.525115 0.525997 0.884395 2012.77 

256 0.579988 0.623783 0.601089 0.905063 2627.11 

512 0.634869 0.656673 0.645587 0.918646 4107.24 

768 0.721791 0.739233 0.730408 0.941570 6290.71
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Table 4 Evaluation results from TSVD with batch size 8 and learning rate 10−4 . 

Dim Overall precision Overall recall Overall F1 Overall accuracy Train runtime (s) 

128 0.521172 0.527352 0.524244 0.883156 2000.89 

256 0.581499 0.626580 0.603199 0.905031 2590.51 

512 0.631465 0.651527 0.641339 0.918360 4135.47 

768 0.851968 0.852444 0.852206 0.964573 6260.57 

Table 5 Evaluation results from AC with batch size 8 and learning rate 10−4 . 

Dim Overall precision Overall recall Overall F1 Overall accuracy Train runtime (s) 

128 0.526924 0.525450 0.526186 0.883156 2007.38 

256 0.576366 0.613827 0.594507 0.904157 2588.36 

512 0.634869 0.656673 0.645587 0.918646 4162.72 

768 0.721791 0.739233 0.730408 0.941570 6357.39 

Table 6 Evaluation results from UMAP with batch size 8 and learning rate 10−4 . 

Dim Overall precision Overall recall Overall F1 Overall accuracy Train runtime (s) 

128 0.482526 0.312004 0.378966 0.860740 2221.97 

256 0.481790 0.375881 0.422296 0.874323 2957.02 

512 0.517582 0.439646 0.475442 0.887620 4749.07 

768 0 0 0 0.789108 6948.93 

some entities appearing more frequently than others, become more pronounced. 
Accuracy remains relatively stable as the model correctly classifies the majority 
of entities, particularly the common ones, even if rare entities are occasionally 
misclassified or missed. However, the F1 score drops more substantially due to the 
greater impact on recall and precision for rare entities, which in turn lowers the 
harmonic mean. 

As the dimension increases, longer running times are required for the training 
step, but the accuracy scores improve. Among the four methods, UMAP exhibits the 
poorest performance in terms of accuracy, also requiring slightly more training time. 
When the original hidden dimension of 768 is used, UMAP produces zero precision, 
recall, and F1 score. This is likely due to the fact that the manifold assumption of 
UMAP may not be satisfied for the token embedding matrix. 

On the other hand, PCA, TSVD, and AC perform similarly in terms of accuracy 
and runtime. When the reduced dimension size is 256, these three methods can 
achieve an accuracy of above 90%, but with much faster training times. 

3.2 Experiment 2: Vary Batch Size 

In our second experiment, we kept the learning rate fixed at 10−4
. and the reduced 

dimension at 256. Tables 7 and 8 present the overall F1 and accuracy for each
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Table 7 Overall F1 for all 
the methods with learning 
rate 10−4 . and dimension 256 

Batch size PCA TSVD AC UMAP 

8 0.601089 0.524244 0.526186 0.378966 

16 0.575301 0.573156 0.57065 0.418090 

32 0.554822 0.552738 0.556845 0.350840 

64 0.500000 0.494786 0.503551 0.27224 

Table 8 Overall accuracy for 
all the methods with learning 
rate 10−4 . and dimension 256 

Batch size PCA TSVD AC UMAP 

8 0.905063 0.905031 0.904157 0.874323 

16 0.898550 0.898994 0.899392 0.871130 

32 0.893720 0.893974 0.894758 0.856133 

64 0.878866 0.874593 0.877611 0.836847 

Table 9 Train runtime (s) for 
all the methods with learning 
rate 10−4 . and dimension 256 

Batch size PCA TSVD AC UMAP 

8 2627.11 2590.51 2588.36 2957.02 

16 3616.34 3631.47 3830.19 3671.07 

32 3206.81 2603.91 2576.84 3717.51 

64 2257.94 2251.65 2567.62 2315.40 

Table 10 Overall F1 for all 
the methods with batch size 8 
and dimension 256 

Learning rate PCA TSVD AC UMAP 

10−6 . 0.106690 0.109293 0.095072 0 

10−5 . 0.392026 0.396161 0.389151 0.103087 

10−4 . 0.601089 0.603199 0.594507 0.422296 

method with varying batch sizes in {8, 16, 32, 64}.. The corresponding training 
runtimes are shown in Table 9. It can be observed that as the batch size increases, the 
accuracy of each method generally decreases. In addition, the training time tends to 
be longest when the batch size is 32. 

3.3 Experiment 3: Vary Learning Rate 

In this experiment, we kept the batch size fixed at 8 and the reduced dimension 
at 256 and varied the learning rate among 10−6, 10−5, 10−4

.. Tables 10 and 11 
show the overall F1 and accuracy for all the methods, while Table 12 displays the 
corresponding training runtimes. One can observe that as the learning rate increases 
from 10−6

. to 10−4
., the accuracy consistently improves for each method with less 

training runtime. Therefore, a learning rate of 10−4
. appears to be the optimal 

choice for these methods. Furthermore, UMAP still performs the poorest in terms 
of accuracy compared to all the other methods. It is important to note that since the 
learning rate changes dynamically during training, testing the model with a fixed or 
static learning rate may not provide illuminating insights into its final performance. 
As a result, the learning rate may be the least informative metric at this stage.
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Table 11 Overall accuracy 
for all the methods with batch 
size 8 and dimension 256 

Learning rate PCA TSVD AC UMAP 

10−6 . 0.798275 0.800086 0.796797 0.789108 

10−5 . 0.854417 0.854656 0.852686 0.802103 

10−4 . 0.905063 0.905031 0.904157 0.874323 

Table 12 Train runtime (s) 
for all the methods with batch 
size 8 and dimension 256 

Learning rate PCA TSVD AC UMAP 

10−6 . 6290.81 6329.54 5486.01 5011.44 

10−5 . 2922.44 2930.25 3890.68 4596.04 

10−4 . 2627.11 2590.51 2588.36 2957.02 

4 Conclusions and Future Work 

This investigation presents one of many potential approaches to developing pre-
scriptive methods for reducing the size of large language models and enabling their 
deployment to resource-constrained systems. Reducing token embedding dimen-
sions seems to be a relatively simple and direct approach to manipulating the size of 
a BERT model, as reducing the embedding by any factor, n, reduces the entire model 
size by n. Furthermore, the token embeddings provide a quantitative representation 
of the underlying corpus, as evidenced by the proximity of similar word vectors. 
However, there are many caveats to reducing only the token embeddings in the first 
layer of a BERT model. 

First, to change the embedding size of a BERT model in Hugging Face 
(PyTorch3 ), one has to change the embedding size in the model class—config.  This  
results in a random re-initialization of all model weights for the pre-trained model. 
This re-initialization is necessary because the embedding dimension, also known as 
the hidden dimension, is a fundamental component that supports the entire structure 
of the model. The embedding/hidden size is the largest component of the weight 
matrices within each attention head. In simple terms, each attention head essentially 
maps the importance of each word in a sequence to every other word, with the words 
represented by their embeddings. When the embedding size is changed, the model 
weights must be re-initialized, leading to the loss of most of the benefits of pre-
training. Apart from the dimension-transformed embedding matrix, and any residual 
influence from previous weights, the model has to be retrained from scratch. We 
used a fine-tuning training method, and therefore the reduced overall performance as 
measured by accuracy and F1 score, was somewhat limited. To improve the results, 
one could tweak the hyperparameters to extend training, but this raises the question 
of the overall cost-benefit trade-off unless a more exhaustive and expensive full 
model training protocol is follo wed.

Among the selected dimensionality-reduction methods, PCA, TSVD, and AC 
exhibit similar performance; however, UMAP significantly underperforms. This

3 https://github.com/pytorch/pytorch 

https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
https://github.com/pytorch/pytorch
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may be due to several factors, such as the possible failure of UMAP’s manifold 
assumptions to hold for this particular dataset [19]. Nonetheless, since UMAP 
generally performs well on diverse types of data, a more likely explanation could be 
the stochastic nature of UMAP and the need for a more thorough exploration of the 
seed used in generating the UMAP projection. Including a seed-tuning step might 
have improved its performance. In addition, the non-Euclidean nature of UMAP 
projections, while effective for visualizing clusters, may have overly distorted the 
feature space, hindering the performance of BERT-based NER. 

In the future, we would explore implementing the dimension reduction technique 
on the token embedding and then propagating the transformation through each layer 
of the model. This would require a transparent means of determining how each 
component of the prior embedding was transformed to generate the new, smaller 
embedding. We would, then, estimate the complexity of generating the new model 
as applying numerical transformation to all embedding-length components in each 
layer of the model. This approach assumes that a significant amount of the model 
entropy is contained in the token embedding. 

Furthermore, we could also explore randomly removing weights from all sub-
sequent layers to fit the new hidden dimension and then fine-tune the model. This 
approach may help reduce the subsequent retraining time observed with a full model 
re-initialization. 
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1 Introduction 

Most single-vehicle crashes involve roadway departure, when a vehicle crosses 
the edge-line of a roadway. According to the National Highway Traffic Safety 
Administration, roadside and shoulder crashes comprised 50.2 and 43.5% of fatal 
and injurious crashes, respectively, involving a single vehicle in 2023 [1]. Key 
elements contributing to roadside crashes are fixed obstacles, such as utility poles or 
fences, and changes in terrain, like ditches and embankments. Big data and artificial 
intelligence–based safety research has led to increased focus on identification of 
objects in the vicinity of the roadway [2], but less attention has been paid to terrain 
geometry, despite evidence that terrain slope has been shown to factor heavily in 
crash fatality models [3–5]. 

While urban landscapes tend to be more human-engineered and therefore have 
less severe grade changes, rural areas have highly variable morphological features 
surrounding roadways. The rural landscape of the United States comprises a 
significant portion of the nation’s road infrastructure, accounting for 68% of road 
miles, totaling over 6 million miles as of 2020. In 2021, 40% of motor vehicle 
traffic fatalities in the United States occurred in rural areas, resulting in a rate 1.5 
times higher than urban areas per 100 million miles driven [6]. 
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LiDAR pulses 

GPS 

a b 

Fig. 1 Aerial LiDAR data form a top-down elevation map of the scanned area. (a) An aircraft is 
flown over an area, sending LiDAR pulses to the terrain below. The return time and intensity are 
recorded along with GPS coordinates. (b) A 3D point cloud is generated using the GPS coordinates 
( x, y .) and the elevation calculated from return times (z). The points can be classified using return 
intensity and other methods. The data in the example point cloud shown are classified as ground 
(light green), vegetation (low =. pink, medium =. orange, high =. dark green), road (purple), and 
buildings (red) 

In North Carolina, a substantial proportion of crashes involving vulnerable 
road users occur in agricultural settings, such as farms, woods, and pastures. In 
2023, 34% of these incidents resulted in serious injuries and fatalities, more than 
industrial, commercial, residential, and institutional areas [7]. Previous attempts to 
assess roadside hazards in rural areas identified the side slope, or slope of roadside 
terrain, as a significant component in crash prediction. However, these same studies 
identified a lack of side slope data for two-lane rural roads in many Department of 
Transportation (DOT) databases [4, 8, 9]. 

Because physical surveys are cost- and time-prohibitive, light detection and rang-
ing (LiDAR) is a compelling alternative for assessing roadside terrain grade. LiDAR 
is a remote sensing method where return time and intensity of light pulses are used 
to create a surface map of the surroundings. Roadway LiDAR data are typically 
collected by Mobile Laser Scanning (MLS), where the sensors are attached to a road 
vehicle or aerial scanning by a sensor-equipped aircraft, generating a topographical 
map [8]. The resulting point clouds also contain additional information such as the 
intensity, terrain type, and GPS time (Fig. 1). 

Due to its widespread availability, LiDAR technology has been integrated into 
numerous applications from environmental monitoring to urban planning. For 
instance, the North Carolina Emergency Risk Management Office, in collaboration 
with the North Carolina DOT and other stakeholders, has spearheaded initiatives 
to acquire statewide aerial LiDAR data. This concerted effort has resulted in the 
comprehensive coverage of the entire state, enabling detailed analyses and informed 
decision-making processes [10]. These kinds of initiatives are not only in North
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Carolina; other states have similarly recognized the value of LiDAR data and 
undertaken similar projects with support from federal initiatives. According to the 
US Geological Survey, there are efforts to create and maintain consistent elevation 
databases in all 50 states and Puerto Rico [11]. Although federal initiatives may 
exhibit lower accuracy and density compared to state-level endeavors, they nonethe-
less contribute significantly to the widespread availability of LiDAR datasets on a 
national scale. 

The objective of this preliminary study is to identify stretches of roadway 
with potentially hazardous side slopes, particularly on secondary roads in rural 
areas. We propose creating an open-source pipeline for processing aerial LiDAR 
data. The benefits of this approach are a reduction of time and cost, since many 
states have already undertaken high-quality scans across large regions. This study 
aims to leverage existing topographical survey data from the North Carolina DOT. 
Additionally, we aim to utilize open-source Python libraries to limit licensing and 
training constraints imposed by commercial geospatial data analysis packages. 

2 Prior Work 

Balado et al. [12] developed a deep learning model, PointNet, to segment ditches, 
embankments, and guardrails from MLS point clouds. The model correctly iden-
tified 92% of road points, but displayed reduced accuracy on embankment and 
ditch points, with 88.3% and 65.4%, respectively. The variability in accuracy was 
attributed to class imbalances in the dataset, as well as foliage interference with 
embankment points. 

Shams et al. [13] tested the effectiveness of airborne and mobile terrestrial 
LiDAR scanning systems in measuring roadway cross slopes (the slope from 
midline to edgeline). Mobile LiDAR data required 3 months of collection from 
five different vendors, while a single vendor provided the aerial LiDAR data by 
performing 15 flight line passes. As a result, the study found that both aerial 
and mobile terrestrial LiDAR scanners have cross slope accuracies comparable 
to conventional manual surveying methods. However, data collection was a costly 
process in comparison to the widely available datasets used in this method. 

Rua et al. [14] used LiDAR data and Monte Carlo simulations to identify areas 
susceptible to rock slides. To verify their results, human experts were employed 
to manually measure the cross slopes using ArcGIS, which was a time- and cost-
intensive process. In the end, they were able to identify 95% of the slopes found by 
the experts, and the disagreements were borderline cases. 

Jayaler and Zhou [4] gathered 5 years of Illinois runoff road crash data and were 
able to define a reliability index to measure roadside safety on two-lane roads. They 
utilized a roadside hazard rating (RHR) system from Zegeer et al. [15] to identify 
a correlation between the calculated reliability indexes of side slopes and crash 
severity.
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3 Methodology 

In this preliminary work, we attempt to establish a minimum LiDAR spatial 
resolution to reliably collect side slope grades as a continuous feature along a 
given stretch of road. Furthermore, we aim to directly segment the roadway from 
the LiDAR data rather than using precalculated polylines. Our method involves 
converting a block of LiDAR data into a pixelated image, segmenting the roadway, 
identifying the directional and perpendicular vectors of each road segment, and 
finally collecting LiDAR data in areas immediately adjacent to each roadway 
segment. Our analysis is entirely automated using Python, with the exception of 
selecting test scene boundaries. 

3.1 Development Scenes 

Aerial LiDAR data for Buncombe County, North Carolina, (North Carolina DOT 
Division 13) were provided by the North Carolina DOT. The data had a nominal 
pulse spacing of 8 points per square meter (ppsm) with a 95% non-vegetated vertical 
accuracy of 0.64 ft. The coordinate points were pre-classified by terrain or object 
type, including vegetation/stratum, buildings, and roads. For methods development, 
four example scenes were selected, each covering a 409.6 ×. 409.6 ft area and 
containing roughly 1 million LiDAR points. Scenes were selected for variable road 
geometries. 

3.2 Defining Road Segments and Slope Collection Areas 

Each LiDAR point contains world coordinates ( x, y .), elevation (z), and an asso-
ciated class, as outlined in Table 1. To reduce the amount and dimensionality of 
data, the three-dimensional LiDAR points were rasterized into a 512 ×. 512 pixel 
image, with each pixel covering a 0.8 ×. 0.8 ft area. Pixels containing any road 
points were classified as road; otherwise, they were assigned the classification value 
that occurred most within their ( x, y .) coordinates. Pixels containing no LiDAR 
points were assigned values using nearest-neighbor interpolation from surrounding 
pixels. Road pixels were isolated as a binary image, and road boundary pixels were 
identified using Sobel edge detection. The boundary was split into two connected 
components to separate opposite sides of the road. 

Figure 2a and b illustrate our approach for a single road segment. One road 
edge is designated the reference edge (r), from which pixels are sampled at
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Table 1 LiDAR 
classifications 

Classification code Description 

1 Default 

2 Ground 

3 Low Veg/Strata 

4 Medium Veg/Strata 

5 High Veg/Strata 

6 Buildings (Automated) 

7 Low points 

9 Water (Hydro cleaned area) 

10 Breakline proximity 

11 Withheld (high points) 

13 Roads 

14 Bridges 

17 Overlap default 

18 Overlap ground 

25 Overlap water 

a user-specified interval (“segment length” or “length”). A segment is defined 
by two consecutive sampled pixels (rstart . and rend .), a directional vector (d), 
and perpendicular vectors crossing the road (p) and away from the road ( p′

.). 
Bresenham’s line algorithm [16] is used to identify the pixels ostart . and oend ., where 
p intersects the opposing edge of the road (o) when originating from rstart . and rend ., 
respectively (Fig. 2a). The mean coordinates of the start and end pairs define the 
segment centerline. 

The rectangular region adjacent to the reference edge is created by the vertices 
rstart . and rend ., and the coordinates are sampled a user-specified distance (“width”) 
along p′

. from each reference pixel (Fig. 2b). The process is repeated for the 
opposing side of the road, using ostart . and oend . as the origin coordinates and p 
as the directional vector. The region boundaries are then converted to the world 
coordinate reference frame from pixel coordinates.

For shoulder slope calculations, the raw LiDAR data are filtered to include only 
points labeled “ground” within the bounding boxes of the adjacent regions. The 
remaining data are rotated to an orthographic elevation projection viewed along the 
road segment centerline (Fig. 3a). Plotting the rotated x- and z-coordinates results 
in a two-dimensional cross section of the elevation data adjacent to the segment, 
where x is the distance from the centerline and y is the elevation (Fig. 3b). Linear 
regression was used to determine the slope of the elevation data on each side of the 
road independently, and the sign of the slope to the left of the road is reversed to 
normalize the direction of elevation change relative to the road (i.e., an increase or 
decrease in elevation is positive or negative, respectively). All steps are repeated for 
each identified segment.
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Fig. 2 A schematic representation of the data sampling method. (a) A segment is defined by 
reference pixels (dark blue circles), pixels on the opposite edge (light blue circles), centerline 
coordinates (red circles), a directional vector (yellow arrow), and perpendicular vectors. (b) 
Rectangular regions adjacent to the segment are created by moving outward from the segment 
edge pixels (blue circles) to points a given width away (green circles). (c) Data within the adjacent 
regions (gray boxes) are used for slope calculation, and the process is repeated for each segment. 
Processing consecutive segments of a curved road results in overlaps on the inside and gaps on the 
outside of the curve 

4 Results 

To determine the most effective size for each sample region, we used the shorter 
edge (containing the least pixels) of the road as the reference edge and systemati-
cally tested adjacent region sizes with all length and width dimension combinations 
between 3 and 30 pixels (inclusive), resulting in 784 test conditions. Because no 
ground-truth data were available to directly compare the accuracy of the derived
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Elevation orthographic projection 
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Fig. 3 Fitting shoulder slopes to a length of road. (a) Data points adjacent to a road segment 
are rotated from three dimensions in the world perspective (left) to two dimensions using an 
orthographic elevation projection (right), where the viewing vector is the centerline of the segment 
at ground level. The resulting x-axis is the distance from the center of the road (ft), and the y-
axis is the original z-axis (elevation in ft). (b) A visualization of example outputs for consecutive 
segments. Data points are colored based on the side of the road compared to the segment vector 
(blue =. left, orange =. right). The whitespace in the middle results from filtering road points. 
Linear slope fits are shown for each side (red =. left, green =. right), and the R-squared values are 
displayed in the legend 

slopes, the R-squared for the fit to the rotated data points for each shoulder segment 
was used as a proxy metric. The logic in using this metric was that data collected 
within sub-optimally large regions would reflect larger-scale terrain shifts, while 
insufficiently large areas would collect only a few highly varied points. Either of 
these scenarios would be reflected in the goodness-of-fit parameter.
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Fig. 4 Comparison of performance of length and width combinations. All combinations of 
segment lengths and region widths from 3 to 30 pixels (784 total) were applied to all four test 
scenes. (a) Mean R-squared values across all segments plotted as a function of width and colored 
by length (lighter =. shorter). (b) Mean percentage of pixels in both edges for which slopes were 
calculated as a function of segment length and colored by width (lighter =.more narrow) 

4.1 Fitting Shoulder Slopes 

The mean R-squared values across the four test scenes is shown in Fig. 4a. There is a 
general positive trend in R-squared as the region width increases, suggesting wider 
areas may smooth over smaller features like ditches. On the contrary, increasing the 
segment length shows a consistent decrease in R-squared, suggesting the segment 
length parameter is more sensitive to terrain features. This effect is more pronounced 
at widths smaller than 10 pixels (8 ft), with a clearly defined peak at 8 pixels in 
length and 3 pixels in width (6.4 ft and 2.4–3.4 ft, respectively; R-squared =.0.683). 

4.2 Shoulder Coverage 

One potential drawback of our approach is coverage loss due to gaps between 
adjacent rectangular regions on the outside edge of curves (Fig. 2c) and areas with 
sparse ground data points, either from roadside foliage or unclassified data. For 
each segment, the contiguous pixels between the start and end coordinate on each 
edge were assigned the associated slope value with that shoulder region, if one was 
successfully calculated. Total coverage was defined as the percentage of pixels along 
each road edge with an assigned slope. 

The effect of region size on the edge pixel coverage is shown in Fig. 4b. Longer 
segments displayed more coverage than shorter ones, plateauing around 96% from 
10 to 20 pixels before gradually falling off. The width only affected coverage of
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the shortest ( <.7 pixels) and longest ( >.20 pixels) segments. Specifically, smaller 
widths performed better at lower lengths, while larger widths performed better at 
longer lengths. 

The amount of coverage loss associated with gaps can be determined by the 
dependence of the loss on the reference edge. We base coverage on the edge pixels 
between the start and end of a segment. Because we directly sample the pixels on the 
reference edge, the only data loss on that edge should occur due to sparse data (e.g., 
from foliage), whereas gaps between bounding boxes will only occur on the opposite 
edge, as those start/end coordinates are calculated from the reference points. This 
relationship remains true regardless of which side is designated the reference 
(Fig. 5a). To demonstrate this effect, we repeated the analysis with the reference 
and opposing edges reversed (now the longer and shorter edges, respectively) and 
observed the coverage of each side of the road independently. The average coverage 
of either road edge is dramatically higher for shorter segment lengths when that side 
is the reference edge (Fig. 5b,c). This result is likely due to shorter segment lengths 
requiring more bounding boxes and consequently more opportunity to generate 
gaps. In both cases, the coverage converges around a 10 pixel segment length. The 
opposite edge coverage (Fig. 5b, red; c, blue) looks nearly identical in both cases, 
but the mean coverage of the reference edge in each scenario shows that the longer 
edge has less coverage across all segment lengths (Fig. 5d). Because there should 
be no gaps on the reference edge, this difference must be due to other factors like 
roadside foliage. 

4.3 Qualitative Performance Analysis 

Given the lack of available ground-truth slope data, we are unable to quantify the 
accuracy of our tool. However, we can qualitatively examine each of the four test 
scenes to get a sense of how well the tool is performing. We selected a region size 
of 3 pixels (2.4–3.4 ft) long and 8 pixels (6.4 ft) wide because it yielded the peak 
R-squared value for smaller areas (Fig. 4a) and had approximately 98% and 94% 
coverage of the reference and opposing edges, respectively (Fig. 5a). Slopes were 
binned based on three vertical-to-horizontal-grade ratios previously used to identify 
road hazards [4, 15]. Specifically, high safety risk is classified as 1V:2H, moderate 
as 1V:3H, and low as 1V:4H. Figure 6 shows the outputs of the pipeline for the four 
scenes with the binned slopes overlaid on the road edges. 

Three immediate trends are apparent between scenes. First, the overhead images 
(top left in each panel) indicate that across all images, there are more trees directly 
adjacent to the longer side of the road, providing a likely explanation for the 
difference observed between the reference edge coverage in our opposing tests 
(Fig. 5d). Second, the distributions of slopes (top right in each panel) show that the 
vast majority of shoulders are flat. Intuitively, most roadways do not have extreme 
terrain slopes next to them, and this observation serves as a sanity check. Finally, 
negative slopes appear more frequently than positive, although these scenes were
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Fig. 5 Coverage dependence on reference edge selection. (a) Gaps between bounding boxes only 
occur on the opposite side of the road. Any data loss on the reference edge is due to sparse data. (b) 
The mean fraction of pixels covered on the shorter side of the road across segment lengths when it 
is designated the reference (blue) or opposite (red) edge. (c) The mean fraction of pixels covered 
on the longer side of the road across segment lengths when it is designated the reference (red) or 
opposite (blue) edge. (d) The mean fraction of pixels covered on the reference edge across segment 
lengths when referencing the shorter (blue) or longer (red) edge. All error bars are standard error 
from the mean 

selected for differences in road geometries without underlying knowledge of the 
surrounding terrain, and this pattern could be due to coincidence. 

Looking at the scenes individually, the tool correctly identifies regions of higher 
slope. Scene 1 has almost entirely flat shoulders, with the exception of one region 
of negative slope that has a darker region near its center (Fig. 6a, top left). When 
looking at the terrain overlay (Fig. 6a, bottom), we can see a wide area of low 
elevation that approaches the road in this dark region. Similar features are detected 
in Scenes 2 and 3 (Fig. 6b,c, bottom). Prominent sections of positive slope identified 
in Scenes 2 and 3 also align to features in the terrain as well (in the case Scene 2, 
the red section corresponds to an uphill driveway entrance according to the street 
view, which is not shown). Scene 4 is a unique case because it is a private driveway, 
but interestingly, there is a region of dark red near the house at the bottom of the
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Fig. 6 Results of shoulder slope calculations for (a) Scene 1, (b) Scene 2, (c) Scene 3, (d) Scene 
4. Each panel consists of a scatterplot of LiDAR elevation data with slopes overlaid on the road 
edges (top left), the percentage of edge pixels belonging to each vertical to horizontal ratio category 
(top right), and the scatter plot overlaid on the terrain map from Google Earth (Google, Mountain 
View, CA) (bottom). Brighter scatter points indicate higher elevation. Negative slopes are depicted 
in blue, and positive slopes are red, with darker hues indicating more extreme slopes. Gray pixels 
indicate areas with no slope, and yellow areas are where the slope could not be calculated 

overhead image (Fig. 6d, top left, rectangular feature). That section appears to have 
a dark mark in the terrain map (Fig. 6d, bottom) where the driveway is cut into the 
hillside (the terrain image is rotated for easier viewing).
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There are aspects where the method can be improved. All images contain a 
number of yellow regions where the slope could not be calculated, many in areas not 
obscured by foliage. Furthermore, there are regions where slope is being identified 
but have oscillating or spotty coverage. This observation is particularly strong in 
Scene 3 (Fig. 6c), where the negative slope around the outside of the curve has 
mostly strong slopes interspersed with lower magnitude or missing data, but it is also 
present in several identified regions in Scene 4 (Fig. 6d). In both images, however, 
this effect occurs near roadside foliage. 

5 Conclusion 

In this work, we proposed a method for obtaining roadway side slope grade from 
aerial LiDAR data. This methodology was used to extract shoulder slopes for rural 
roads with variable length, curvature, and orientation. Initial results suggest we can 
find terrain grade at 94% shoulder coverage with a segment length of 2.4–3.4 ft 
and a sampling area 6.4 ft from the road edge. Unfortunately, we cannot draw 
too many conclusions about the accuracy of the calculated grades or whether our 
optimal window sizes truly yield the best results due to the lack of validation data. 
We are currently working with the NCDOT and outside sources to create a dataset 
using existing physical survey and MLS data to determine the accuracy. 

However, the approach does have limitations. This method relies on calculating 
the midline of the road, so in its preliminary state, roads with complex shapes such 
as intersections or roundabouts will present issues. Furthermore, because the data 
are collected aerially, the density of foliage in the immediate proximity to the road 
can limit the ground data available for fitting. Combining aerial LiDAR with MLS 
scans could potentially overcome foliage issues, since MLS would scan laterally 
beneath any tree canopy. 

The success of this method is dependent on the availability of data classifications, 
since the pipeline currently does not have a means of segmenting roadways 
from unlabeled data, although some off-the-shelf solutions exist. Additionally, the 
minimum segment dimensions are dependent on the density of ALS sampling. In 
the geographical region used for this study, the nominal pulse spacing was 8 ppsm, 
but other regions in the state have sampling densities between 2 and 30 ppsm. More 
dense sampling would allow for smaller segment dimensions and potentially higher 
resolution along the road or more confident slope fitting. However, reducing the 
point density would require larger segments, leading to variability when analyzing 
multiple regions. To mediate this variability, the ALS data could be rasterized, 
thereby normalizing segment dimensions. 

There are immediate ways in which the pipeline can be improved. Currently, 
the length of the segment is determined by indexing the list of edge coordinates 
rather than using a distance metric. We would like to define the centerline as a 
mathematical spline to achieve more precise control. Using a single edge as a 
reference has the drawback of leaving gaps on the other side of the road. To counter
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this artifact, we may attempt to use both sides of the road separately. To further 
reduce gaps, the data may be smoothed by using overlapping road segments. This 
approach could also potentially reduce issues with foliage covering the ground 
adjacent to the road. Alternatively, we could employ non-rectangular shoulder areas. 

Future goals of this project are to extend the application of this method to 
scenes with more complex road geometries (like intersections) and cover as much 
of the state as possible. This expansion will allow for a broader understanding of 
its effectiveness across different road environments and conditions. Overall, this 
preliminary work displays the potential to identify areas of concern for the NCDOT 
without collecting additional data and using open-source technology. 
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A Non-parametric Optimal Design 
Algorithm for Population 
Pharmacokinetics 

Markus Hovd , Alona Kryshchenko , Michael N. Neely , 
Julian Otalvaro , Alan Schumitzky, and Walter M. Yamada 

1 Introduction 

Pharmacokinetic modeling and simulation have become a cornerstone in both 
drug development and therapeutic drug monitoring. The ability to integrate pre-
clinical and clinical data, along with covariates, allows for accurate inference of 
both drug exposure (pharmacokinetics, PK) and response (pharmacodynamics, PD). 
These statistics are integral to drug therapy optimization at both the individual 
and population levels. Two different statistical approaches are common: parametric 
and non-parametric [6]. While parametric approaches assume that the probability 
distribution of model parameter values follows predefined distributions such as the 
normal and log-normal [1, 3, 7, 19, 20], non-parametric approaches are free of this 
assumption. Rather, the joint parameter value probability distribution consists of 
discrete support points, each point comprising a vector of values for every parameter 
and an associated probability based on the likelihood of those parameter values. If 
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desired, the shape of the distribution can be inferred by calculations on the optimized 
support points and their corresponding probabilities, e.g., covariance, mean or 
median, or an operation on the points, for example, kernel density estimation. Non-
parametric approaches allow for more accurate a priori detection of sub-populations 
and outliers [5, 17]. 

The non-parametric adaptive grid (NPAG) algorithm is a well-established non-
parametric estimation method widely used in pharmacokinetics and pharmacody-
namics (PK/PD) [5]. NPAG is a “ throw-and-catch” algorithm. It begins with a 
viable solution (i.e., the likelihood of the current set of support points is greater than 
0), and assuming a better solution can be found on the Euclidean grid surrounding 
each support point of that viable solution, it casts out new, potentially better support 
points along each dimension of the grid. Successive cycles will find the local 
optimum around the viable solution. Confidence is gained as the grid is “adaptive” 
in both discretization length and position in space. However, due to the nature of the 
adaptive grid, NPAG is computationally expensive and therefore slow to converge. 

With increasingly complex PK-PD models, large in the number of parameters, 
subjects, or both, algorithm speed becomes critical. This has motivated the devel-
opment of the current non-parametric estimation technique that can maintain the 
accuracy of NPAG while significantly improving time to convergence. Addressing 
the convergence speed issue in non-parametric estimation is crucial for streamlining 
the PK/PD modeling and analysis workflow, enabling faster and more cost-effective 
drug development processes. The proposed algorithm in this chapter tackles this 
challenge by introducing innovative computational methods and optimization strate-
gies to enhance the efficiency of non-parametric parameter estimation. 

2 Methods 

2.1 Design of the Non-parametric Optimal Design Estimation 
Algorithm 

Pharmacokinetic observations can be statistically described using a mixing distribu-
tion model, where the probability of random variable arguments (the PK population 
model) in the PK compartmental model is governed by a mixing distribution. 

The task of estimating this mixing distribution from a set of PK observations 
can be defined as follows. Let Y1, . . . , YN . represent a sequence of independent 
but not necessarily identically distributed random vectors, constructed from one 
or more observations from each of N subjects in the population. Additionally, l et
θ1, . . . , θN . denote a sequence of independent and identically distributed random 
vectors representing unknown parameter values for N subjects. These θ . values 
belong to a compact subset �. of Euclidean space with a common but unknown 
distribution F , representing the parameter space of the population model.
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The objective is to maximize the likelihood function L(F). with respect to all 
probability distributions F on �.. Each θi . is not observed, but it is assumed that the 
conditional densities p(Yi |θi). are known for i = 1, . . . , N .. The mixing distribution 
of Yi .with respect to F is then given by p(Yi |F) = ∫

p(Yi |θi)dF (θi).. 
Let FML

. be the distribution that maximizes L(F).. It serves as a consistent 
estimator of the true mixing distribution. Because of independence of the {Yi}.,  the  
likelihood function can be written a s

.L(F) = p(Y1, . . . , YN |F) =
N∏

i=1

∫
p(Yi |θi)dF (θi) (1) 

It is important to note that L(F). is a convex function of F . Further, it is shown in 
[15], under simple hypotheses, that the global maximizer FML

. of L(F). is a discrete 
distribution with at most N support points, where N is the number of subjects in the 
population and a support point is a vector of model parameter values with nonzero 
probability.

The problem of finding FML
. has been addressed in [22] by the NPAG algorithm 

that uses the primal-dual interior point method to find optimal weights and an 
Adaptive Grid algorithm to find optimal support points. It was also addressed in Les-
perance and Kalbfleisch [13] by the combination of the Semi-Infinite Programming 
algorithm to find optimal weights; in the Improved Supervised Descent Method 
(ISDM) algorithm using the D-function to find optimal support points; and in [21] 
by the combination of Quadratic Programming algorithm to find optimal weights 
and ISDM algorithm to find optimal support points. 

The algorithm described here is an alternative to the NPAG algorithm and is 
different from it in the step of finding optimal support points. It utilizes the primal-
dual interior-point method for convex programming to find optimal weights of the 
FML

. and introduces the optimization of the directional derivative of the likelihood 
function to address the search for optimal support points of the FML

.. This algorithm 
was proposed by Dr. Robert Leary in the PAGE conference poster [12]. 

The design of the NPOD algorithm is summarized in the steps below. 

2.1.1 Design Principles and Theoretical Foundation 

Traditionally, non-parametric maximum likelihood methods rely on iterative 
approaches such as the expectation-maximization algorithm, which entails 
optimizing conditional expectation. However, this process can be quite time-
intensive, particularly for problems with high dimensions. To address this, 
we’ve developed an enhanced iterative non-parametric optimal design (NPOD) 
algorithm that streamlines certain optimization stages using directional derivatives, 
significantly boosting its speed compared to the original version detailed by [17, 22].
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2.1.2 Algorithm Implementation 

Initialization 
The first step of any non-parametric algorithm is the initialization of the n-
dimensional parameter space. Importantly, the parameter space must be bounded, 
as an infinitely large parameter space is both computationally and physiologically 
impossible. In most cases, the sample space represents an uninformed prior. 
However, it may also be initialized with the joint distribution obtained from previous 
searches or other algorithms. In the present implementation of NPOD, we are using 
a modified version of the Sobol pseudo-random sequence generator based on the 
work by Burley et al. [2] with an improved hash by Kuo et al. [8, 9]. 

Likelihood Calculation 
The next step is the calculation of the likelihood or the objective function. This is the 
most computationally expensive step in the algorithm, as it is calculated by solving 
the differential equation representing the pharmacokinetic model for each subject 
for each point in the initial grid. 

Optimization 
Following the calculation of the likelihood, the weight of each support point is 
recalculated in order to maximize the sum of the likelihood function across all 
subjects. This is achieved through the use of a primal-dual interior point algorithm 
[22]. 

Rank Revealing Function 
Another important property of the joint parameter distribution in the non-parametric 
approach is that the maximum number of support points can at most be equal 
to the number of subjects. Non-optimal solutions can have more support points 
than the number of subjects. In this step, we use QR decomposition of the 
� = P(Yi |θk)N×K . matrix and remove all the support points that are not in the 
orthonormal basis for the column space of � . matrix. We do this at each cycle to 
guarantee optimizations never expand uncontrollably. 

Support Point Adjustment 
It is at this step that the NPOD and NPAG algorithms diverge; while NPAG employs 
an adaptive grid to suggest new support points in the search space, NPOD employs 
a directional derivative of the log-likelihood function using Nelder-Mead algorithm 
[10]. 

The directional derivatives of the log-likelihood of F in the direction of the 
atomic density function centered at each support point are denoted as Dδξ �(F ).. 
The idea originates in a text by Fedorov [4], which covers D-optimal design 
theory. Another connection to Fedorov’s D-optimal design theory and maximum 
likelihood estimators is provided by Mallet [16]. That paper provides an alternative 
to Lindsay’s approach. In fact, according to Schumitzky [18], Lindsay and Mallet 
worked jointly to develop the theory that reduced the space of distributions to the 
space of only discrete distributions with K support points, denoted FK . (where K is 
no more than the number of subjects N ).



A Non-parametric Optimal Design Algorithm for Population Pharmacokinetics 263

Let F be any distribution o n �., the space of parameters for ξ .. Then define the 
directional derivative D-Function as 

.D(ξ, F ) =
(

N∑

i=1

P(Yi | ξ)

P (Yi | F)

)

− N (2) 

where ξ . is a parameter and N is the population size. Lindsay [14] showed that 
F ∗ = FML

. if and only if 

.max
ξ∈�

D(ξ, F ∗) = 0. (3) 

Additionally, in the same paper, Lindsay showed when 

.max
ξ∈�

D(ξ, F ∗) �= 0, (4) 

it is still true that 

.L(FML) − L(F ∗) ≤ max
ξ∈�

D(ξ, F ∗) (5) 

for F ∗, FML ∈ FK .. 
In NPOD, the updated set of support points is found as follows: for k = 1, . . . , K . 

where K is the current grid size and F (n)
. is the current distribution: 

.θ
(n+1)
k = argmaxt

ξ∈�(D(ξ, F (n))), (6) 

.D(ξ, F (n)) =
(

N∑

i=1

P(Yi | ξ)

P (Yi | F (n))

)

− N, (7) 

.P(Yi | F (n)) =
K∑

l=1

(w
(n)
l P (Yi | θ

(n)
l )) (8) 

where argmaxt
. only takes t steps in the Nelder-Mead optimization process [10]. 

This adjustment plays a pivotal role in enhancing the efficiency of NPOD compared 
to NPAG, particularly in achieving convergence to local maxima. 

The parameter t is regarded as one of the hyperparameters that can be fine-tuned 
to optimize the performance of the algorithm. Typically, we set t to be less than 
5, based on empirical observations and computational experiments. This choice 
balances the trade-off between computational cost and optimization effectiveness. 

By limiting the number of steps in the Nelder-Mead optimization, we can 
focus the algorithm’s search on promising regions of the parameter space while 
avoiding excessive computational overhead. This targeted approach enables NPOD
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to converge more efficiently toward local maxima, making it a valuable tool for 
solving optimization problems in diverse domains. 

Once θ
(n+1)
k . is determined through the optimization process, a validation step 

ensues to ensure its integrity within the algorithm. Specifically, it undergoes scrutiny 
to confirm two critical aspects: firstly, that it constitutes a distinct point and, 
secondly, that it remains within the predefined boundary conditions. 

This validation mechanism serves as a safeguard against redundancy and bound-
ary violations, both of which could potentially compromise the accuracy and 
reliability of the optimization process. By confirming the uniqueness and adherence 
to boundary constraints of θ

(n+1)
k ., the algorithm maintains the integrity of its param-

eter space exploration, facilitating robust and effective optimization outcomes. 

Convergence 
The previous steps, excluding initialization, are iteratively repeated until no further 
improvement can be found, indicating convergence to an optimal solution. Improve-
ment is evaluated by change in the likelihood, for which we consider a change less 
than 10−4

. to indicate convergence. 

2.1.3 Computational Considerations and Optimizations 

Initial Search Space 
NPOD is initialized with a sufficiently compact set of support points within the 
search space. We report results for varying density Sobol sequence initializations in 
the Results section. 

Hyperparameters 
The NPOD algorithm, relying on the D-optimization function, is tuned by the 
number of iterations of the Nelder-Mead algorithm t . In our examples, a value of 5 
was used for t , empirically chosen based on experience. 

2.2 Software Implementation 

Recently, significant efforts have been placed in creating a new framework for 
pharmacometric algorithm development. While the original NPAG algorithm was 
written in Fortran, both the NPAG and NPOD algorithm have been rewritten in 
Rust, a memory-safe and computationally efficient programming language. While 
the framework itself will be presented in a future work, both algorithms are 
available to use in the development branch of the Pmetrics code repository [11]. 
All computations were performed on a MacBook Pro (Apple) equipped with an M3 
Max processor with 128GB of RAM.
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2.3 Comparative Analysis of NPOD with NPAG 

The natural choice of a comparative algorithm for non-parametric pharmacokinetic 
modeling is NPAG. To compare the algorithms, we use two datasets, one synthetic 
in which the real parameter distribution is known and another using real pharma-
cokinetic data from subjects in which the underlying distribution is not known. We 
will refer to these as datasets A and B, respectively. 

The model used to fit dataset A is shown in Eq. (9), where A is the amount 
of drug in the central compartment, Ke . is the elimination rate constant with a 
bimodal distribution, and Vd . is the apparent volume of distribution with unimodal 
distribution. The model includes an intravenous infusion, modeled as Rinf .,  the  rate  
of infusion.

.
dA

dt
= −Ke · A + Rinf , C = A

Vd

+ ε (9) 

Dataset A consisted of simulated data with known parameter distribution, and 
with known measurement noise in the observations ε ∼ N(0, 0.05 ∗ C)., previously 
discussed by Neely et al. [17]. It includes a total of 51 simulated subjects, all of 
whom received an intravenous infusion of 500 units over a duration of 30 minutes. 
Each subject was sampled 10 times over 24 hours, at 0.5, 1, 2, 3, 4, 6, 8, 12, 18, and 
24 hours from the start of the infusion. 

The model used to fit dataset B is shown in Eq. (10), where A1 . represents 
the absorptive compartment and A2 . represents the amount of drug in the central 
compartment, from which Ke . is the elimination rate constant and Vd . is the apparent 
volume of distribution. The model includes an individual lag-term on the input dose 
D, modeled as a delayed unit Dirac delta function δ .. 

. 
dA1

dt
= −Ka · A1 + D ∗ δ(t − tlag),

dA2

dt
= Ka · A1 − Ke · A2,

C = A2

Vd

+ ε (10) 

Dataset B was originally provided as one of the example datasets available in the 
Pmetrics package for R [17]. It includes data from 20 patients, all of whom received 
600 units six times every 24 hours. A total of 139 samples were obtained across all 
subjects, all following the second-to-last dose. 

Any observation has an associated uncertainty, which must be accounted for 
during parameter estimation. We model uncertainty as ε ., which is normally 
distributed with mean zero and standard deviation ω. defined by Eq. (12)  o  r (13). 
First, an error polynomial model is used to estimate the uncertainty ( σ .) in each 
measurement (y). This is given in Eq. (11). 

.σ = C0 + C1 · y + C2 · y2 + C3 · y3 (11)
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Additional noise is modelled through either an additive ( λ.,  Eq  . (12)), or propor-
tional ( γ .,  Eq  . (13)) error model. Each observation is then weighted by the reciprocal 
of the squared uncertainty, i.e., 1/ω2

.. 

.ω =
√

σ 2 + λ2 (12) 

.ω = σ · γ (13) 

For the simulated dataset A, an additive error model was used with an initial value 
of λ = 0. and a flat uncertainty of 5%, i.e., C1 = 0.05., and C0 = C2 = C3 = 0..  For  
the real-world dataset B, a proportional error model was used with an initial value 
of γ = 5., and C1 = 0.02., C2 = 0.05., C3 = −0.002., and C4 = 0.. 

Both algorithms were compared on each dataset with various densities of the 
initial parameter search space, with otherwise equal conditions. Multiples of 51 
were used for the number of initial support points, i.e., K = 51 · 2x

., where x ranged 
from 0 to 11, producing initial densities ranging from 51 to 104,448.

3 Results 

For dataset A, the convergence rates and the location of support points at conver-
gence for NPAG and NPOD, with an initial count of 104,448 support points, are 
illustrated in Figs. 1 and 2. The weighted means for Ke . (NPAG = 0.187, NPOD = 
0.187) and Vd . (NPAG = 103.7, NPOD = 103.8) between the two algorithms were 
almost identical. Furthermore, for all the different initial grid densities evaluated, 
ranging from 51 to 104,448, NPOD was able to achieve convergence at a much 
faster rate compared to NPAG, requiring almost one twentieth the number of cycles 
for a high number of initial points (Table 1). However, the difference in overall 
computation time is negligible. 

Furthermore, the shape of the objective function across cycles is markedly 
different between NPOD and NPAG, shown in Fig. 1. It is immediately apparent 
that NPOD has a much steeper convergence. 

For dataset B, which, to reiterate, consists of real-world data, NPOD was able to 
obtain a solution as likely or more compared with NPAG with a lower number of 
cycles. However, for this dataset, the overall computation time was lower, with up 
to fivefold difference, as seen in Table 2. 

The number of cycles required for convergence is again visualized for both 
algorithms in Fig. 3.
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Table 1 For dataset A, the comparison of number of cycles required for convergence, the value 
of the objective function obtained, and time taken for various sizes of the initial parameter search 
space. Abbreviations: LL, the twice negative logarithm of the likelihood, also known as the 
objective function value 

NPAG NPOD 

Support Support 
№ Cycles LL points Time Cycles LL points Time 

51 196 −.646.45 48 3.87 s 21 −.646.85 47 1.56 s 

102 164 −.646.38 49 3.40 s 15 −.646.85 48 1.47 s 

204 132 −.646.52 48 3.00 s 13 −.646.80 47 1.47 s 

408 136 −.646.39 48 3.27 s 11 −.646.78 48 1.43 s 

816 139 −.646.43 46 3.31 s 11 −.646.81 48 1.56 s 

1632 112 −.646.45 48 3.45 s 11 −.646.83 49 1.75 s 

3264 99 −.646.59 48 3.83 s 7 −.646.77 49 2.19 s 

6528 97 −.646.48 50 5.50 s 6 −.646.77 49 3.33 s 

13,056 93 −.646.37 48 7.99 s 7 −.646.84 49 5.99 s 

26,112 85 −.646.52 48 13.97 s 6 −.646.84 48 10.80 s 

52,224 98 −.646.49 50 25.39 s 5 −.646.83 49 25.01 s 

104,448 99 −.646.57 48 51.78 s 6 −.646.83 48 50.02 s 
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Fig. 1 Comparison of objective function between NPAG and NPOD for different numbers of 
initial grid points in the parameter search space. Grid sizes are chosen as multiples of the number 
of subjects (n = 51.)
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Fig. 2 Kernel density 
estimate for the joint 
parameter distribution. The 
support points estimated by 
NPAG are shown as blue 
circles, and those by NPOD is 
shown as red crosses. The 
bimodal distribution of Ke . is 
readily apparent, with the 
univariate distribution of Vd . 
and the inclusion of an 
extreme outlier 
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Table 2 For dataset B, the comparison of number of cycles required for convergence, the value 
of the objective function obtained, and time taken for various sizes of the initial parameter search 
space. Abbreviations: LL, the twice negative logarithm of the likelihood, also known as the 
objective function value 

NPAG NPOD 

Support Support 
№ Cycles LL points Time Cycles LL points Time 

51 1091 −.337.93 19 68.43 s 189 −.331.98 19 47.74 s 

102 2166 −.337.97 20 95.11 s 248 −.336.91 17 36.87 s 

204 1234 −.336.56 20 75.95 s 119 −.342.64 17 32.75 s 

408 1313 −.336.54 19 71.25 s 68 −.346.98 18 21.31 s 

816 2218 −.343.91 20 116.91 s 74 −.345.31 17 21.72 s 

1632 3034 −.343.91 20 110.95 s 69 −.345.38 17 22.62 s 

3264 1415 −.343.92 20 65.83 s 192 −.335.75 18 36.29 s 

6528 1913 −.343.84 20 73.75 s 75 −.336.66 18 25.46 s 

13,056 1401 −.337.91 20 77.60 s 85 −.336.09 17 36.40 s 

26,112 2169 −.336.54 20 122.14 s 82 −.334.35 17 56.66 s 

52,224 1209 −.336.53 20 135.22 s 65 −.335.45 18 89.48 s 

104,448 2014 −.336.53 20 202.92 s 75 −.335.38 18 147.74 s
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Fig. 3 For dataset B, the comparison of objective function between NPAG and NPOD for different 
number of initial grid points in the parameter search space. For simplicity, the same grid sizes in 
the first example was used 

4 Discussion 

We have developed and demonstrated an algorithm for non-parametric parameter 
estimation with application to population pharmacokinetics. The algorithm relies on 
directional derivatives, which constitutes a new approach to parameter estimation in 
pharmacometrics. 

Furthermore, we compared the NPOD algorithm to the current gold-standard 
non-parametric algorithm, NPAG, on two datasets; one simulated without any noise 
in the observations and another using real-world data. The two algorithms have 
some important differences, which is elucidated by the results in Table 1.  Most  
importantly, NPOD was able to determine a solution that was as likely as that of 
NPAG. The time savings with NPOD is due to the markedly reduced number of 
cycles, with a difference of up to 20-fold for a simple model on a simulated dataset 
(dataset A) and more than twice that for a more complex model with real-world 
data (dataset B). However, the optimization step of NPOD, which is guided by the
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D-function value, is more expensive than the adaptive grid in NPAG and as such 
requires more time in each cycle. Because we expect NPOD to always converge 
in fewer cycles than NPAG, we also expect that time to convergence will be at 
worst similar and at best shorter than NPAG, although this remains to be empirically 
demonstrated as we gain experience with NPOD. 

The estimated joint parameter distribution from both NPOD and NPAG was very 
similar, as seen in Fig. 2, where the support points are close to perfectly overlapping. 
The simulated dataset included an extreme outlier, whose parameter values deviated 
greatly from the population weighted mean ( Ke ., 1.0 vs 0.187; Vd . 200.0 vs 103.8). 
This is especially impressive considering that the single outlier constitutes only 
1/51, or approximately 2% of the dataset. This quality is one of the many strengths 
of NPAG, which is also found for NPOD. The detection of outliers is an important 
aspect in population pharmacokinetics and one of the chief advantages of non-
parametric approaches, compared to parametric [6]. 

We evaluated the performance of the two algorithms over various densities of the 
initial search space. While this density does not appear to significantly affect the 
final objective function value for this simulated dataset, it does affect the number 
of cycle required to reach convergence. The “throw-and-catch” nature of NPAG 
ignores the gradient around the current local solution, which NPOD is sensitive to. 
Importantly, this gradient includes observation noise. NPAG is relatively insensitive 
to local gradient perturbations resulting from observation errors as it merely 
compares two potential and spatially distinct solutions at each cycle. However, 
NPAG is completely naive of the intervening space. In either case, both algorithms 
were capable of obtaining the most likely solution even from a very sparse initial 
parameter space, equal to the number of subjects. 

For Dataset A, NPOD results in a lower log-likelihood (LL) value, indicating 
potentially more accurate results. A natural questions arises: “Why use NPAG at 
all?” Some distinctions in how the two algorithms operate might explain their 
differences. NPAG cycles are generally faster because they add points in a more 
straightforward manner, without necessarily checking if those points have been 
added before or if they are crucial to improving the solution. This can lead to 
quicker iterations but may include less relevant points. In contrast, NPOD evaluates 
the likelihood surface more thoroughly, proposing new points that are specifically 
aimed at maximizing the objective function or minimizing the negative likelihood. 
As a result, every point added by NPOD is highly relevant to refining the outcome. 
We are planning to investigate the conditions under which one algorithm would 
consistently be preferable over the other in a future work. 

The following procedure is proposed in Yamada et al. [22] for evaluating the 
global optimality of the final NPAG distribution and estimating its proximity to the 
optimum using the directional derivativeD(�,F).defined above in (2) solely during 
the last NPAG iteration. As shown in Lindsay [14] and mentioned above in Methods 
section, if F ∗ = FML

., i.e., NPAG converged to a global maximum of a likelihood
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function, then max
ξ∈�

D(ξ, F ∗) = 0.. We propose the same evaluation steps for the 

final NPOD distribution and recommend calculating max
ξ∈�

D(ξ, F ). only at the end 

of the algorithm using deterministic or stochastic optimization methods. 

Future Work 
In our experience thus far, NPOD converges at a faster rate when compared with 
NPAG for a larger population with a given model and prior. In the era of increasingly 
larger datasets, NPOD may therefore prove advantageous. However, it is not a 
given that NPOD will always outperform NPAG; therefore, future work will include 
additional comparisons between NPAG and NPOD to contrast and clarify specific 
scenarios when one algorithm should be preferred. 

We have also observed that the performance of the NPOD algorithm depends on 
the initial grid or prior. The closer it is to the true solution, the faster the convergence 
of NPOD. We are planning to explore the ways to improve initial grid point in the 
future. 

At present, formal analyses of convergence guarantees and algorithmic com-
plexity for both NPAG and NPOD are limited. NPOD, being a gradient-based 
approach, benefits from some theoretical convergence guarantees, particularly when 
the likelihood surface is smooth and well behaved. Under these conditions, it can 
converge more efficiently to the maximum likelihood solution when compared 
with the adaptive grid in NPAG. However, the complexity of the models and 
datasets, such as in the case of noisy or high-dimensional data, introduces challenges 
in predicting convergence behavior. For NPAG, the lack of formal convergence 
guarantees is more pronounced, as its heuristic nature can result in variability in 
performance depending on the problem being solved. This makes it difficult to 
derive generalizable results regarding its runtime or convergence. While NPOD has 
shown promising improvements in speed and accuracy, a deeper theoretical analysis, 
especially with respect to different types of datasets and models, is something we 
aim to explore in future studies. 

5 Conclusion 

We have developed and demonstrated a new algorithm, NPOD, for non-parametric 
parameter estimation with application to population pharmacokinetics. The algo-
rithm was able to estimate the population joint parameter distribution as accurate 
as NPAG but requires far fewer cycles to reach convergence. An application of 
directional derivates represents an important step forward in both the development 
and application of non-parametric approaches in pharmacometrics.
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Appendix 

Algorithm 1 Non-parametric Optimal Design (NPOD) algorithm. Input: 
(Y ,φ0, a, b, t,�D,�F ,�e,�λ)., a ., and b . are the lists of lower and upper bounds, 
respectively, of �., t . is the number of Nelder-Mead iterations; �D . is the minimum 
distance allowable between points in the estimated FML

.. Output: (φ,λ, l(λ,φ)). 

1: procedure NPOD(Y , φ0, a, b,�D) � Estimate FML given Y 
2: Initialization: φ = φ0, LogLike = −1030, �F = 10−2, �L = 10−4, �λ = 10−3, n = 0 
3: while True do 
4: Calculate �(φ) � N × K matrix {p(Yi |φk)} 
5: [λ̂(φ), l(λ̂(φ)] ←−  PDIP(�(φ)) � for PDIP see [22] 
6: φ ←− CONDENSE(φ, λ̂(φ),�λ) � Alg. 2 
7: [φ,�(φ)] ←−  REDUCE(�(φ), φ) � Alg. 3 
8: [λ̂(φ), l(λ̂(φ)] ←−  PDIP(�(φ)) � PDIP returns Gn (  [22]) 
9: NewLogLike  = l(λ̂(φ), φ) 
10: if | LogLike − NewLogLike  |> �F then 
11: return [φ, λ,  NewLogLike] 
12: end if 
13: if (n  >  MAXCYCLES) then 
14: return [φ, λ,  NewLogLike] 
15: end if 
16: φ ←− Dopt(φ, λ,�(φ), a, b, t,�D) � Alg. 4 
17: n ←− n + 1 
18: LogLike ← NewLogLike  
19: end while 
20: end pr ocedure

Algorithm 2 Condense algorithm. Input: (φ,λ,�λ)., Output: φc
. Note: φc

. is 
considered a subset of φ . 

function CONDENSE(φ, λ,�λ) 
ind = find ( λ >  (max λ)�λ ) � Inequality and max are performed component-wise 
φc = φ(:, ind ) 
return φc 

end function
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Algorithm 3 Reduce algorithm. Input: (�(φ),φ)., Output: φ,�(φ). Note: both 
�(φ). and φ . are subsets of the ones used as input 
function REDUCE((�(φ), φ)) 

nψ(φ) = norm(�(φ)) 
(r, perm) = QR(nψ(φ)) 
keep = []  
for i..ncol 

ratio = r[i, i]/norm(r[:,  i]) 
if |ratio| > 1e − 8 push(perm[i]) to keep 

end for 
φ = φ[keep , :] 
ψ = ψ[:,  keep] 
retu rn (ψ, φ)

end function

Algorithm 4 Dopt algorithm Input: (φ,λ,�(φ), a, b, t,�D)., Output: φ . 

function DOPT(φ, λ,�(φ), a, b, t) 
for k = 1 : K do 

φk = argmaxt 
ξ∈�

(D(ξ , λ,�)) � see formula for D in Eq. (6) 
for ink = 1 : dimension(φk) do 

new_dist = ∑ |φk−φ(:,ink)| 
b−a 

dist = min(dist, new_dist) 
end for 
up = sign(min(φk − a′)) 
down = sign(min(b′ − φk)) 
if (dist > �D) ∧ (up > −1) ∧ (down > −1) then 

φ = [φ, φk] 
end if 

end for 
return φ 

end function
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Unrolling Deep Learning End-to-End 
Method for Phase Retrieval 

Haiyan Cheng, Cristina Garcia-Cardona , Weihong Guo, Sara Hahner, 
Yuan Liu, Yifei Lou, Michela Marini, and Sui Tang 

1 Introduction 

In many imaging systems, such as X-ray diffraction, electron microscopy, or 
astronomical imaging, only the intensity of the wave can be directly measured, while 
the phase information is either lost or inaccessible. Phase retrieval (PR) is a compu-
tational technique employed to recover the phase information of a wave solely from 
intensity measurements. This process involves utilizing computational algorithms to 
recover the phase information from the recorded magnitude measurements. Phase 
retrieval finds applications in various fields, including physics, biology, materials 
science, and imaging technologies. For instance, PR is pivotal in coherent diffraction 
imaging (CDI) [41], image-based wavefront sensing [45], and radar/sonar sensing 
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sectors [26]. It enables researchers to extract valuable information about structures 
and properties of samples without requiring specialized phase-sensitive detectors. 

In this work, we consider a two-dimensional (2D) object that can be represented 
by a (column) vector x ∈ Rmn

., where m × n. is the dimension of the underlying 
2D object. A physical observation model, denoted by A., yields an idealized 
complex-valued observation A(x).. We further assume the operator A. is linear or 
can be approximated as linear. However, the detectors are limited to recording 
the magnitude, i.e., y = |A(x)| + ε ., where | · |. represents the element-wise 
magnitude, indicative of the photon flux measured by the detectors, and ε . signifies 
the observational noise matrix. PR aims at reconstructing x. from the observed data 
y., which is a highly ill-posed nonlinear inverse problem. Please refer to Sect. 3.1 for 
a more detailed description of the problem setting. 

A critical regime within PR is the Fourier phase retrieval [6], where the linear 
operator A. is related to the Fourier transform. This problem is fundamental in 
several fields, including X-ray crystallography [43], astronomy, coherent light 
microscopy, quantum state tomography, and remote sensing; please refer to [6]  for  
more details.

Difficulties of PR The absence of phase information leads to non-unique solutions 
of PR. Identifiability, often hindered by intrinsic symmetries such as spatial 
translation, conjugate inversion, and constant global phase change (referred to as 
trivial ambiguities), exacerbates this challenge. These symmetries, long recognized 
in the PR literature, limit claims of uniqueness to modulo these trivial ambiguities. 
Consequently, in most applications, recovering any signal from the equivalent 
classes is deemed satisfactory. Empirically, it is observed that the complexity of 
a PR problem correlates directly with the number of its intrinsic symmetries. This 
relationship is particularly noticeable in Fourier PR, where these symmetries are 
more prevalent, thus amplifying the challenge. 

On the other hand, the oversampling ratio serves as another indicator for 
determining the complexity of PR problems. This ratio is defined as 

. τ = number of (effective) measurements

number of unknown pixels
.

It contrasts the volume of measurements with the dimensionality of the signal to 
be recovered. A higher oversampling ratio implies a computationally less complex 
problem, indicating a data-rich environment relative to the signal parameters 
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needing estimation. Consequently, τ . is a vital metric for evaluating and managing 
the complexity of PR problems. The oversampling ratio τ = 4. typically leads 
to a unique solution [3, 7]. Under this condition, the standard phasing algorithms 
empirically worked well. For Fourier phase retrieval, using dimension counting, 
[42] conjectured that τ = 2. uniquely determines a unique phasing solution up to 
spatial shift, conjugate inversion, and global phase factor. A numerical verification 
of this conjecture is provided by the random phase illumination method [18]. 

1.1 Literature Review 

Numerous algorithms have been developed to tackle various challenges within 
the PR paradigms. Regularization, by favoring certain solutions, enhances the 
robustness of the recovery process against ambiguities and perturbations. Most 
regularization approaches can be formulated as the following optimization problem: 

. min
x∈Cmn

{L(x, y) + R(x)}, (1) 

where the first term, L(x, y)., enforces consistency with the intensity measurements 
y. (the data-fidelity term). The second term, R(x)., penalizes unrealistic estimates 
to promote desirable properties in x., which can be formulated either implicitly or 
explicitly. The relevant works can be broadly categorized as follows: 

Projection Algorithms Early phase retrieval methods were pioneered by Gerch-
berg and Saxton (GS) [22], who developed an alternating projection approach to 
solve a nonlinear least square problem. This technique, which begins with random 
initialization, applies alternating time domain and Fourier magnitude constraints, 
often converging to a local minimum due to the interplay between convex and 
non-convex constraint sets. This tendency hampers the accuracy of the solution, 
even in the noiseless setting. Later, Fienup [20] introduced the Hybrid Input-
Output (HIO) algorithm, which incorporates a time-domain correction step into 
the Gerchberg-Saxton (GS) algorithm to accelerate the convergence. However, HIO 
does not guarantee overall convergence and may occasionally result in local minima. 
Nevertheless, HIO and its variants remain widely used in optical phase retrieval, as 
explored in [4] and [37]. 

Gradient-Based Optimization To address the issue of getting stuck in local 
minima, gradient-based methods often integrate acceleration strategies, such as 
Nesterov acceleration and stochastic gradient descent. These algorithms have 
proven to be effective in solving phase retrieval problems [10, 30] with a variety 
of applications including ptychography, coded-diffraction imaging, and imaging 
from defocus [1, 5]. Key strategies for navigating non-convex landscapes include 
convex relaxation methods such as PhaseLift [11], maxcut [50], sketching methods 
[53], and phasemax [24]. A notable work in this category is the Wirtinger Flow
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(WF) [10], which begins with an initial guess obtained from a spectral method, 
followed by gradient descent. It is proven to achieve the exact phase retrieval (up 
to trivial ambiguities) with independent Gaussian measurements, but it is hampered 
by high computational complexity. To speed up the process, truncated WF (TWF) 
[14] retains the original two-stage framework but improves efficiency through an 
adaptive gradient flow, providing a solution in linear time. While WF and TWF 
have demonstrated significant empirical success for certain types of phase retrieval 
problems that directly involve dealing with non-convex objectives, they come with 
limitations related to sensitivity to initialization, observation noise, and the need 
for careful parameter tuning. In particular, both WF and TWF can exhibit slow 
convergence, especially when the number of measurements is not significantly 
larger than the signal dimensionality. Additionally, the need to compute gradients 
in each iteration can pose scalability challenges for very large-scale problems, as 
the iterative nature of these algorithms can become computationally intensive. A 
comprehensive review is provided in [19]. 

Deep Learning Approach Recent advancements have positioned deep learning 
approaches, such as convolutional neural networks (CNNs) [29], graph neural 
networks (GNNs) [35], and attention-based transformers [49], as formidable tools 
in image analysis and natural language processing. These networks comprise con-
volutional layers that automatically learn hierarchical features from input images. 
Deep equilibrium model (DEQ) [2] is another promising trend, where the neural 
network can be viewed as “infinitely deep” with converging equilibrium points. 
DEQ can then be used to find these points directly via root finding. Gilton et al. [23] 
showed promising results when applying the DEQ model to linear inverse problems. 
Adapting deep learning methods to phase retrieval is generally challenging, as it 
is a nonlinear problem. Some early works begin with a denoising framework. For 
example, Plugging-in a Denoiser [12, 34, 39] leverages pre-trained CNNs as implicit 
regularizers, harnessing their inherent strength in image denoising. Specifically, 
Metzlter et al. [39] adopted the regularization by denoising (RED) approach [46] 
to phase retrieval, thus giving rise to the term PRred. Following the notation in (1), 
the regularizer in PRred has the form 

. R(x) = λ

2
x�(x − D(x)),

where the denoiser D(x). can be arbitrary. PRred [39] utilizes a DnCNNs denoiser 
from [54] and employs a fast solver from [25] to address the associated minimization 
problem. Similarly, generative prior methods [8, 31, 48] constrain the solution 
using a neural network generator via generative adversarial networks (GANs), 
ensuring that the solution has an accurate representation. Additionally, Hu et al. [33] 
combined a transformer as an encoder and a CNN as a decoder to build a phase 
shift network, while a vision transformer (ViT) [16] was adapted for phase retrieval 
in ptychography [21], referred to as PtychoDV. Last but not least, the end-to-end 
approach represents a more radical shift since it involves training a neural network
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to directly approximate the inverse mapping or its proxies. Some pioneer works 
[27, 36, 40] have demonstrated promising outcomes. 

Unrolling Algorithms Generally, the idea of unrolling [44] is built on iterative 
techniques that mimic traditional optimization methods but are structured as a fixed 
number of layers in a neural network. In particular, one takes these iterative pro-
cesses and “unrolls” them into a finite sequence of operations, each corresponding to 
a layer in a neural network. By treating the iterations as layers, the entire process can 
be trained end to end using gradient-based optimization. This approach leverages 
the interpretability of classical algorithms while benefiting from the efficiency and 
adaptability of deep learning. Specifically for phase retrieval, unrolling networks 
are utilized in PtychoDV [21] for ptychography and in [17] for PR from coded 
diffraction patterns (CDP). 

1.2 Our Contributions 

Classical projection methods such as Fienup [20] yield satisfactory results when 
there are a sufficient number of clean measurements, i.e., without noise. However, 
these methods easily fail when there is noise and there are not enough measure-
ments. To address the ill-posed nature of the PR problem, some approaches rely on 
a predefined regularization term, followed by an optimization algorithm to find the 
optimal solution. While such regularization terms encode the desired properties of 
the solution and are mathematically interpretable, they may only be effective for 
specific types of data. On the other hand, deep learning methods such as CNNs 
and GNNs, have been successful in many imaging processing tasks, but they often 
require a large amount of training data and lack interpretability. 

In this chapter, we propose a novel algorithm for recovering phase information 
from noisy and mildly oversampled data by extending the work of Manifold and 
Graph Integrative Convolution Network (MAGIC) [52]. Originally devised for 
CT image reconstruction, MAGIC is applicable to linear inverse problems. In 
this chapter, we adapt the MAGIC framework for phase retrieval, a challenging 
nonlinear problem. Our success is built upon the alternating direction method 
of multipliers (ADMM) [9], which involves two subproblems, each with closed-
form solutions. Following MAGIC, we construct a neural network by unrolling 
an optimization-based approach that exploits both local features encoded by a 
CNN and nonlocal features encoded by a graph convolutional network (GCN). Our 
contribution is threefold: 

1. We develop an algorithm unrolling strategy that has built-in mathematical 
interpretability. 

2. By this means, we make the unrolling of the nonlinear PR problem tractable via 
ADMM.
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3. We demonstrate that, in some cases, a stand-alone unrolling-based post-
processing network can improve phase retrieval results from some classical 
methods such as Fienup. 

As a proof-of-concept study, we assess our approach by employing Fourier mea-
surements of masked images. Comparative numerical experiments with traditional 
non-learning and learning-based methods reveal better performance in situations 
involving noisy measurements. 

The rest of the chapter is organized as follows. Section 2 is dedicated to a 
brief review of the MAGIC framework. We then detail the proposed algorithms in 
Sect. 3, highlighting the adaptation from solving a linear CT problem to a nonlinear 
PR problem. We also incorporate a stand-alone enhancement model in Sect. 3 that 
utilizes the same network architecture while aiming to improve the image quality 
achieved by a traditional PR method. As a proof-of-concept study, Sect. 4 shows 
numerical experiments of a masked Fourier PR problem. We consider two datasets 
(dog and CT images) and two types of masks (binary masks and plus-minus 1 
masks) under two settings: noiseless and noisy measurements. An ablation study 
is conducted in Sect. 4.3 to illustrate the influence of the key ingredients in the 
proposed workflow: CNN, GNN, and the improvement over the initial solution. 
Lastly, Sect. 5 concludes the chapter and points to some future directions. 

2 MAGIC Review 

The Manifold and Graph Integrative Convolution Network (MAGIC) [52] frame-
work integrates regularizations with a learning-based method for CT image recon-
struction. Specifically, MAGIC unrolls a gradient descent-based iterative scheme 
into a neural network, using a convolutional neural network (CNN) as a regular-
ization term. The algorithm samples points from overlapped patches with a small 
size, constructs a graph, and applies a graph neural network (GNN) to extract low-
dimensional nonlocal features. By combining CNN and GNN modules, MAGIC can 
capture information at both the pixel level and the topological structure to model the 
CT images. 

Mathematically, MAGIC is built upon the so-called learned experts’ assessment-
based reconstruction network (LEARN) [13], to minimize the following objective 
function: 

.x̂ = argmin
x

1

2
‖Ax − y‖22 + λR(x), (2) 

where x. is an image in a vector form that represents the attenuation coefficients, A 
denotes the Radon transform that projects x. into the data measurements y,. R(·). 
denotes a regularization term applied to x., and λ > 0. is a trainable weighting 
parameter. Note that the first term in (2) is a least squares to measure the data 
misfit. Instead of handcrafted regularization form, such as total variation, MAGIC
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and LEARN introduce a generalized regularization term, also known as Field of 
Expert (FoE) [47], which can be learned using deep learning techniques, 

.R(x) =
Nf∑

l=1

ψl(φl(x)), (3) 

where φl . and ψl . can be regarded as some linear convolution operators and nonlinear 
activation functions, respectively, to be learned using training datasets, and Nf . 

denotes the total number of features to be considered. 
Convolution and activation functions are fundamental components of CNNs. 

Convolution is used to learn features such as horizontal/vertical edges. Activation 
functions introduce non-linearity into the network, enabling it to learn complex 
patterns and relationships in the data. Different activation functions are used for 
different purposes. For instance, a rectified linear unit (ReLU) sets negative values 
to zero and passes positive values unchanged to help with faster convergence and 
mitigate the vanishing gradient problem. Sigmoid squashes the output between 0 
and 1, which is useful for binary classification tasks. Softmax is used in the output 
layer of classification models to convert logits into probabilities, with each output 
representing the probability of a class. 

Incorporating the generalized regularization (3) into the objective function (2) 
yields 

.x̂ = argmin
x

1

2
‖Ax − y‖22 +

Nf∑

l=1

λlψl(φl(x)), (4) 

with a set of weights λl . that is associated with each feature. One step of the gradient-
descent algorithm when minimizing (4) leads to 

.xt+1 = xt − α

⎡

⎣AT (Axt − y) +
Nf∑

l=1

λt
lφ

∗
l (ψ

′
l (φl(xt ))

⎤

⎦ , (5) 

where t indexes the iteration number, α > 0. is a step size, φ∗
l . is the adjoint operator 

of φl ., and ψ
′
l . is the derivative of ψl .. The last term in (5) filters the image xt

. spatially, 
which is replaced by a more general three-layer CNN module �. [13], thus leading 
to 

.xt+1 = xt −αAT (Axt −y)+�(xt ) with �(xt ) = ωt
3 ∗σ

(
ωt
2 ∗σ(ωt

1 ∗xt )
)
, (6) 

where {ω1,ω2,ω3}. is a set of convolution kernels to be learned, ∗. denotes the 
convolution operator, and σ(·). is the activation function applied elementwise after 
the hidden layers. With this setup, (6) can be viewed as a residual block with 
three parts: a skip connection, a data fidelity layer, and a spatial CNN module. By
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specifying the number of iterations, we can unroll (6) into a network with the same 
number of layers as the specified iteration count. 

Here, the CNN module �(xt ). in (6) is used to extract the local pixel-level 
features of an image xt

.. Consequently, CNN can be considered as a form of local 
regularization. 

MAGIC also employs nonlocal regularization based on graph convolutional 
networks (GCNs), which are defined on the manifold of image patches. Denote a 
patch set P(x). as a collection of image patches of x.with size s1 × s2 .. For example, 
pij (x). represents an image patch with pixel (i, j). at the top left corner of the image 
x..We vectorize each image patch as a row vector stack row by row to form a matrix 
and denote such linear transform of x. as P(x) ∈ Rp×d ,. where d is the number of 
pixels in each patch and p is the number of patches. We construct a graph G(V,E). 
with p nodes. We construct edges by using Euclidean distance to find neighbors. 
We define the adjacency matrix W as

.Wrq = e
− ‖vr−vq ‖22

μ2(V) , (7) 

where vr , vq ∈ V. are two nodes (patches) in the graph G. and μ(V)., a function 
capturing the “typical” graph distances. Here we follow the original MAGIC 
method and use the median square distance between patches as μ2(V).. Adopting 
a renormalization trick, we let W̃ = I + W . with the identity matrix I and define 
diagonal matrix D̃ .with D̃rr =

∑

q

W̃rq .. 

Now, nonlocal topological features from the low-dimensional patch manifold 
space are extracted by adding a GCN module 	 . acting on the image patches P(xt ). 

into (6), thus leading to 

.xt+1 = xt − αAT (Axt − y) + �(xt ) + 	(P (xt )), (8) 

where 	(P (xt )) = D̃− 1
2 W̃ D̃− 1

2 σ(D̃− 1
2 W̃ D̃− 1

2 P(xt )
t
1)


t
2 ., the GCN, with graph 

convolutional kernels 
t
1 ∈ Rd×p

. and 
t
2 ∈ Rp×d

. to-be-trained. In summary, 
MAGIC unrolls a fixed number of (8) into a neural network with respect to the 
parameters {ωt

1,ω
t
2,ω

t
3,


t
1,


t
2}.when minimizing a loss function, defined by 

.
1

Ns

Ns∑

i=1

‖xi − x̂i‖22, (9) 

where Ns .denotes the number of the training samples, xi . is the predicted reconstruc-
tion from the neural network, and x̂i . is corresponding label or ground-truth image. It 
was demonstrated in [52] that the effectiveness of both spatial CNN and topological 
GCN components leads to significant improvements compared to using only one of 
them.
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3 The Proposed Algorithms 

We describe two unrolling-based algorithms: one for phase retrieval and the other 
for image enhancement. Adapted from MAGIC to deal with the nonlinear inverse 
problem, both approaches share the same network architectures in terms of the 
unrolling techniques of an optimization method and two data-driven regularizations 
defined by CNN and GCN. As the unrolling framework requires an initial condition, 
we investigate the image enhancement model to offer an alternative that directly 
improves the image quality of the initial. 

3.1 Unrolling-Based Phase Retrieval 

We focus on a specific type of PR data that is a collection of Fourier-type 
measurements of masked images. The proposed methodology however works for 
any kind of PR data. We consider two types of masks in the experiments. One 
is called a binary mask in the sense that each mask matrix M(j) ∈ Rmn×mn

. is a 
diagonal matrix where the diagonal entries are either 1 or 0, with 1 at locations 
where the intensity of x. is preserved and 0 where it is nullified. The other is called a 
plus-minus (PM) mask, where the diagonal entries are either + 1. or − 1., to avoid 
completely ignoring some pixels by nullifying them. Let F ∈ Cmn×mn

. denote the 
2D Fourier transform matrix that acts on x.. In this setting, the forward model and 
the measurements can be succinctly represented as follows: 

. A =

⎛

⎜⎜⎜⎝

FM(1)

FM(2)

...

FM(�)

⎞

⎟⎟⎟⎠ ∈ C�mn×mn, y =

⎛

⎜⎜⎜⎝

y(1)

y(2)

...

y(�)

⎞

⎟⎟⎟⎠ ∈ R�mn,

where �. denotes the number of masks. 
Given the phaseless data y ∈ R�mn,.we aim to reconstruct the image x ∈ Rmn

. by 
solving the following minimization problem 

. min
x∈Rmn

1

2
‖|Ax| − y‖22 + λR(x), (10) 

where the data fidelity is measured by the least squares, R denotes a regularization 
term, and λ > 0. is a trainable weighting parameter. As the term |Ax|. is not 
differentiable, we adopt the alternating direction method of multipliers (ADMM) 
[9] to minimize (10). The core idea of ADMM is to introduce auxiliary variables 
and decompose the problem into subproblems, each of which is easier to solve. 
In particular, we introduce an auxiliary variable z ∈ C�mn

. and convert (10) to an 
equivalent formulation
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.min
x,z

1

2
‖|z| − y‖22 + λR(x) s.t. Ax = z. (11) 

The corresponding augmented Lagrangian can be expressed by 

.Lρ(x, z; v) = 1

2
‖|z| − y‖22 + λR(x) + ρRe{〈v,Ax − z〉} + ρ

2
‖Ax− z‖22, (12) 

where v. is a Lagrangian multiplier or so-called dual variable and ρ . is a positive 
penalty parameter. ADMM iterates as follows: 

.

⎧
⎨

⎩

xt+1 = argminxLρ(x, zt ; vt )

zt+1 = argminzLρ(xt+1, z; vt )

vt+1 = vt + (Axt+1 − zt+1),

(13) 

where t is an index of the iteration numbers.
We start with a closed-form solution for the z.-subproblem in (13), which is 

equivalent to 

. min
z∈C�mn

1

2
‖|z| − y‖22 + ρ

2
‖Axt+1 − z + vt‖22. (14) 

Let g := Axt+1 + vt .. The closed form solution for z. depends on two inputs, y. and 
g., which can be given by an operator G, i.e., 

.G(y, g) =
{

y+ρ|g|
1+ρ

g
|g| if g 	= 0

y
1+ρ

c if g = 0,
(15) 

where c is an arbitrary unit root. The derivation o f (15) is based on the Wirtinger 
calculus [51] to deal with complex-valued z. and find a stationary point of the 
objective function in (14). 

Then we examine the x.-subproblem in (13), which can be equivalently expressed 
as 

.min
x

λR(x) + ρ

2
‖Ax − zt + vt‖22. (16) 

One step of gradient descent for minimizing (16) with respect to x. with implicit 
regularization1 yields 

.xt+1 = xt − α
(
ρ(A∗Axt −A∗zt +A∗vt )

) + �(xt ) + 	(P (xt )), (17)

1 Implicit used here to denote that there is no assumption of an explicit relation between R(x). and 
�(xt ). or 	(P (xt )).. 
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where α > 0. is a step size, A∗
. denotes the complex conjugate of A., and P(xt ). 

is a matrix obtained by collecting image patches from xt
. as in (8). To expedite 

convergence, we choose to initialize using the results of a classical projection 
algorithm such as Fienup to set the value of x0 .. 

Though the formula in (17) is defined in a vector form, all the computations can 
be implemented in the matrix formulation. We maintain the matrix representations 
of x. and illustrate the calculation ofA∗Ax. to be the sum of all 2D masks point-wise 
multiplied by the matrix version of x.. 

The calculation of A∗z. is similar: note z =

⎛

⎜⎜⎜⎝

z1

z2
...

z�

⎞

⎟⎟⎟⎠. is a stacked vector, A∗z =

(
(M(1))TF∗ (M(2))TF∗ . . . (M(�))TF∗)

⎛

⎜⎜⎜⎝

z1

z2
...

z�

⎞

⎟⎟⎟⎠ =
∑

j

M(j)F∗(zj ).. Its matrix oper-

ation is the sum of the following terms: the j th mask pointwise multiplied by the 
inverse Fourier transform of the 2D matrix representation of zj .. 

Lastly, the calculation of Axt+1
. is also efficient: Axt+1 =

⎛

⎜⎜⎜⎝

FM(1)

FM(2)

...

FM(�)

⎞

⎟⎟⎟⎠ xt+1
., 

whose matrix representations are the l copies of Fourier transformation of xt+1
. 

multiplied by l masks. In summary, the ADMM iterations (13) can be given by 

.

⎧
⎨

⎩

xt+1 = xt − α(ρ(A∗Axt −A∗zt +A∗vt )) + �(xt ) + 	(P (xt ))

zt+1 = G(y,Axt+1 + vt )

vt+1 = vt +Axt+1 − zt+1
(18) 

Unlike a typical ADMM algorithm, which iterates until convergence, our objective 
is to determine the trainable parameters, such as those in the CNN and GCN 
modules. We iterate through the equations in (18) for a specified number of blocks 
(Fig. 1) to construct a neural network as shown in Fig. 2, with the updates of the 
ADMM variables as shown in Fig. 3. One can see that neural network is originated 
from an iterative algorithm, providing mathematical interpretability of the deep 
network. 

Next, we describe the training procedure in detail. As the aforementioned neural 
network is differentiable with respect to these trainable parameters, we apply the 
stochastic gradient descent algorithm to find the optimal solutions. Given training 
data {(xi , yi , x0i )}i∈S1 . with xi . the ith ground-truth image, yi . the corresponding PR 
data, and x0i . the initial guess, we adopt the algorithm unrolling scheme [28, 44] and 
let each yi . go through the iterative scheme outlined in Eqs. (18), propagating the
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Fig. 1 MAGIC PR Block: one iteration of the ADMM-based algorithm includes updates for x, z, 
and v, as well as the block’s CNN and GCN modules. During training, parameters {ω1, ω2, ω3}. of 
the CNN and {
1,
2}. of the GCN are learned 

Fig. 2 The unrolled network is constructed by the composition of a predetermined number of 
MAGIC PR Blocks. The estimated reconstruction x̂ . corresponds to the x variable of the last block 
in the netwo rk

information forward in the unrolled neural network (Fig. 2). To solve for the model 
parameters ωn .’s, 
n .’s in the neural networks and the gradient descent step-size α ., 
we minimize the supervised mean squared error (MSE) loss function: 

.L = 1

N

∑

i

‖xi − x̂i‖22, (19) 

where xi . is the i-th given ground-truth image, x̂i . is the output of the unrolled neural 
network to the i-th measurement, and N is the size of the training set.

3.2 Unrolling-Based Image Enhancement 

In this section, we consider a stand-alone unrolling-based neural network to improve 
the quality from image denoising. For example, the input data, denoted by g., could
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Fig. 3 Update of the ADMM variables in the unrolling algorithm (18), with each block repre-
senting one iteration and k blocks stacking a finite number of iterations to build a deep network 
architecture

be phase retrieval results obtained by using a handful of iterations of the Fienup 
algorithm. This can be treated as a post-processing step that sometimes works better 
than the unrolling-based phase retrieval method. 

To improve the image quality from the input data g., we consider to minimize the 
following energy function 

.min
x

1

2
‖x − g‖22 + λR(x), (20) 

to find a solution x. using a regularization function defined by R.. We adopt the 
same strategies in the proposed PR pipeline, i.e., local and nonlocal regularization 
functions described by CNN and GCN, respectively. 

Solving the minimization problem (20) using gradient descent, we get 

.xt+1 = xt − α
(
(xt − g)

)
+ �(xt ) + 	(P (xt )) . (21) 

Adopting the unrolling scheme, we construct a neural network using the iterative 
scheme (21) and solve for parameters in the neural network with respect to 
MSE (19), where xi . is the given i-th ground-truth clean image, x̂i . is the output of 
unrolled (21), and N is the size of the training set. Note that the denoising model (21) 
inherits the same network architecture, i.e., �(·). and 	(·)., as in the PR case (18). 
We include this model into an ablation study of the proposed methods, as outlined 
in Sect. 4.3.
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4 Numerical Examples 

Data Simulation We consider masked Fourier measurements to simulate phaseless 
data. Specifically, we start with an image, denoted by x. in a vector form, which is 
regarded as the underlying ground truth, and three masks of the same dimension 
as the image. The justification for using three masks stems from the difficulty 
in achieving successful PR under an oversampling ratio of 2, and the theoretical 
assurance of a unique PR solution when the oversampling ratio is 4. We multiply 
the image with each mask elementwise, take the Fourier transform of each masked 
image, and only record the magnitude, leading to vectorized data denoted by y.. 
As a result, the number of the measurements in y. is three times the number of the 
ground-truth image in y. due to the use of three masks. We also add noise to test 
the robustness of our model. We use the same masks for each image in the dataset 
before splitting it into the training and testing sets. 

Model Architecture For hyperparameters related to CNN and GCN, we adopt 
similar strategies as outlined in the original MAGIC paper [52]. For instance, for 
the CNN component, we use three convolutional layers, each one with 64 filters 
of size 3 ×.3. We also use stride of 1 and padding of 1, but in contrast with the 
original paper that uses padding with zeros, we use padding mode with reflecting 
conditions, no bias in the convolutional layer and ReLU activation function after 
all the convolutional layers. Therefore, the number of parameters to learn per CNN 
component per block is 38,016 (first layer, ωk

1 ., 3 × 3 × 1 × 64.; second layer, ωk
2 ., 

3×3×64×64.; and last layer, ωk
3 ., 3×3×64×1.). For the GCN component, we use 

two layers each with 64 neurons. To build the weighted graph, we use Eq. (7) and 
patches of size 6 ×.6. The patches cover the image with stride 2, which yields a graph 
with 3844 vertices (i.e. a vertex per patch) for images of size 128 ×.128. Therefore, 
the number of parameters to learn per GCN component per block is 4708 (first layer, 

k

1 ., 6× 6× 1× 64.; last layer, 
k
2 ., 64× 6× 6× 1+ 6× 6× 1.). In addition, for each 

ADMM block, we learn the parameter of α . in Eq. (18 for xt+1
. update. Briefly, this 

corresponds to a model with 42,725 parameters per block. We calculate the graph 
Laplacian twice with the first k/2. blocks using graph Laplacian calculated from the 
initial x0 . and the last k/2. blocks using an updated one from the xk/2

. iterate. A larger 
k implies more iterations and a deeper model that may not fit in memory or require 
greater data to train. In the experiments, we conduct a minimal exploration of the 
number of blocks k to use for each problem, running a few iterations for models 
with 10, 20, 30, and 50 blocks and greedily selecting the number of blocks yielding 
a smaller error. In one case (see sections below), we find that a larger number of 
blocks (120) produced better results.

Initialization and Training Setup We employ the Fienup algorithm, performing 
50 iterations to obtain the starting point x0 . in the iteration; see (18). As in the 
original MAGIC work, we use the ADAM optimizer and a decaying learning rate. 
The learning rate is set to decay by a multiplicative factor of 0.95 after each epoch. 
However, to capture the different expected influence of parameters, we group them
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in (i) neural network parameters (i.e., including CNN and GCN components) and 
(ii) ADMM parameters (including α .), and we set two different initial learning rates 
for these two groups, LR 0NN . and LR 0α ., respectively. Usually we set LR0

NN 
. LR 0α .. 
We initialize the parameters for CNN and GCN with normal distributions with mean 
0 and standard deviation equal to 0.001 or 0.0001, respectively. In most cases, we 
initialize the α . parameters with 0.5. Nevertheless, we find it convenient to initialize 
them to 0.01 for the noisy data cases. We train our models for 50 epochs. During 
training, we make sure to clip the α . parameters to the range [10−7, 0.9]., since they 
correspond to gradient descent step sizes. Additionally, we use training, validation, 
and testing sets. The validation set is only used to track performance (MSE) and 
enact an early-stopping criterion: we stop training if the performance evaluated on 
the validation set does not improve for a span of a pre-specified number of epochs. 
This span of epochs, usually denoted as patience, was set to 25 in our experiments. 
In all cases, we report results over the testing set using the best model, i.e., the 
model that during training exhibited the lowest MSE in the validation set. This can 
be different from the model obtained in the last training epoch, which in turn can be 
obtained in less than 50 epochs if the early-stopping criterion is activated. 

Comparison We compare the proposed approach with a classical projection 
approach (Fienup [20]), an advanced gradient-based method (TWF [14]), a gradient-
based method (WF), and a deep learning approach (PRred [39]). We use the 
MATLAB codes for Fienup, TWF, and WF which are publicly available.2 Standard 
metrics PSNR and SSIM (both using the dynamic range of the ground truth; see 
definitions in [32]) are used to quantitatively evaluate the performance of various 
competing methods. Additionally, we present some visual results for qualitative 
comparisons. 

Datasets We consider two diverse datasets for our experimental study: images that 
contain dogs from ImageNet [15] and full-dose CT images [38]. We focus on dog 
images with the intention of learning features that are specific to dogs rather than 
other classes in ImageNet. We consider clean dog images (without noise) since most 
dog images contain fine details of fur and background, making the reconstruction 
susceptible to noise. Since CT images are generally piece-wise constant and can 
tolerate a certain amount of noise, we investigate both clean and noisy data to 
evaluate the robustness of the proposed method in handling noise. 

4.1 Experiments on the Dog Dataset 

We collect a dataset composed of 600 images of dogs in front of diverse back-
grounds from ImageNet [15]. We resize each image to 128 × 128. pixels and split 
the data into 400 images for training, 100 images for validation, and 100 images for

2 https://github.com/tomgoldstein/phasepack-matlab 

https://github.com/tomgoldstein/phasepack-matlab
https://github.com/tomgoldstein/phasepack-matlab
https://github.com/tomgoldstein/phasepack-matlab
https://github.com/tomgoldstein/phasepack-matlab
https://github.com/tomgoldstein/phasepack-matlab
https://github.com/tomgoldstein/phasepack-matlab
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testing. In this experiment, we use directly the phaseless simulated measurements— 
meaning that no additional noise is added to the measurement data. 

We consider two types of masks. One consists of 50%. of the value + 1. and 50%. 

of the value − 1., referred to as a plus-minus (PM) mask. The other is a binary mask 
with 80%. of value 1 and 20%. of value 0. In both cases, the size of the measurements 
is triple that of the underlying image. However, the effective oversampling ratio for 
the binary mask is 2.4, taking into account the loss of information at locations where 
the mask value is 0. 

For the PM mask, we train a 30-block unrolled MAGIC architecture, with the 
block configuration described before. This corresponds to a model with 1,281,750 
parameters. We use a batch size of 64 and initial learning rates of LR0

NN = 0.01. 
and LR0

α = 0.0001.. For the binary mask, we train a 120-block unrolled MAGIC 
architecture, with the block configuration described before. This corresponds to a 
model with 5,127,000 parameters. We use a batch size of 32 and initial learning 
rates  of  LR0

NN = 0.01. and LR0
α = 0.0001.. 

The results of the dog data are presented in Tables 1 and 2 for PSNR and 
SSIM, respectively. One can see that when there is no noise and PM mask is used, 
Fienup performs the best, with TWF the second best. For the two deep learning-
based approaches, the proposed one is better than PRred and almost matches the 
performance of WF. On the other hand, in the case of binary masks, Fienup and 
TWF still perform well, although not as good as in the case of PM mask. In contrast, 
the WF method has a bad performance and is easily beaten by the proposed method. 
For the two deep learning-based approaches, the proposed one is, again, better than 
PRred. 

Figures 4, 5, and 6 present visual results of the image reconstruction from 
phaseless data for the PM mask. Figures 7, 8, and 9 present visual results of the 
image reconstruction from phaseless data for the binary mask. Fienup and TWF 
achieve exact recovery of the underlying image for the PM mask, as expected due 
to the theoretical guarantees provided by an oversampling ratio of 3 in the PM case. 
However, these two methods lack a mechanism to fill in the missing information 
when binary masks are employed, causing dead pixels at the locations where the 

Table 1 PSNR comparison on the clean dog dataset (without noise). Mean values over 100 testing 
images are reported with standard deviation in parenthesis 

Fienup TWF WF PRred Proposed 

PM mask 83.31 (1.95) 60.55 (3.63) 35.44 (6.03) 15.88 (3.43) 33.32 (3.07) 

Binary mask 25.19 (1.44) 26.76 (1.84) 13.57 (1.20) 8.98 (1.73) 23.65 (2.50) 

Table 2 SSIM comparison on the clean dog dataset (without noise). Mean values over 100 
testing images are reported with standard deviation in the parenthesis 

Fienup TWF WF PRred Proposed 

PM mask 1.00 (0.00) 1.00 (0.00) 0.92 (0.15) 0.51 (0.10) 0.90 (0.07) 

Binary mask 0.80 (0.05) 0.89 (0.04) 0.21 (0.03) 0.10 (0.02) 0.72 (0.09)
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Fig. 4 Results for dog dataset with the PM mask. From left to right: ground truth, Fienup (PSNR, 
81.84 dB; SSIM, 0.99), TWF (PSNR, 60.00 dB; SSIM, 0.99), WF (PSNR, 43.80 dB; SSIM, 0.99), 
PRred (PSNR, 13.51 dB; SSIM, 0.47), proposed (PSNR, 35.01 dB; SSIM, 0.94) 

Fig. 5 Results for dog dataset with the PM mask. From left to right: ground truth, Fienup (PSNR, 
90.59 dB; SSIM, 1.00), TWF (PSNR, 63.75 dB; SSIM, 0.99), WF (PSNR, 35.95 dB; SSIM, 0.93), 
PRred (PSNR, 26.06 dB; SSIM, 0.65), proposed (PSNR, 40.70 dB; SSIM, 0.97) 

Fig. 6 Results for dog dataset with the PM mask. From left to right: ground truth, Fienup (PSNR, 
80.92 dB; SSIM, 0.99), TWF (PSNR, 55.54 dB; SSIM, 0.99), WF (PSNR, 36.53 dB; SSIM, 0.97), 
PRred (PSNR, 10.98 dB; SSIM, 0.47), proposed (PSNR, 30.02 dB; SSIM, 0.89) 

Fig. 7 Results for dog dataset with the binary mask. From left to right: ground truth, Fienup 
(PSNR, 28.29 dB; SSIM, 0.77), TWF (PSNR, 30.91 dB; SSIM, 0.95), WF (PSNR, 15.81 dB; 
SSIM, 0.22), PRred (PSNR, 12.71 dB; SSIM, 0.20), proposed (PSNR, 30.31 dB; SSIM, 0.87) 

mask entry takes the value of 0. This loss of information impacts the performance of 
algorithms like Fienup and TWF and severely affects the reconstruction on the WF 
case. Additionally, our experimental setup falls outside the assumptions under which 
the theoretical guarantees for classical methods are typically established, which may 
explain the observed issues in this specific context. PRred relies on an image prior 
to guiding the image reconstruction but does not employ any information about the 
measurement operator. Results are noisy for the PM mask case and very distorted 
for the binary mask. The proposed approach utilizes both local and nonlocal features
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Fig. 8 Results for dog dataset with the binary mask. From left to right: ground truth, Fienup 
(PSNR, 28.40 dB; SSIM, 0.87), TWF (PSNR, 30.42 dB; SSIM, 0.93), WF (PSNR, 16.89 dB; 
SSIM, 0.30), PRred (PSNR, 13.55 dB; SSIM, 0.16), proposed (PSNR, 28.88 dB; SSIM, 0.88) 

Fig. 9 Results for dog dataset with the binary mask. From left to right: ground truth, Fienup 
(PSNR, 26.13 dB; SSIM, 0.82), TWF (PSNR, 27.32 dB; SSIM, 0.88), WF (PSNR, 14.69 dB; 
SSIM, 0.24), PRred (PSNR, 10.62 dB; SSIM, 0.13), proposed (PSNR, 26.51 dB; SSIM, 0.82) 

discovered by CNN and GCN for image reconstruction. While it produces metrics 
that are lower than Fienup and TWF, the corresponding visual results are appealing 
but still suffer from similar dead pixel artifacts than classical methods. 

4.2 Experiments on the CT Dataset 

The CT dataset contains a collection of CT images from ten different patients [38]. 
In our experiments, we use full-dose CT images from ten patients to simulate data 
for phase retrieval. We select eight patients for the training and validation sets and 
reserve two patients for testing. From the 8 training/validation patients, we randomly 
select 400 images to train the unrolling network and 100 images for validation. 
From the 2 reserved testing patients, we randomly select 100 images for testing. 
We consider both clean CT and noisy CT, with the latter simulated by adding 
Gaussian noise with mean 0 and standard deviation of 0.04 (i.e., about 4%) in 
the measurement domain (magnitude data). In other words, we add noise to each 
component of the vectorized data y., clipping negative values to 10−5

., to guarantee 
positive measurements. This corresponds to about 22 dB PSNR and 5.3 dB SNR, 
between original y. and corrupted signal yn . in the measurement domain. Although 
this seems like a mild noise level, it is enough to severely affect the performance of 
classical methods. 

For the clean CT, we train a 20-block unrolled MAGIC architecture, with the 
block configuration described before. This corresponds to a model with 854,500 
parameters. We set a batch size of 128 and initial learning rates of LR0

NN = 0.001. 
and LR0

α = 0.0001.. For the noisy CT, we train a ten-block unrolled MAGIC 
architecture, but we modify the CNN component to include more layers and filters.
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Table 3 PSNR comparison using the CT dataset (standard deviation is provided in parenthesis) 

Fienup TWF WF PRred Proposed 

Clean CT 88.09 (1.24) 64.63 (2.73) 40.96 (6.72) 13.29 (3.02) 38.60 (1.63) 

Noisy CT 12.10 (0.91) 11.78 (0.90) 11.33 (0.90) 12.61 (1.54) 22.98 (0.69) 

Table 4 SSIM comparison using the CT dataset (standard deviation is provided in parenthesis) 

Fienup TWF WF PRred Proposed 

Clean CT 1.00 (0.00) 1.00 (0.00) 0.92 (0.15) 0.31 (0.05) 0.93 (0.02) 

Noisy CT 0.08 (0.02) 0.08 (0.02) 0.07 (0.01) 0.16 (0.03) 0.40 (0.03) 

Fig. 10 Results for CT dataset. From left to right: ground truth, Fienup (PSNR, 87.13 dB; SSIM, 
0.99), TWF (PSNR, 61.19 dB; SSIM, 0.99), WF (PSNR, 39.11 dB; SSIM, 0.94), PRred (PSNR, 
11.62 dB; SSIM, 0.31), proposed (PSNR, 39.94 dB; SSIM, 0.95) 

We use 5 convolutional layers, each one with 128 filters of size 3 ×.3. We also use a 
stride of 1 and padding of 1, padding mode with reflecting conditions, no bias in the 
convolutional layer, and ReLU activation function in all the layers. Therefore, the 
number of parameters to learn per CNN component per block is 444,672 (first layer, 
ωk
1 ., 3× 3× 1× 128.; second, third, and fourth layers ( ωk

2 ., ω
k
3 ., and ω

k
4 ., respectively), 

3 × 3 × 128 × 128. (each); and last layer, ωk
5 ., 3 × 3 × 128 × 1.). The other layers 

remain as before (i.e., 
t
1,


t
2 . corresponds to 4708 parameters per GCN component 

per block and 1 α . parameter per block). Thus, this corresponds to a model with 
449,381 per block, for a total of 4,493,810 parameters. We use a batch size of 64 
and initial learning rates of LR0

NN = 0.1. and LR0
α = 0.0001.. 

The PSNR and SSIM values of the reconstructed images are reported in Tables 3 
and 4. One can see the same pattern in clean CT as in the dog data under the 
PM mask, albeit, the proposed method’s performance is improved, probably due 
to the higher homogeneity of the CT dataset. However, in the presence of noise, the 
performance of Fienup, TWF, and WF drops dramatically, resulting in significantly 
poorer results compared to the proposed approach. Considering learning-based 
methods, our approach largely outperforms PRred. 

We present CT image results for phase retrieval without noise in Figs. 10, 11, 
and 12 and for phase retrieval with noise in Figs. 13, 14, and 15. In the noise-free 
case, Fienup and TWF achieve the perfect reconstruction with no visual difference 
from the ground truth and are nearly followed by WF. PRred exhibits noisy results, 
whereas the proposed approach generates very good visual results with SSIMs 
that are very close to WF. In Figs. 13, 14, and 15, when the noise is present, it 
appears that noise propagates throughout the entire images recovered by Fienup,
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Fig. 11 Results for CT dataset. From left to right: ground truth, Fienup (PSNR, 86.85 dB; SSIM, 
0.99), TWF (PSNR, 63.58 dB; SSIM, 0.99), WF (PSNR, 43.56 dB; SSIM, 0.98), PRred (PSNR, 
11.57 dB; SSIM, 0.30), proposed (PSNR, 38.43 dB; SSIM, 0.94) 

Fig. 12 Results for CT dataset. From left to right: ground truth, Fienup (PSNR, 91.46 dB; SSIM, 
1.00), TWF (PSNR, 66.53 dB; SSIM, 0.99), WF (PSNR, 47.32 dB; SSIM, 0.99), PRred (PSNR, 
18.98 dB; SSIM, 0.41), proposed (PSNR, 42.32 dB; SSIM, 0.96) 

Fig. 13 Results for CT dataset for measurements with additive Gaussian noise. From left to right: 
ground truth, Fienup (PSNR, 12.37 dB; SSIM, 0.12), TWF (PSNR, 12.25 dB; SSIM, 0.12), WF 
(PSNR, 11.84 dB; SSIM, 0.11), PRred (PSNR, 12.96 dB; SSIM, 0.25), proposed (PSNR, 22.52 
dB; SSIM, 0.47) 

Fig. 14 Results for CT dataset for measurements with additive Gaussian noise. From left to right: 
ground truth, Fienup (PSNR, 13.34 dB; SSIM, 0.07), TWF (PSNR, 13.13 dB; SSIM, 0.06), WF 
(PSNR, 12.69 dB; SSIM, 0.05), PRred (PSNR, 16.83 dB; SSIM, 0.16), proposed (PSNR, 24.19 
dB; SSIM, 0.38) 

TWF, and WF, resulting in poor reconstruction performance. PRred is able to reduce 
the amount of noise, overpassing the performance of the classical methods. The 
proposed approach produces the best visual result for phase retrieval from noisy 
data among all the methods compared.
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Fig. 15 Results for CT dataset for measurements with additive Gaussian noise. From left to right: 
ground truth, Fienup (PSNR, 14.29 dB; SSIM, 0.09), TWF (PSNR, 14.02 dB; SSIM, 0.08), WF 
(PSNR, 13.34 dB; SSIM, 0.07), PRred (PSNR, 14.50 dB; SSIM, 0.16), proposed (PSNR, 24.87 
dB; SSIM, 0.42) 

4.3 Ablation Study of MAGIC-Based Approach 

We provide an ablation study of the proposed MAGIC-based approach for phase 
retrieval based on the noisy CT dataset. In the training stage, we have the option 
to exclude either the CNN component (i.e., no CNN) or the GCN component (i.e., 
no GCN) in order to investigate the influence of each component on the overall 
performance. As the proposed workflow (18) requires an initial condition x0 .,  we  
additionally incorporate an experimental study on a post-processing enhancement 
module, aiming to improve the image quality by learning the CNN and GCN 
components, as elaborated in Sect. 3.2. We refer to this approach as the simpler 
denoising method. 

We carry out four experiments: the first one employs our complete approach; 
the second uses the simpler enhancement formulation, i.e., only enhances the 
initial solution (which is computed via a handful of iterations of Fienup); the third 
experiment does not use graph-based regularization; and the fourth omits the CNN-
based regularization. We denote these experiments as full-model, only-denoise, 
no-GCN, and no-CNN, respectively. 

In terms of parameters, the full-model has 449,381 parameters per block 
as explained before (444,672 parameters per CNN component per block, 4708 
parameters per GNN component per block, and one parameter of α . per block); the 
only-denoise has the same number of parameters per block as full-model; the no-
GCN has 444,673 parameters per block (444,672 parameters per CNN component 
per block and one parameter of α . per block); and the no-CNN has 4709 parameters 
per block (4708 parameters per GCN component per block and one α . parameter per 
block). 

In all cases, we set a batch size of 64, initial learning rates of LR0
NN = 0.1. and 

LR0
α = 0.0001., and we initialize α . to 0.01. As in the other cases, we train our 

models for 50 epochs using the ADAM optimizer with a decaying learning rate (set 
to decay by a multiplicative factor of 0.95 after each epoch). During training, we clip 
the α . parameters to the range [10−7, 0.9]. along with an early-stopping criterion. We 
report results estimated over the testing set using the best model. 

We compare all the MAGIC-inspired variants in terms of PSNR and SSIM in 
Table 5 and show visual results in Figs. 16, 17, and 18. From these results, it is clear
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Table 5 Ablation study of MAGIC-inspired variants on noisy CT dataset (standard deviation is 
provided in parenthesis) 

Full-Model Only-Denoise No-GCN No-CNN 

PSNR [dB] 22.98 (0.69) 24.44 (0.77) 24.08 (0.70) 18.10 (0.86) 

SSIM 0.40 (0.03) 0.59 (0.03) 0.45 (0.03) 0.25 (0.04) 

Number of parameters 4,493,810 4,493,810 4,446,730 47,090 

Fig. 16 Results for CT dataset for measurements with additive Gaussian noise. From left to right: 
ground truth, full model (PSNR, 22.52 dB; SSIM, 0.47), only denoise (PSNR, 23.44 dB; SSIM, 
0.63), no GNN (PSNR, 23.38 dB; SSIM, 0.51), no CNN (PSNR, 18.69 dB; SSIM, 0.35) 

Fig. 17 Results for CT dataset for measurements with additive Gaussian noise. From left to right: 
ground truth, full model (PSNR, 24.19 dB; SSIM, 0.38), only denoise (PSNR, 25.99 dB; SSIM, 
0.62), no GNN (PSNR, 25.31 dB; SSIM, 0.43), no CNN (PSNR, 19.60 dB; SSIM, 0.24) 

Fig. 18 Results for CT dataset for measurements with additive Gaussian noise. From left to right: 
ground truth, full model (PSNR, 24.87 dB; SSIM, 0.42), only denoise (PSNR, 26.62 dB; SSIM, 
0.64), no GNN (PSNR, 26.11 dB; SSIM, 0.48), no CNN (PSNR, 20.12 dB; SSIM, 0.25) 

that removing the CNN component, as in no-CNN, leads to a significant degradation 
in performance. This implies that the local features learned by CNN are more crucial 
than the nonlocal features learned by GCN. We also observe that the only-denoise 
model outperforms the proposed unrolling-based PR one, exhibiting the best metrics 
over all the methods. Nevertheless, the only-denoise visual results tend to be blurry. 
This variant may also have a more limited scope due to its high dependency on 
the initial condition. The no-GCN model yields better metrics than the full-model,
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reducing a bit more of the noise and capturing somewhat better the structure than 
the full-model without as much blurring as only-denoise. Note that we experiment 
with several hyperparameter configurations.3 Although we do not claim the optimal 
configuration is guaranteed, in most cases, the resulting reconstructions follow the 
same trend, which are reported here. However, some configurations lead to unstable 
training (with loss reduction only in early epochs) or progress much more slowly 
than others. A more rigorous exploration of the hyperparameter configuration is 
out of the scope of this work. Overall, using the local operator helps reduce blurry 
artifacts in the reconstruction (as the only-denoise model). However, balancing this 
against the local and nonlocal smoothing components (CNN or GCN) is challenging 
within the additive context of xt+1

. update in Eq. (18).  This  may  be  even  more  
problematic when training with limited or noisy measurement data.

5 Conclusion and Future Work 

We proposed an unrolling-based deep learning approach for phase retrieval. While 
the proposed method is applicable in a general sense, this chapter specifically 
focused on phase retrieval from Fourier measurements of masked images. We 
adopt data adaptive local and nonlocal regularization based on CNN and GCN. 
The proposed algorithm outperforms state-of-the-art methods in recovering phase 
information from noisy measurements. Future work includes the extension to 
general PR settings and more realistic PR applications. 

The exploration of deep learning methods for phase retrieval is still ongoing, 
particularly in understanding their performance in noiseless scenarios and when 
the number of measurements is small—conditions where most classical methods 
tend to fail. While deep learning methods have shown great potential, especially in 
large-scale problems, realizing this potential often requires careful parameter tuning 
and significant engineering efforts, such as collecting more data or better balancing 
parameter initialization and learning rate initialization and decay. We believe that 
with further numerical studies and optimizations, deep learning approaches can 
achieve performance levels comparable to classic methods, such as Fienup, WF, 
and TWF, in noiseless cases; however, more research is needed to fully validate 
this. 
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Performance Analysis of MFCC and 
wav2vec on Stuttering Data 

Venera Adanova and Maksat Atagoziev 

1 Introduction 

Over the last decade, speech recognition systems have evolved dramatically. Thanks 
to advances in machine and deep learning, we can witness automatic recognition 
systems (ASR) such as Alexa, Siri, or Google with astonishing performance. 
However, these systems are trained on fluent speech and fail to recognize speech 
with disorders, such as stuttering. 

Stuttering, aka stammering, is a complex speech disorder that negatively affects 
the communication ability of 1% of the population. Persons who stutter (PWS) often 
know what they want to say; however, the speech is interrupted by involuntary 
pauses and word or sound repetitions. Identification of stuttering in a speech is a 
challenging problem involving multiple disciplines such as pathology, psychology, 
acoustics, and signal processing. 

The majority of studies conducted on stuttering data aim to detect and iden-
tify the dysfluency types in audio recordings. These types of dysfluency are 
generally defined as blocks, prolongations, sound/word/phrase repetitions, and 
interjections [15, 19]. Blocks are defined as involuntary pauses before words. 
Prolongations are elongated syllable, like I am s[sss]ory. Repetitions involve sound, 
word, or phrase repetitions. For example, I made [made] dinner represents a word 
repetition. In order to avoid above-defined stuttering types, a person who stutters 
learns to use filler words like “um, uh, you know, etc.” These filler words are 
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known as interjections. Note that the dysfluency types might be named differently 
in different studies. 

The ability to differentiate between stuttering types enables improvements in the 
design of assistive speech technologies. For instance, speech recognition software 
could be optimized to handle prolongations differently from repetitions. Knowing 
the type of dysfluency allows developers to fine-tune how technology interacts with 
stuttered speech. 

It would also be very useful for speech therapists. Currently, speech therapists 
record audio of their patients while they speak and then manually annotate the 
stuttering types observed in the speech. Based on the frequency of stuttering 
types, the severity of speech disorder is identified. The improvements in patient’s 
speech after the therapy are also identified by the same process. This manual 
intervention limits treatment to the confines of the therapist’s office. Automatic 
detection and identification ability can significantly enhance treatment strategies 
by providing real-time, objective analysis of speech patterns. Automated systems 
can quickly identify and categorize dysfluencies, allowing speech therapists to track 
progress more precisely and adjust interventions dynamically based on detailed 
data. This automation also enables the development of personalized therapy tools, 
such as mobile apps that provide instant feedback, and improves speech recognition 
technologies by making them more adaptive to dysfluent speech. Additionally, 
automatic detection can accelerate research by providing large-scale, consistent data 
for studying stuttering. 

Though ASR systems have evolved, studies involving stuttering detection and 
identification are scarce. The main reason for the deficiency of studies in stuttered 
speech is the lack of data. Many studies in this field use in-house datasets, which are 
small, manually labelled datasets. These types of datasets are not publicly available. 
Some publicly available datasets, such as UCLASS, are not labelled. Even if the 
datasets are publicly available and labeled, it is highly imbalanced where more than 
half of the dataset contains fluent data and the other half is shared among different 
dysfluency types. Just like any speech-related problem, detecting stuttering requires 
lots of data for accurate learning. 

Typically, works conducted on stuttering detection and identification are done 
based on some datasets, either in-house or public, learn to classify between 
fluent and dysfluent speech (stuttering detection), and distinguish dysfluency types 
(identification). 

The works that use in-house datasets [1, 8, 9, 11, 17] typically use small self-
labeled data, which is not shared publicly. 

There is only a handful number of publicly available stuttering datasets. The very 
first and also the smallest one is the UCLASS dataset [10]. It contains 457 audio 
recordings of monologues, conversations, and readings, and only small amount of 
them has transcriptions. The dataset is not labeled according to dysfluency types. 

The FluencyBank dataset [18] contains audio and video files with transcriptions 
for the interviews conducted for 32 adults and children who stutter. However, the 
dataset is not labeled.
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The scarcity of labeled data led to the creation of synthetic dataset, LibriStutter 
[13], which consists of 50 speakers (approximately 20 hours). The dataset was 
generated by injecting random stuttering to LibriSpeech dataset, which consists of 
fluent speech. The audio signals were segmented into four-second windows, and 
for every window, either one of the stuttering events, as sound, word, and phrase 
repetitions, prolongations, and interjections, was injected or left untouched. 

Bayerl et al. [4] suggest their own dataset, namely, Kassel State of Fluency 
(KSoF), which consists of 5500 clips of stuttered speech in German. The clips were 
labeled with the six stuttering event types: blocks, prolongations, sound/word/phrase 
repetitions, interjections, and speech modifications. The last type is therapy specific 
and indicates whether the speaker’s speech is modified after the therapy. The dataset 
also has some metadata, like the gender of a speaker, therapy status, type of 
microphone used, etc. 

The largest dataset, Stuttering Events in Podcasts (SEP-28k), was released 
recently by Lea et al. [15]. SEP-28k is the first publicly available annotated dataset. 
It contains about 28,000 3-second clips from podcast recordings. The SEP28k 
corpus also has 4144 3-second annotated clips from the FluencyBank dataset. 
Bayerl et al. [6] subsequently introduced an extended SEP-28k, which contains also 
the gender and speaker information. Along with the extended data, they proposed 
possible partitioning ways of data into train and test set. 

Typically, studies [2, 14, 20] choose Mel-frequency cepstral coefficients (MFCC) 
as the feature representation for audio clips. Lately, some of the studies [6, 7]  pro-
posed using features extracted from pretrained wav2vec 2.0 [3] network. Wav2vec 
network is learned on a large amount of fluent speech, takes raw data as an input, 
and produces a feature vector describing each audio data. 

In this work, we perform our experiments on the subset of SEP28k dataset and 
compare predictive powers of MFCC and wav2vec feature representations. We use 
simple Siamese network having a single task model, which learns to differentiate 
between stuttering types, and then gradually convert the model into multitask learner 
with multiple heads. We then observe improvements that these transformations 
bring into the classification task. 

2 Dataset 

In our study, we utilize a subset of the SEP28k dataset. The audio recordings 
were sourced from eight different shows, with each episode being segmented 
into 3-second clips. The dataset comprises a total of 28,177 clips, equivalent to 
approximately 23.5 hours of audio. Each clip was annotated by three annotators, 
with annotations categorized into two types: stuttering and non-stuttering. Stuttering 
types encompass various dysfluency forms such as prolongation, block, interjection, 
and sound/word repetition, as well as instances where no stuttering occurred. 
Non-stuttering types include unintelligible speech, natural pauses, uncertainty,
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background music, and poor audio quality. Our primary focus lies on analyzing 
the stuttering types within the dataset. 

While SEP28k is the only available large dataset, it is indeed a very challenging 
one. One of the challenges comes from the fact that it is very imbalanced. More 
than half of the data contains fluent speech, and approximately 10% is given for 
a particular dysfluency type. Second, each clip might have several annotations. 
Thus, a single clip might contain both prolongation and block dysfluency types 
while being also annotated by one of the annotators as a fluent speech. Lastly, it 
is also imbalanced in terms of speaker. Thus, host speech dominates 60% of the 
data. Also, the distribution of shows is imbalanced. The number of clips for one of 
the shows, Women Who Stutter, form 33% of overall clips. Considering that Women 
Who Stutter and He Stutters share the same host (Pamela Mertz), a large amount of 
clips is dominated by the speech of a single person. 

The labels given by annotators can be misleading. Williams and Kent [21] 
reported on the results of a study where college students listen to a recording of 
an adult speaker imitating various types of dysfluency. On one occasion, they were 
instructed to mark all “stuttered” interruptions on a transcript of the recording, and 
on another presentation of the same recording, they were told to mark all “normal” 
interruptions. It was observed that people tend to hear what they were instructed to 
listen for. Hence, those interruptions that were marked as stuttered under one set of 
instructions were marked as normal interruptions under the other. The authors called 
this phenomena as “confusion.” Based on this study, we decided to narrow the size 
of our dataset by including only the annotations that were agreed upon all three 
annotators. We construct a smaller subset from SEP28k, which we call confidence 
list. It consists of clips that were assigned to the same type by all three annotators. 
However, the interjection type never was annotated alone, as it also belongs to no 
stuttered word type. Hence, we also include the clips for which three annotators 
selected both no stuttered words and interjections. Moreover, the clips where all 
three selected both no stuttered words and natural pause are also included as fluent 
speech. We also form confidence list for FluencyBank. However, only dysfluency 
typed clips were included to the dataset, as the percentage of fluent clips already 
form the large portion of the dataset. There are overall 3901 clips in our dataset, and 
the distribution of different types is illustrated in Fig. 1. 

3 Proposed Framework 

Given the audio clips, we initially extract their MFCCs and wav2vec representa-
tions. The extracted MFCCs and wav2vecs are further fed to our baseline model, 
by training which we learn new embeddings (features) for the clips. The baseline 
model that we use to extract embeddings is the Siamese network with contrastive 
loss shown in Fig. 3 (shaded area). The choice of this network is not random. It was 
shown in [12] that Siamese networks learn well under the scenarios with a small 
number of representatives from each class. This is indeed the case for our data.
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Fig. 1 The distribution of stuttering types in our dataset. Observe that fluent data form 65% of the 
dataset 

Fig. 2 The architecture of our subnetwork 

There are two inputs to the network and two identical subnetworks that share 
the weights. For each pair, the two subnetworks produce embeddings that are then 
used to compute the Euclidean distance between a pair of inputs. The main goal of 
the network is not to learn to classify different stuttering types but to differentiate 
between them. 

The subnetwork consists of three blocks. Each block contains a convolutional 
layer followed by max pooling and dropout layers. The last layer does global 
averaging, which returns the desired 64×1. dimensional vector. The details on input 
and output dimensions are illustrated in Fig. 2. 

As a loss function for the baseline model, we use contrastive loss, which is 
defined as the following: 

.Lbaseline = y · d2 + (1 − y) · max(margin − d, 0)2 (1)
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Fig. 3 Proposed framework. The model within the yellow box is the baseline model. An example 
of converting the baseline model to MTL by adding two classification heads is illustrated. The 
first classification head learns to categorize stuttering types; the second head learns to differentiate 
between different shows 

where y is a true label, 1 if the audio pairs are of the same class and 0 otherwise, 
and d is the Euclidean distance between the outputs of twin network embeddings. 
Margin is 1.

Our baseline model does a single-task learning (STL). Adding additional aux-
iliary heads to the network can increase the generalization power of the model 
[5, 20, 22]. During our experiments, we extend the model to do multitask learning 
(MTL). Thus, we add a classification head to the model so that the model can also 
learn to classify between the six stuttering types. In our other experiment, we add 
another classification head, which also forces the network to differentiate between 
different shows. A Siamese network along with possible additional auxiliary 
classification heads is shown in Fig. 3, where each of the classification heads is fed 
with the new features computed for the first input of the baseline model. For both of 
these classification heads, we use sparse categorical cross-entropy loss function. 

Hence, the overall loss of an MTL model is given by: 

.L = λbaseline · Lbaseline + λauxiliary · Lauxiliary (2) 

As was mentioned before, our model learns new features (embeddings) for the 
audio data, which are subsequently fed to machine learning models for classification 
purposes. 

4 Experimental Results 

4.1 Features 

We first compute MFCC and wav2vec features for every audio clip, which are then 
fed to our models. All clips are read with the sampling frequency of 16,000.The 
MFCC features are computed using speechpy library, using the frame length of
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0.025., frame stride of 0.01, and number of filters of 40. For every 3-second-long 
clip, using these parameters, we produce 297×40. features. wav2vec features are 
obtained from the last layer of wav2vec network, which produces 149×768. features. 

4.2 Data Augmentation 

The data is highly imbalanced, so we produce new samples using augmentation 
techniques. The augmented data is used only during the training process. Since 
fluent speech already takes up to 65%. of the data, we only augmented the clips 
with dysfluency labels. 

Data augmentation is done using audiomentations  library. For every dysfluent 
clips in the training set, we add Gaussian noise with a minimum amplitude of 0.001 
and a maximum amplitude of 0.015, time stretch up/down to 25%, and shift pitch 
up/down 4 s emitones.

4.3 Data Splitting 

The data is divided into three: train, validation, and test sets. We experiment with 
two different splitting techniques. In the first split type, which we call f  requency  
split , the train set contains clips of 10 most frequent speakers, plus the dysfluency 
clips from FluencyBank, which gives us overall 2434 clips. What is left is divided 
between validation and test sets. Thus, validation set consists of 734 clips of next 
most-frequent speakers, and the test set contains 733 clips of less-frequent speakers. 
The second split type is just a random split, where 20% of the dataset is given to 
both validation and test sets by random assignment.

4.4 Training 

We train four different models: baseline model, baseline model with stuttering 
classification head, baseline model with stuttering and show classification heads, 
and baseline model with stuttering, show, and binary classification heads. We call 
them BM, BSM, BSSM, and BSSBM, respectively. The latter three are MTL 
models. 

We use Adam optimizer with learning_rate = 0.001., and the batch size is 8. A 
larger batch size could be used for MFCC features, but for wav2vec, it is impossible 
due to its size and our GPU limitations. Hence, we kept the batch size equally small 
for both kinds of features. We use the early stopping technique with a patience of 
5, monitoring the loss function on the validation set. The number of epochs is kept 
100 for both representations. In our experiments, early stopping was triggered after
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around 10 epochs for MFCC feature for all model types. For wav2vec features, it 
was triggered after around 30 epochs. 

For the first MTL model, the weights of losses are equal; thus, λbaseline = 0.5., 
and λstuttering = 0.5.. For the second MTL model, we pay less importance to the 
show classification head as it is used more like regularization; hence, the weights are 
distributed as λbaseline = 0.4., λstuttering = 0.4., and λshow = 0.2.. Lastly, the fourth 
model classification heads are distributed as λbaseline = 0.3., λstuttering = 0.3., 
λshow = 0.1., and λbinary = 0.3.. 

4.5 Results 

After training the aforementioned four models, we extract new features from the 
data and perform classification using K-nearest neighbor (KNN) with k=  7.  The  
choice of a large k is to ensure the stability of classification results. The reported 
results illustrate the performance of KNN on test data, unless otherwise stated. We 
consider different classification scenarios. First, we consider how KNN classifies all 
types: dysfluent plus fluent speech. Second, we observe how it handles the binary 
case: when we combine all dysfluent types into one class and label them as the 
non-fluent class and observe the performance of the model on fluent versus non-
fluent classification. Lastly, we consider only dysfluent types and observe how KNN 
performs when fluent speech is excluded.

F1 score results for the classification of all stuttering types, when the frequency 
split is used, are given in Table 1. Observe that the results are the worst for the block 
type. This is because it has the fewest observations. It is natural to have high results 
for the fluent type as 65% of data consists of fluent speech. Note that while MFCC 
has better prediction power on the interjection type, wav2vec is better in predicting 
prolongations. 

Table 2 shows F1 scores for the random split case. The classification results are 
much better for prolongations and sound and word repetitions for this case. Note 
that while in frequency split case the maximum F1 score for prolongations is 0.28 

Table 1 F1 score for stuttering classification for frequency split. (P, Prolongation; B, block; 
SR, sound repetition; WR, word repetition; I, interjection; F, fluent; BM, baseline model; BSM, 
baseline with stuttering classification head; BSSM, BSM with show classification head; BSSBM, 
BSSM with binary classification head) 

F1 Score 

MFCC/wav2vec 

Model P B SR WR I F 

BM 0.11/0.08 0.04/0.00 0.06/0.03 0.08/0.13 0.19/0.15 0.69/0.74 

BSM 0.28/0.17 0.23/0.04 0.16/0.13 0.13/0.12 0.38/0.20 0.77/0.71 

BSSM 0.24/0.24 0.00/0.08 0.10/0.07 0.10/0.13 0.39/0.15 0.80/0.72 

BSSBM 0.26/0.32 0.00/0.04 0.06/0.12 0.15/0.14 0.32/0.22 0.77/0.78
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Table 2 F1 score for stuttering classification for random split. (P, Prolongation; B, block; SR, 
sound repetition; WR, word repetition; I, interjection; F, fluent; BM, baseline model; BSM, 
baseline with stuttering classification head; BSSM, BSM with show classification head; BSSBM, 
BSSM with binary classification head) 

F1 Score 

MFCC/wav2vec 

Model P B SR WR I F 

BM 0.19/0.19 0.04/0.04 0.09/0.21 0.06/0.16 0.15/0.18 0.69/0.74 

BSM 0.34/0.43 0.17/0.04 0.19/0.27 0.19/0.19 0.37/0.24 0.77/0.74 

BSSM 0.34/0.43 0.10/0.16 0.09/0.21 0.12/0.23 0.35/0.26 0.75/0.77 

BSSBM 0.34/0.25 0.11/0.11 0.10/0.18 0.17/0.15 0.34/0.23 0.74/0.70 

Table 3 Accuracy results for 
both MFCC and wav2vec 
features 

Accuracy 

Model MFCC / wav2vec 

BM 0.49 / 0.55 

BSM 0.62 / 0.57 

BSSM 0.57 / 0.61 

BSSBM 0.57 / 0.52 

Table 4 F1 score for binary 
classification 

F1-Score 

MFCC/wav2vec 

Model Fluent Non-fluent 

BM 0.66/0.73 0.43/0.49 

BSM 0.77/0.73 0.51/0.51 

BSSM 0.74/0.76 0.52/0.51 

BSSBM 0.72/0.68 0.47/0.46 

for all model and feature types, in the random split case, it improves up to 0.43. 
Since the classification results for the random split are better, we will proceed with 
the random split data in our further analysis. MFCC produces the best classification 
results for all disfluency types when BSM model is used. For wav2vec, the best 
results are obtained for the BSSM model. This is also true for accuracy results, as 
shown in Table 3. 

When the embeddings from the models are used to perform binary classification, 
i.e., fluent versus all dysfluency types, the results are slightly better for MFCC 
representations for both fluent and non-fluent types in MTL models, as shown in 
Table 4. The STL model gives better results with wav2vec. 

Table 5 shows the F1 scores when only the embeddings of dysfluent types 
are classified. In this case, the fluent type was discarded. Again, we observe that 
MFCC representations perform well in predicting the interjection type and wav2vec 
representations are better at predicting prolongations. Sound and word repetitions 
are better predicted with MFCC, and for block types, both are equally poor. 

To visualize the embeddings learned by the models, we use the t-stochastic 
neighborhood embedding technique (tSNE) introduced by van der Maaten and
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Table 5 F1 score for dysfluency type classification. (P, Prolongation; B, block; SR, sound 
repetition; WR, word repetition; I, interjection; BM, baseline model; BSM, baseline with stuttering 
classification head; BSSM, BSM with show classification head; BSSBM, BSSM with binary 
classification head) 

F1 Score 

MFCC/wav2vec 

Model P B SR WR I 

BM 0.28/0.35 0.05/0.06 0.36/0.26 0.28/0.36 0.42/0.35 

BSM 0.45/0.62 0.18/0.15 0.45/0.43 0.46/0.32 0.54/0.50 

BSSM 0.43/0.55 0.19/0.23 0.24/0.24 0.48/0.41 0.61/0.49 

BSSBM 0.48/0.39 0.15/0.12 0.24/0.43 0.43/0.28 0.60/0.45 

(a) (b) (c) (d) 

Fig. 4 tSNE results of the embeddings extracted for the training set from different models learnt 
using MFCCs. (a)  BM,  (b)  BSM,  (c) BSSM, (d ) BSSBM

(a) (b) (c) (d) 

Fig. 5 tSNE results of the embeddings extracted for the training set from different models learnt 
using wav2vecs. (a)  BM,  (b)  BSM,  (c) BSSM, (d ) BSSBM

Hinton [16]. The train set embeddings are reduced to two dimensions and are 
colored according to their stuttering type. The embeddings learned for the training 
data with MFCCs as feature representation are illustrated in Fig. 4. Observe that the 
STL model (Fig. 4a) is not able to learn the stuttering categories. When the stuttering 
classification head is included in the network, it begins to learn the embeddings that 
represent different stuttering types (Fig. 4b). However, as we increase the number 
of auxiliary classification heads, the clusters start to merge due to the regularization 
introduced by the extra classification heads (Fig. 4d). 

The train set embeddings with wav2vec results are shown in Fig. 5. Observe that 
in BSSBM model, the cluster boundaries start to fade. This is also clear form of 
the classification results on training set given in Table 6. We can see a significant 
performance decrease with the extra classification head, especially for wav2vec 
results.
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Table 6 F1 score for stuttering classification of training set. (P, Prolongation; B, block; SR, sound 
repetition; WR, word repetition; I, interjection; F, fluent; BM, baseline model; BSM, baseline with 
stuttering classification head; BSSM, BSM with show classification head; BSSBM, BSSM with 
binary classification head) 

F1 Score 

MFCC/wav2vec 

Model P B SR WR I F 

BM 0.60/0.61 0.50/0.48 0.45/0.53 0.55/0.57 0.63/0.66 0.71/0.79 

BSM 0.79/0.71 0.63/0.52 0.60/0.63 0.61/0.58 0.78/0.65 0.81/0.80 

BSSM 0.76/0.73 0.57/0.52 0.59/0.61 0.63/0.61 0.78/0.69 0.80/0.82 

BSSBM 0.74/0.62 0.62/0.52 0.58/0.48 0.63/0.57 0.77/0.58 0.81/0.75 

(a) (b) (c) (d) 

Fig. 6 tSNE results of the embeddings extracted for the test set from different models learnt using 
MFCCs. (a)  BM,  (b)  BSM,  (c) BSSM, (d) BSSBM. The observations are colored based on t he
stuttering type

(a) (b) (c) (d) 

Fig. 7 tSNE results of the embeddings extracted for the test set from different models learnt using 
MFCCs. (a)  BM,  (b)  BSM,  (c) BSSM, (d) BSSBM. The observations are colored based on the 
show type

While for the training data the embeddings form clusters according to the 
stuttering types, the same cannot be said for the test data. Observe the tSNE results 
for the embeddings extracted for the test set shown in Fig. 6. No clusters can be 
observed, just a magenta class, which represents the fluent class, covering all over 
the space. However, if we color the observations in Fig. 6 according to the show 
that they were taken from, then we can see some patterns of clustering as shown 
in Fig 7. Somehow, the test data is greatly influenced by the show type rather than 
the stuttering type. Seems like during training the data, our models also capture the 
specifics of the shows, like gender of a speaker, music on the background, etc. 

For comparison of our stuttering identification results, we refer to the results 
presented by [20]. In this work, the authors investigate how multitask learning 
(MTL) and adversarial learning (ADV) models perform on the stuttering detection
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Table 7 Comparison of stuttering classification results of our models with the models in [20]. 
(P, Prolongation; B, block; R, average of sound repetition and word Repetition; I, interjection; 
F, fluent; MTL, multitask learning; ADV, adversarial learning; BSM, baseline with stuttering 
classification head; BSSM, BSM with show classification head) 

F1 Score 

Model Representation P B R I F 

MTL [20] MFCC 0.36 0.21 0.34 0.54 0.67 

ADV [20] MFCC 0.37 0.20 0.35 0.58 0.66 

BSM MFCC 0.34 0.17 0.19 0.37 0.77 

BSM wav2vec 0.43 0.04 0.23 0.24 0.74 

BSSM MFCC 0.34 0.10 0.11 0.35 0.75 

BSSM wav2vec 0.43 0.16 0.22 0.26 0.77 

problem. Their models are evaluated on the SEP-28k dataset. Recall that in our 
experiments, we use only a small fraction of the original dataset, as we included 
only those clips for which all annotators agreed on the annotation. The work in 
[20] used almost the entire dataset with some cleaning. The clips are represented 
using MFCCs. Since the work combined sound repetitions with word repetitions 
and considered them as a single repetition type, we report the average results for 
these two under one repetition type. The results are given in Table 7. Our models, 
built on a smaller dataset, perform better in classifying prolongations and fluent 
types. 

5 Discussion 

The SEP-28k dataset, as discussed earlier, is a challenging dataset. It is highly 
imbalanced, with more than 60% of the dataset consisting of fluent speech, while 
the remainder is distributed among disfluent types. As suggested by Lea et al. [15], 
interjections are the easiest type to recognize, which is also evident from our results. 
Blocks are difficult to detect because the gasp for breath or pause is often inaudible 
and may require visual accompaniment. Additionally, there are very few samples of 
blocks. The results shown in Table 7 illustrate how challenging this type is. Sound 
repetitions are also difficult to detect because syllables can vary in duration, count, 
style, and articulation. However, since the percentage of speech with repetitions is 
much higher than that of blocks, the identification results for repetitions are much 
better. 

Obviously, we need more labeled data to train models with high performance. 
SEP-28k is not a small dataset. However, its annotations are unreliable for most of 
the audio clips. The curators of SEP-28k [15] reported inter-annotator agreement 
measurements for different disfluency types. The results show that word repetitions, 
interjections, sound repetitions, and no disfluencies are more consistent (0.62, 0.57, 
0.40, 0.39), while blocks and prolongations had only fair or slight agreement (0.25,
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0.11). This unreliability is also reflected in Table 7. Although the work in [20]  used  
almost the entire SEP-28k dataset, their performance results for block types are 
not significantly better than ours. Furthermore, the identification of prolongations is 
better with our models.

6 Summary and Conclusion 

In this work, we performed our experiments on a subset of the SEP-28k dataset 
and compared the predictive powers of MFCC and wav2vec feature representations. 
The performance of both feature representations was observed to be almost the 
same, with MFCC having a slight edge. We found that wav2vec performs better on 
prolongations, sound repetitions, and word repetitions. While wav2vec generally is 
slightly inferior to MFCC, it also has the disadvantage of being computationally 
expensive. Its large size requires more memory and makes it slower to train. 
Therefore, MFCC appears to be a better option. 

We also observed that although our models have learned embeddings to represent 
different stuttering types, they do not generalize well. When visualizing the test data 
embeddings, no distinct clusters according to stuttering type are apparent. However, 
when we color the visualization according to show types, some groups become 
noticeable. We believe this issue arises from additional data in the audio clips, such 
as the speaker’s gender and background music. Therefore, techniques to suppress 
metadata in the dataset should be developed. 

Competing Interests This study was funded by TEDU BAP Grant No. T-22-B2010-90108. 
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Data Science and Higher Education



Active Learning for Reducing Gender 
Gaps in Undergraduate Computing and 
Data Science 

Philip S. Chodrow , Harlin Lee , Natalie Lao, and Vincent Monardo 

1 Introduction 

This report describes the experience of two instructors (Philip Chodrow and Harlin 
Lee, the first and second authors) of the course “PIC 16A: Python Programming 
with Applications” at the University of California, Los Angeles, in the period 
2020–2022, as well as our efforts to measure and assess the success of our course 
design. We joined UCLA as Hedrick Visiting Assistant Adjunct Professors of 
Mathematics, Chodrow in 2020 and Lee in 2021. For both of us, this was our 
first academic position after completing our PhDs, and PIC 16A was our first 
opportunity to teach a course as instructor of record. The Program in Computing 
(PIC) of the UCLA Department of Mathematics offers a range of courses in applied 
computing for students who are not majoring in computer science or engineering 
disciplines. Students who take a prescribed selection of PIC courses, as well as 
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several computing-oriented courses in their major, can add a “Specialization in 
Computing” to their bachelor’s degree. At the time in which Chodrow and Lee 
taught in the PIC program, common majors of enrolled students included cognitive 
science, neuroscience, economics, applied mathematics, and biology. 

PIC 16A: Python Programming with Applications requires only a single pre-
requisite course in introductory programming in C + +.. Because of this, PIC 16A 
is a very common choice for PIC students to take as a second or third course in 
computing. Due to enrollment pressures, the majority of students in PIC 16A during 
the period in which we taught it were juniors and seniors. PIC 16A has been (and 
continues to be) offered many times by many instructors at UCLA. Offerings of 
the course prior to Chodrow’s arrival in 2020 primarily focused on Python coding 
constructs, including relatively little content related to data science or machine 
learning. 

In preparation for his first offering, Chodrow administered an informal entrance 
survey approximately one week before the beginning of the fall 2020 term. This 
entrance survey indicated significant discomfort and discouragement with program-
ming among many students, with this discomfort appearing especially prevalent 
among female students. Chodrow’s initial design of PIC 16A therefore reflected 
an explicit ambition to increase overall confidence and interest in computing and to 
narrow gender gaps along these axes. Chodrow approached this ambition through 
both content and format decisions. In choosing course content, he hypothesized 
that reorienting much of the course around data science and machine learning 
would connect more effectively to student interests and help hesitant students gain 
confidence. In the course format, Chodrow decided to emphasize active learning, 
project-based activities, and learning communities of practice, all with the aspiration 
of promoting growth mindset. 

Chodrow offered PIC 16A a total of four times across four UCLA 10-week 
terms: Fall 202X, Winter 202X, and Spring 202X. In winter 2022, Lee designed 
a version of PIC 16A, which adopted several of Chodrow’s content choices and 
format interventions while also implementing changes to the course format (Fig. 1). 
This report describes our experience teaching this course, as well as what we 
learned from a series of entrance and exit surveys, which we administered in 
three different terms. Chodrow administered surveys in winter 2021 (W21) and 
spring 2021 (S21), while Lee administered surveys in fall 2022 (F22). In Sect. 2 
we describe our curriculum, our format decisions, and their rationale. We also 

Fig. 1 Timeline of PIC 16A offerings by Chodrow and Lee. Three boxes colored with dark blue 
and dark green are the three course offerings discussed in this chapter. Lee did not teach PIC 16A 
in S22
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note (Sect. 2.3) the most important differences between Chodrow’s and Lee’s 
respective implementations. In Sect. 3, we describe the survey instruments that we 
administered in each term, the results of which we describe in Sect. 4. We close in 
Sect. 5 with reflections on our findings and how our experience teaching PIC 16A 
continues to inform our pedagogy. 

2 Course Design 

The course Program in Computing: Python with Applications I (PIC 16A) is a 
quarter-long (10-week) course in Python programming and data science at the 
University of California, Los Angeles (UCLA). UCLA is a large, flagship university 
in the public University of California system. As of fall 2024, 22% of UCLA 
undergraduate students are Hispanic, 6.5% are Black, and 35.1% are Asian or 
Pacific Islander.1 Women comprise 60% of the undergraduate student body. 

2.1 Content 

PIC 16A has a single prerequisite: one course in C ++. programming, in which 
students are introduced to fundamental programming constructs like variables, 
data types, control flow, functions, and object-oriented programming. In the first 
3–4 weeks of the course, PIC 16A reintroduces and reinforces these concepts 
in Python. The remainder of the course is primarily dedicated to data science 
applications in Python. The core sequence includes numerical programming, data 
visualization, tabular data, exploratory data analysis, and machine learning. Under 
the broad heading of machine learning, students studied data acquisition, data 
cleaning, feature selection, cross-validation, model training, model evaluation, and 
basic auditing. The primary software for this course sequence included the numpy, 
matplotlib, pandas, and scikit-learn packages for Python (Table 1). 

A major feature of the data science sequence is a sustained series of lectures 
and activities using the Palmer Penguins dataset [7]. Through this series, students 
clean the data, visualize various features, implement several approaches to feature 
selection, apply classification and clustering algorithms, and assess the performance 
of their models using confusion matrices and decision regions. This series also 
provides a smooth segue into a cumulative project, which serves as the primary 
summative assessment for the course. In Chodrow’s W21 and S21 offerings, 
this cumulative project involved further development and synthesis of a complete

1 Figures from https://www.ucla.edu/about/facts-and-figures as accessed on September 5, 2024. 
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Table 1 PIC 16A data science and machine learning modules in weeks 4 through 9. First three 
weeks cover standard programming concepts including object-oriented programming 

Data science topics Data Tools 

File I/O Tabular, Text urllib, csv 
Matrix and array operation Numerical numpy 
Image processing Image numpy 
Data visualization Tabular matplotlib 
Project management Code git, command line 

Data wrangling Tabular pandas 
Machine learning 

Overview Tabular 

Supervised learning Tabular, Image scikit-learn 
Overfitting Tabular, Numerical 

Clustering Tabular 

ML Ethics 

analysis for the Palmer Penguins dataset, while in Lee’s F22 offering, the cumulative 
project was open and proposed by the students. Lee’s project assignment also 
encouraged students to learn about best practices for code management, collabo-
ration, and communication via git and GitHub .

2.2 Organization 

2.2.1 Basics 

The weekly course format included five contact hours: three 50-minute Lecture 
periods and two 50-minute Discussion (lab) periods.2 In class and on assignments, 
students interacted with Python via the Jupyter Notebook app provided by the 
Anaconda Python distribution. Videoconferencing via Zoom was used for many 
remote Lecture periods and remote office hours, depending on UCLA policy at the 
time. Typical sections of PIC 16A contained 50–70 students and were staffed by one 
instructor and either one or two graduate teaching assistants (TAs). 

Although our emphasis here is not on remote learning methodologies, it should 
be noted that initial development of this course offering took place during the fall 
term of 2020 at the height of the COVID-19 pandemic.

2 Our capitalization convention is that Lecture and Discussion refer to specific weekly class 
periods, while the uncapitalized “lecture” describes any content presentation by the instructor. 
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2.2.2 Learning Communities of Practice 

PIC 16A was initially developed for an online environment during the height 
of the COVID-19 pandemic. Forming a cohesive learning community [1]  for  
a large class via remote instruction appeared challenging. In order to promote 
student belonging and form functional support networks, the course design instead 
encouraged small learning communities of practice [20]. These communities of 
practice were groups of three, which worked together on Discussion activities as 
described below. Chodrow assigned students to groups based on their responses 
in an informal non-anonymous pre-course entrance survey, which described their 
interests and confidence in computing as well as their prior experience.3 Based on 
advice from a more experienced colleague, Chodrow tried to create groups that 
had similar interests (e.g., data science, software development) but varying levels 
of confidence or experience; the intention was that more confident students would, 
with structure, support the experience of less confident students. Chodrow also made 
an effort to avoid groups in which a single female student would work with two 
male students; this was aimed against the risk of men dominating a conversation 
to the exclusion of the single female group member. Groups therefore contained 
either zero, two, or three female students, but never exactly one. On the other hand, 
Lee’s groups were assigned randomly. Groups were persistent throughout the term 
except in rare cases of conflict or strong dysfunction between group members. These 
groups worked twice weekly on Discussion activities and also worked together on 
an end-of-semester data science project in Chodrow’s sections. 

2.2.3 Active Learning 

Active learning—as opposed to traditional lecture-based formats—is known to 
improve student performance and narrow achievement gaps [2, 6, 12, 19]. For this 
reason, our design of PIC 16A emphasizes the Discussion period, rather than the 
Lecture period, as centers of the student learning experience. In a typical Discussion 
section, students worked in groups of three on a scaffolded Jupyter notebook. This 
notebook usually began with several exercises that helped students reinforce their 
learning at the “Remember” and “Understand” stages of Bloom’s taxonomy [11]. 
Progressive exercises in the notebook encouraged students to the higher “Apply” 
and “Analyze” stages. See Fig. 2 for an example. 

During the Discussion period, students were typically supported by both graduate 
teaching assistants (TAs) and undergraduate learning assistants (LAs). LAs are 
undergraduate students who receive training in inclusive pedagogy through UCLA’s 
Center for Education Innovation and Learning in the Sciences. Most LAs had taken a 
prior offering of PIC 16A. LAs act as near-peer mentors [18], with their primary role 
being to encourage equitable participation among all group members and to help

3 This survey was distinct from the more formal, anonymous entrance survey described in Sect. 3. 
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Fig. 2 Example of active learning employed in PIC 16A Discussions. Students work on work-
sheets like this in small groups, which builds learning communities that are especially critical in 
large institutions post-pandemic 

stuck groups find their way to the next part of the assignment. The instructor was 
not usually present during Discussion sections, although in some terms, Chodrow 
“swapped” with his TA and managed one of the two weekly Discussion periods, 
while the TA managed one of the optional Lecture periods. 

Within each three-person group, students took on one of three roles inspired 
by the pair-programming paradigm. As a learning methodology, pair-programming 
may offer modest benefits for student learning and may offer a particular learning 
benefit for female students [8]. For the three-person groups of PIC 16A, three 
roles were used: a Driver who writes code and makes low-level implementation 
decisions, a Proposer who guides the Driver at a high level, and a Reviewer who 
gives feedback on the solutions that the Proposer and Driver have crafted. Roles 
rotated each Discussion day, ensuring that each group member inhabited each 
role with approximately equal frequency. This put a lower bound on the extent to 
which students could withhold participation in their groups. Attendance in these 
Discussion periods was mandatory; failure to attend would result in failure to get 
credit for the Discussion assignment unless the student received explicit permission 
from the instructor to complete the assignment independently in response to an 
emergency. 

Lecture delivery also emphasized student activity and engagement. In the W21 
and S21 offerings of PIC 16A described here, lecture content was delivered via pre-
recorded videos, which students watched asynchronously, outside of the scheduled
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Lecture period. Students could then choose whether to attend4 scheduled Lecture 
periods, which typically included a mix of question-and-answer, supplementary 
topics, and support on current assignments. 

In the F22 offering, lectures were delivered in-person during scheduled Lecture 
periods. In all cases, the most common lecture format was live coding in a notebook. 
Students were encouraged to download the notebook prior to class and code along 
with the instructor throughout the Lecture period in order to build experience and 
muscle memory writing common code constructs. The lectures were recorded and 
uploaded to a class Web site afterward. We note that in both versions, lecture 
attendance was not mandatory. 

2.2.4 Nurturing Growth Mindset 

Some students described themselves using fixed-mindset language in the initial 
entrance survey, ascribing to themselves intrinsically less ability to excel at pro-
gramming when compared to their peers. Growth mindset, in which students view 
their ability to achieve as malleable and able to be improved, is the opposite of fixed 
mindset [5]. Growth mindset is known to promote learning, especially among lower-
achieving students [21]. Several studies have suggested that project-based learning 
experiences, in which students grapple with multi-part challenges motivated by real-
world problems, can promote growth mindset [9, 17], although a formal causal 
link remains elusive [10]. In order to nurture growth mindset, most substantive 
assignments from the course constitute scaffolded mini-projects, with a satisfying 
product or insight waiting for the student upon completion (Table 2). 

In one example of a Discussion activity from the Palmer Penguins sequence, 
students begin by writing a function to efficiently compute aggregated summary 

Table 2 Example topics 
from homework and 
Discussion activities in 
different stages of PIC 16A 

Weeks Topic Assignment examples 

1–3 Data structures Markov language models 

Iteration PageRank 

4–6 Array programming Image manipulation 

Data wrangling Data visualization 

7–10 Machine learning Logistic regression 

Impact and bias Reproducing [14]

4 Chodrow was explicit with students that the primary purpose of the scheduled Lecture period 
was to provide a space for students to ask questions and receive support. As a result, many students 
who were confident in the material or who did not desire additional course engagement chose 
not to attend these sessions; typical attendance rates were around 20%–40%. This approach in 
part reflected departmental policy, which prohibited instructors from requiring attendance at both 
Lecture and Discussion sections. Chodrow’s choice to prioritize the active learning Discussion 
sections therefore necessarily de-emphasized attendance during scheduled Lecture. 



324 P. S. Chodrow et al.

statistics from the Palmer penguins data using the pandas package. In the following 
part, they use this function to explore the data and search for features that seem to 
distinguish different species of penguins. Next, they use findings from these tables to 
manually implement a shallow, axis-aligned decision tree using if-statements. They 
then evaluate this decision tree against the data. By the time students complete the 
activity, they have used data manipulation and basic control flow in order to explore 
the idea of prediction. This activity leads to an upcoming introduction of machine 
learning algorithms that automate the process of fitting predictors to data.

2.3 Implementation Differences 

The implementations of the PIC 16A model by Chodrow (W21 and S21) and by 
Lee (F22) shared the above common features. There were, however, important 
differences in these implementations as well. Three such differences were especially 
large and offer important context for our findings in the following section. 

2.3.1 Delivery 

Chodrow’s offerings of PIC 16A in W21 and S21 were fully remote, with all course 
activities taking place in Zoom meetings. In contrast, Lee’s offering in F22 was fully 
in-person, with no remote instruction per pandemic-related departmental policy. 

In Chodrow’s offerings, all students completed the same cumulative project using 
Palmer Penguins, while Lee’s students were permitted to choose their own project 
topic. The Palmer Penguins project was still provided as an option, and students 
with lower confidence who sought more guidance and scaffolding were encouraged 
to take that route. While it was not required that the projects had to be about data 
science and machine learning, fifteen out of seventeen student groups chose to 
do so. Of these fifteen, seven groups worked on classification, three on clustering 
(including two on Palmer Penguins), three on regression, and two on data analysis 
and visualization. The remaining two worked on building a scientific tool and an 
interactive game. Based on feedback from her W22 section students (not included 
in this study), Lee’s students in F22 were also allowed to choose their own project 
partners as opposed to working with their discussion groups. 

2.3.2 Disruption 

The W21 and S21 offerings by Chodrow took place during the height of the COVID-
19 pandemic in the USA. Although this was a difficult time for students and 
faculty alike, these offerings were not significantly disrupted beyond the necessity 
of ongoing remote instruction. The class was largely able to follow its course as 
intended by the instructor. In contrast, Lee’s F22 offering was disrupted by a strike
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among graduate students across the UC system demanding a living wage. Because 
graduate TAs were the primary staffing for Discussion sections, the last month of 
Discussion sections was cancelled. The cancelled sections included many of the 
activities in the data science sequence. 

2.3.3 Instructor Identity 

Our expressed identities may also have played roles in student perceptions of the 
course. Chodrow is a white man whose first language is English, while Lee is a 
Korean woman whose first language is Korean and who speaks English fluently as 
a second language. Student evaluations of teaching (SETs) are known to show bias 
against female instructors [3], with some additional evidence of intersectional bias 
against women of color [4]. Although the questions in our entrance and exit surveys 
are not SETs as they do not ask students to evaluate teaching, these questions do 
ask students to reflect on the depth of their learning and their experience in various 
aspects of the course. It is possible that student biases in response to the different 
identities of the instructors may have played a role in their responses. 

3 Methods 

As described above, we designed PIC 16A with the hypothesis that social, active 
learning and project-based learning would help increase confidence and interest 
in computing while reducing gender gaps. In this section, we describe how we 
assessed the effectiveness of our designs using entrance and exit surveys that we 
collected during the course. Students completed entrance surveys during the first 
two weeks of each course and completed exit surveys during the final week of 
classes and the final exam period. On the survey, we asked questions related to 
comfort social learning environments; confidence with respect to programming; 
and interest in programming and machine learning. Students were incentivized to 
complete these surveys through assignments that conferred participation credit or 
extra credit, typically on the order of 0.25%. toward their final average in the course. 
We emphasize that the initial purpose of these surveys was to inform future course 
improvement, rather than to perform formal evaluation or produce publishable work. 
We decided to write this article using this data after the described course offerings 
were complete. We especially note that we do not support the practice of using 
grades to incentivize student participation in research studies, and would not have 
done so had we planned to write this report from the outset. Additionally, because 
the surveys were initially intended to inform course improvement, the questions 
were designed by each instructor primarily in response to their pedagogical interests. 
As a result, the survey questions are similar but not identical across the three course 
offerings. Our data collection was retroactively considered by Institutional Review 
Boards at our present institutions (Middlebury College and UNC Chapel Hill),
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Table 3 Counts of student respondents by gender to each entrance and exit survey in the three 
studied course offerings of PIC 16A. A small number of self-identified nonbinary students are not 
shown due to identifiability concerns 

Term Instructor Gender Entrance Exit 

W21 Chodrow F 35 31 

M 36 32 

S21 Chodrow F 31 25 

M 25 17 

F22 Lee F 34 22 

M 29 17 

which both determined that the publication of this report with the collected data did 
not constitute human subjects research and therefore did not require IRB approval. 

Our surveys yielded response rates ranging between 80% and 95%, with 
generally lower response rates in exit surveys. Table 3 shows the number of students 
responding to each survey. Although small numbers of nonbinary students also 
participated in class and took the entrance and exit surveys, we exclude them from 
reporting due to identifiability concerns. 

We collected both entrance and exit surveys through UCLA’s learning manage-
ment system (LMS). In Chodrow’s W21 and S21 offerings, the LMS used was a 
Moodle-based app called Common Collaborative Learning Environment (CCLE). 
In W21 and S21, students were asked to respond to a series of statements on a four-
point scale: “1: Strongly Disagree”; “2: Disagree”; “3: Agree”; and “4: Strongly 
Agree.” These statements related to students’ interest, comfort, and confidence in 
programming. Full text of each statement is displayed in Tables 4, 5 and 6.  For  
the purposes of analysis, both “3: Agree,” and “4: Strongly Agree,” responses are 
considered to indicate agreement with prompts.

In Lee’s F22 offering, the LMS used was Canvas (CCLE was decommissioned 
during the 2022–2023 academic year). Students were asked to respond to a series 
of prompts on a 5-point scale. Some prompts were statements, where students 
were asked to rate their level of agreement with the statement, for example, “1: 
Disagree a lot”; “2: Disagree a little”; “3: Neither agree nor disagree”; “4: Agree 
a little”; and “5: Agree a lot.” Others were questions, where students were asked 
to rate their level of interest, ranging from “1: Not at all interested”; “2: Not very 
interested”; “3: Neutral”; “4: Somewhat interested”; and “5: Very interested.” Lastly, 
when asked about the effectiveness of having learning partners, the choices were “1: 
Hindered a lot”; “2: Hindered a little”; “3: Neither helped nor hindered”; “4: Helped 
a little”; and “5: Helped a lot.” Unlike in the previous offerings, this survey round 
included neutral responses. In analysis, only responses at levels “4” and “5” were 
considered to demonstrate agreement or interest. Lee’s design also included several 
prompts, posed only in the exit survey, related to confidence and student learning 
from working with partners. The prompts for each offering are shown in Tables 4, 5, 
and 6 in Sect. 4.
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4 Results 

Table 4 summarizes survey findings for Chodrow’s W21 and S21 sections. We 
show the proportion of responses indicating agreement (“3, Agree,” or “4, Strongly 
Agree”) for each question, term, survey round, and gender. There are 14 questions 
asked in both terms and two additional questions that were asked only in S21. 
Segmenting by gender and term, we have a total of 60 pairs of entrance and exit 
survey responses. To test for the significance of changes in agreement rates, we 
used a Mann-Whitney U test, a nonparametric test for difference of distributions. 
We did two sets of such tests. In the first set, we tested the null hypothesis that 
the distribution of responses in the exit survey was the same as that of the entrance 
survey, with bolded proportions indicating that this hypothesis was rejected.5 Of 
the 60 pairs of entrance and exit surveys, 32 showed a significant difference in 
the distribution of responses at the 95% confidence level. All of these significant 
differences show increased rates of agreement from entrance to exit surveys. Most 
of the significant changes relate confidence in programming and computational 
thinking and comfort in classroom settings, with fewer significant changes related 
to career confidence or connections between programming and other interests. The 
smaller number of changes in interests may be due in part to the already-high rates 
of agreement on these questions on the entrance survey. 

We additionally tested the null hypothesis that the distribution of responses of 
female and male students were the same, on each of the entrance and exit surveys 
separately. Again, this was done using the Mann-Whitney U test. We considered 
a gender gap to be present on a given question if the null hypothesis is rejected. 
We mark the presence of a gap on the entrance and exit surveys in the final two 
columns of Table 4. We consider a gap to have closed if a significant difference on 
the entrance survey is no longer significant on the exit survey; we consider a gap 
to have opened if a significant difference on the exit survey is not present on the 
entrance survey; and we consider a gap to have persisted if a significant difference 
is present on both surveys. Of the 30 total questions across both terms, we observed 
six gaps that closed, 3 gaps that opened, and 3 gaps that persisted. In each of the 
gaps that opened, agreement rates increased among both groups, with an increase 
for male students that left their agreement rates at 94% or above. 

Table 5 shows the same hypothesis-testing approach for Lee’s F22 offering. 
Eight questions were asked at both entrance and exit surveys, leading to 16 pairs of 
responses to be tested via the Mann-Whitney U test. One of them rejected the null 
hypothesis that the entrance and exit survey responses have the same distributions 
at p < 0.05.. This supports the alternative hypothesis that the female students’ 
self-perceived, “ability to explain machine learning and data science concepts to 
[. . . ]  peers” have changed after the quarter. We repeat the gender gap testing on 
F22 responses as well. We observed gender gaps in four out of eight questions at

5 We emphasize that, although an agreement rate is shown, the hypothesis test is performed on the 
full, uncompressed distribution of responses. 
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Table 4 Summary hypothesis testing for W21 and S21. We show the proportion of students 
who agreed (3, “Agree,” or 4, “Strongly Agree”) on each question. Bold values in the first 
two “Exit” columns indicate a statistically significant difference in the distribution of responses 
between entrance and exit surveys at the 95%. confidence level among students of the specified 
gender. We also show significance levels for difference in distribution on the entrance and exit 
surveys. A 1 indicates the presence of a statistically significant gap. A gender gap has closed if a 
significant difference on the entrance survey is no longer significant on the exit survey. The final 
two questions were asked only in S21 

Female Male Gap 

Question Term Entrance Exit Entrance Exit Entrance Exit 

I usually feel comfortable 
asking questions in class. 

W21 46% 90% 69% 91% 
S21 29% 96% 56% 94% 1 

I usually feel comfortable 
attending office hours. 

W21 66% 97% 69% 91% 
S21 65% 100% 72% 94% 

I usually feel comfortable 
asking for help from my peers. 

W21 66% 94% 75% 97% 
S21 68% 88% 72% 94% 

I usually feel comfortable when 
explaining my thought process 
to others. 

W21 54% 94% 81% 100% 1 
S21 52% 76% 76% 94% 1 1 

I usually feel comfortable 
working in groups. 

W21 71% 94% 72% 94% 
S21 58% 88% 72% 88% 

I usually feel comfortable 
writing about how my code 
works. 

W21 63% 97% 86% 97% 
S21 74% 84% 76% 94% 1 

Other people can learn from 
how I approach problems. 

W21 80 % 90% 83% 97% 
S21 71% 76% 80 % 94% 1 1 

I can usually understand what 
task a program achieves by 
reading the code. 

W21 51% 90% 69% 94% 1 
S21 61% 100% 76% 100% 

Computer programming is fun. W21 86% 97% 89% 100% 
S21 74% 92% 88% 88% 

I can see connections between 
programming and my hobbies. 

W21 69% 87% 92% 94% 1 

S21 71% 76% 88% 94% 

I can see connections between 
programming and my academic 
interests. 

W21 91% 100% 94% 100% 1 
S21 97% 96% 96% 88% 

I can see connections between 
programming and my long-term 
career goals. 

W21 89% 97% 97% 97% 1 
S21 87% 80 % 92% 94% 

If I wanted to, I could 
eventually have a career that 
involved programming. 

W21 60 % 81% 83% 88% 1 1 
S21 77% 72% 84% 82% 

If I wanted to, I could eventually 
have a career that involved data 
science or machine learning. 

W21 66% 87% 83% 94% 1 
S21 81% 72% 92% 88%

(continued)
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Table 4 (continued) 

Female Male Gap 

Question Term Entrance Exit Entrance Exit Entrance Exit 

I can often improve code by 
removing inefficiencies 
redundancies. 

S21 58% 84% 48% 88% 

I am able to solve problems 
that interest me using 
programming. 

S21 39% 68% 60 % 94% 1 

Table 5 Summary hypothesis testing for F22. We show the proportion of students who agreed 
(4, “Agree/Somewhat interested,” or 5, “Strongly Agree/Very interested”) on each question 
for display purposes only. Bold values in the first two “Exit” columns indicate a statistically 
significant difference in the distribution of responses between entrance and exit surveys at the 
95%. confidence level among students of the specified gender. We also show significance levels 
for difference in distribution on the entrance and exit surveys. A 1 indicates the presence of a 
statistically significant gap. A gender gap has closed if a significant difference on the entrance 
survey is no longer significant on the exit survey 

Female Male Gap 

Question Term Entrance Exit Entrance Exit Entrance Exit 

How interested are you in machine 
learning and data science from a 
career/work perspective? 

F22 26% 24% 45% 47% 1 

How interested are you in machine 
learning and data science from a 
personal/hobby perspective? 

F22 24% 31% 45% 29% 1 

How interested are you in 
understanding machine learning 
and data science theory? 

F22 15% 10 % 41% 29% 

I have the ability to explain 
machine learning and data science 
concepts to my peers. 

F22 3% 14% 5% 35% 

I have the ability to implement 
machine learning and data science 
projects. 

F22 18% 10 % 27% 35% 

I have the ability to learn machine 
learning and data science concepts. 

F22 18% 28% 64% 53% 1 

I like machine learning and data 
science. 

F22 24% 17% 41% 50 % 

I think machine learning and data 
science is interesting. 

F22 41% 62% 68% 71% 1
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Table 6 Exit only questions for F22. We show the proportion of students who agreed—4, 
“Agree/Helped a little,” or 5 “Strongly Agree/Helped a lot”—on each question 

Female Male Both 

Question Term Exit Exit Exit 

How would you describe your final project partners’ impact on 
your learning? 

F22 93% 80% 88% 

During discussions, how would you generally describe your 
partners’ impact on your learning? 

F22 96% 88% 93% 

I will be able to complete a machine learning or data science 
project (of a similar level and scale to projects from this class) 
on my own. 

F22 67% 69% 67% 

I am proud of what I was able to accomplish in my final project. F22 81% 81% 81% 

I feel that I was successful in this class. F22 89% 63% 79% 

entrance surveys, all of which closed at exit surveys. These four questions were 
about the students’ interest in machine learning and data science and their self-
perceived ability to learn related concepts. 

Several questions were asked only in the exit survey (Table 6). These questions 
asked students about their confidence and about the effectiveness of partners in 
supporting their learning. Four out of five exit-only prompts elicited stronger 
positive response from female students than male students. The greatest observed 
difference between male and female students on exit-only prompts was in response 
to the prompt, “I feel that I was successful in this class.” 

The decrease in agreement rates for the career-oriented confidence questions in 
S21 and a few interest questions in F22 for male students is a concerning observation 
about which we regrettably do not have follow-up data. 

5 Discussion 

Our quantitative results show mixed evidence regarding the effectiveness of our 
interventions with respect to our goal of reducing gender gaps in data science and 
computing. We observed a number of closed or narrowed gender gaps along axes 
of intellectual confidence, interest, and comfort in a social classroom environment. 
There were different patterns across the sections; Chodrow’s W21 section tended to 
have greater improvements for female students than did his S21 section, resulting in 
more closed gaps. Lee’s F22 section showed several gender gaps closing, although 
in several cases this was due to a decrease in interest or enthusiasm among male 
students (who also tended to feel that they were less successful in the class than 
their female peers). As noted in Sect. 2.3, this offering was severely disrupted by a 
graduate student strike, resulting in the cancellation of many Discussion activities in 
the section of the course focusing on data science techniques. We hypothesize that 
this disruption contributed to reduced interest and enthusiasm among this section.
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Furthermore, as alluded to in Sect. 2.3, the difference in instructor identities could 
have been a confounding variable as well. 

We take our findings to reflect partial success toward the overall course aim 
of reducing gender gaps in undergraduate data science and computing, especially 
relating to intellectual confidence, interest, and comfort in social classroom envi-
ronments. We additionally hypothesize that these findings partially reflect the 
project-based Discussion and homework activities, in which students repeatedly 
experience the feeling of achieving a meaningful, satisfying task through their 
programming efforts. 

Analytical Limitations 
We also acknowledge several limitations to our analysis. The lack of a comparison 
group makes it difficult to rule out alternative mechanisms that may promote student 
comfort, including natural acclimatization during the course, instructor persona, 
and current events such as the COVID-19 pandemic, the US election, or ongoing 
protests concerning police violence against Black Americans. We also note that our 
analysis does not include any consideration of student performance in the class; it is 
possible that students who built high levels of confidence and interest in the course 
may not have in fact demonstrated the greatest learning of the course material. A 
related consideration is course attendance. Chodrow’s offerings especially allowed 
students to choose whether or not to attend scheduled Lecture periods in order to 
access additional practice, content, and support. Chodrow did not track attendance 
during the scheduled lecture periods. Although attendance at the scheduled Lecture 
periods may be reasonably expected to impact student attitude and performance, 
we unfortunately do not have data with which to support this. As noted previously, 
differences in delivery model, course environment, and instructor identity may have 
contributed to differences in results between W21 and S21 on the one hand and F22 
on the other. 

Another important caveat in our analysis relates to students who chose to drop 
PIC 16A. As shown in Table 3, there were fewer exit survey respondents than 
entrance survey respondents in all sections, reflecting in part the handful of students 
who drop the course after the entrance survey is conducted. If, as seems likely, 
the population of students who dropped tended to have lower rates of confidence, 
interest, or comfort with the course design, then our descriptions of entrance-to-exit 
survey improvements may be artificially inflated. 

Reflections and Future Work 
We take our findings to offer tentative support to the idea the interventions we 
implemented in PIC 16A can help increase student comfort in social learning 
environments, intellectual confidence in programming, and interest in data science 
and computing while (in some cases) narrowing gender gaps along these axes. 
Especially in light of the limitations described above, we consider this evidence 
to be promising but ultimately inconclusive. 

As noted above, PIC 16A was for each of us our very first opportunity to 
teach as an instructor of record. At the time we designed the course, neither of 
us were experienced in course design, active learning techniques, or evidence-based
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pedagogy broadly construed. The design we describe reflects our well-intentioned 
hypotheses about how to implement active, project-based, and social learning 
experiences for students, but there is much of which we were not aware. For 
example, in the time that we designed PIC 16A, we were not aware of the Peer 
Instruction protocol [13] or its successful deployment in many computing courses 
[16]. As another important point, we note a specific aspect that was missing from our 
efforts to encourage growth mindset. As emphasized in [15], an important catalyst 
for growth mindset is metacognition, the reflection of students on the process of their 
own learning. Our course design offered students a few opportunities to reflect on 
their learning, including several free-response questions on mid-semester surveys 
and a group contributions statement as part of final projects. With the benefit of 
hindsight and experience, however, we also feel that we missed several opportunities 
to encourage a sustained practice of metacognition as part of our course designs. It 
would have been especially efficient to implement structured reflective writing as 
part of the lab submission process, which we largely did not do. 

Since our time teaching PIC 16A, we have moved on to different institutions in 
which we continue to grow as instructors. Several of the core ideas from our design 
of PIC 16A live on in our pedagogical practice. 

Chodrow I am now a faculty in computer science at Middlebury College, a 
selective small liberal arts school in Vermont. My teaching portfolio includes 
introductory discrete mathematics, machine learning, and network science. My 
encouraging experience with PIC 16A informed many of my course designs at 
Middlebury. My offering of introduction to computing emphasizes collaborative 
and active group work, including both a weekly lab and one day a week of in-
class practice time. My offering of discrete mathematics is fully flipped. This course 
also includes a weekly lab that emphasizes applications. This course emphasizes 
metacognition through standards-based learning, reflection prompts on lab assign-
ments, and a structured revision process for assignments. My offering of machine 
learning is fully project-based and also emphasizes interactive computing in Jupyter 
notebooks. This course also emphasizes reflection through writing prompts at 
regular intervals in the course, as well as a portfolio-based assessment process. 
Because I am offering many of these courses for the first time at the time of writing, 
I haven’t yet administered surveys for these courses of the kind I administered for 
PIC 16A. That said, my interest in data-informed course design remains strong. I am 
especially interested in incorporating discussion of the social impacts of computing 
technologies into his classrooms and in studying whether such discussions are 
experienced differently by students with different identities. 

Lee Since 2023, I have been a faculty at the University of North Carolina at Chapel 
Hill, School of Data Science and Society. I am teaching a large undergraduate 
class on introduction to data science, which assumes no prerequisites in math or 
programming beyond high school algebra. Based on the positive feedback from 
PIC 16A, I have adapted the weekly format (i.e., in-person Lectures + group-based 
Discussions) and final group project to this brand-new course. This class emphasizes 
statistics and non-technical aspects of data science (e.g., data storytelling, data life
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cycle) more compared to PIC 16A, but we make best effort to still teach those 
concepts using active learning and project-based learning. At the time of writing 
this reflection, this course is being offered for the first time, so it has a lot of room 
for improvement, but I was able to start from a solid baseline. I am grateful for the 
UCLA colleagues, students, TAs, and LAs who made the PIC 16A experience a 
relative success. 
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1 Introduction 

The kinds of problems mathematics and data science can be used to solve are 
extremely varied, running the gamut from theoretical with no foreseen applications 
to those that are immediately applicable to important real-world phenomena like 
climate change, epidemiology, and social networks. There is a rapidly growing body 
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of work using tools from the mathematical sciences to analyze the mathematical 
sciences itself that has recently been described as the “mathematics of mathematics” 
or “MetaMath” [6]. This term was chosen as an allusion to the broader field of 
“science of science” [11] or “SciSci” that uses scientific and mathematical tools to 
analyze science as a whole as well as its individual disciplines. 

In this chapter, we present a contribution to the mathematics of mathematics to 
introduce readers to the kinds of questions that can be asked and the types of tools 
and techniques that can be used in the emerging MetaMath field. We are inspired 
by the work of Wapman, Zhang, Larremore, and Clauset [37] published in Nature 
in 2022 that quantified hierarchy in faculty hiring and retention in a wide array 
of academic disciplines in the United States by analyzing a very large dataset of 
nearly 300,000 faculty members in over 10,000 departments at almost 400 PhD-
granting institutions from 2011 to 2020. The research we present here builds on and 
leverages the ideas and analyses presented in Wapman et al. [37] but focuses on 
specific disciplines in the mathematical sciences that are available in their dataset 
[36], namely, mathematics, statistics, and operations research. This results in a 
dataset that includes nearly 10,000 faculty members in well over 200 departments 
that granted PhDs in the mathematical sciences from 2011 to 2020. 

Using mathematical tools from network science [15], Wapman et al. produced a 
“prestige ranking” for every department at every PhD-granting institution in their 
dataset and quantified hierarchy in faculty hiring and retention in a large number 
of academic disciplines. In particular, Wapman et al. constructed a directed graph 
of PhD-granting departments with an edge from department A to department B 
corresponding to a faculty member who earned a PhD at department A being hired 
into department B. Unlike other rankings like those published by U.S. News & World 
Report that purport to assign prestige based on an arbitrary selection of attributes, 
Wapman et al.’s prestige rankings are based upon the characteristics of their directed 
graph of departments. It is assumed that “prestigious” departments will prefer to 
hire faculty from other “prestigious” departments, and then the overall hierarchy 
of departments is inferred from the topology of the network using the SpringRank 
algorithm [9]. We will refer to the definition of prestige from Wapman et al. [37] as  
“Wapman-prestige.” 

We utilize Wapman’s quantification of prestige to produce a definition of “elite,” 
which we will use to help us quantify and document gender-based inequality in the 
mathematical sciences at PhD-granting institutions in the United States. We define 
“elite” institutions as those that are within the top quartile as defined by Wapman-
prestige. 

Because of the nature of the dataset [36], which contains gender data but not 
other demographic data (and in particular no data on race or ethnicity), we are 
only able to conduct analyses using gender and not other identity characteristics. 
However, by combining this dataset with publicly available data from the National 
Science Foundation (NSF) on awards made by the Division of Mathematical 
Sciences (DMS) [27], which is the primary funder of mathematical sciences 
research in the United States, we can conduct a MetaMath-related investigation
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of relationships among the variables of percentage of women in a mathematics 
department, Wapman-prestige, and NSF DMS funding. 

Our thesis is that we can quantify and document inequality in mathematical 
sciences departments at PhD-granting institutions in the United States. Specifically, 
in this chapter, we will address the following research questions:

• RQ1: What is the relationship between the percentage of women in a mathemat-
ical sciences department and that department’s Wapman-prestige?

• RQ2: What is the relationship between Wapman-prestige and funding received 
from the National Science Foundation’s Division of Mathematical Sciences?

• RQ3: What is the relationship between the percentage of women in a mathe-
matics department and funding received from the National Science Foundation’s 
Division of Mathematical Sciences? 

The rest of this chapter is organized as follows. In Sect. 2, we provide some 
examples of recent research that uses data science and mathematics to analyze 
the mathematics and science communities. We describe the data and methods used 
in our research in Sect. 3. Specifically, in this section, we describe the processing 
of the Wapman et al. data and the NSF funding data that is required so that we 
can investigate our research questions that support the thesis of this chapter, i.e., 
that gender-based inequality exists (and can be documented and quantified) in the 
mathematical sciences in the United States. We provide details about the statistical 
data analysis performed to establish the existence of quantifiable relationships 
between our variables of interest, gender percentage of faculty in mathematical 
sciences departments at PhD-granting institutions, amount of funding received from 
NSF from 2011 to 2020, and departmental Wapman-prestige. The results of the data 
analysis and discussion of these results are given in Sects. 4 and 5, respectively. 
We end the chapter by discussing in Sect. 6 some limitations of the work presented 
here and recognizing that there is a lot more work that can (and should) be done to 
quantify and document inequality in the mathematical sciences. 

2 Existing Work on Inequality and Hierarchy in 
Mathematics 

In this section, we provide a short survey of selected recent work that uses tools, 
topics, and techniques from mathematics and data science to describe, document, 
and discuss inequality in the mathematical sciences. We organize our summary of 
the literature in this area into three topics: (1) analysis of the (lack of) diversity 
in the mathematical sciences; (2) existence of hierarchy in mathematics and other 
academic disciplines; and (3) evidence of inequality in the mathematical sciences. 
For a longer survey of the areas discussed here, as well as the broader field of the 
mathematics of mathematics, we refer the reader to the recent paper by Buckmire et 
al. [6].
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2.1 The Demographics and Diversity of the Mathematics 
Community 

It is well documented that women are underrepresented at all levels in the mathe-
matics community and that their representation declines as they progress through 
the academic system [22]. Women made up approximately 42.6% of recipients of 
bachelor’s degrees in mathematics between 2013 and 2018 [3]. However, only 29% 
of doctorate recipients in mathematical sciences were women (in 2017–2018) [12]. 
Women were 28% of hires in doctoral-granting mathematical sciences departments 
in 2019 [14]. 

Similarly, underrepresentation in the mathematical sciences based on race and 
ethnicity is profound and persistent [23]. For example, from 2013 to 2018, the racial 
and ethnic makeup of undergraduate math graduates ranged from 64.9% White, 
7.5% Latino/Hispanic, and 5.0% Black to 52.5% White, 9.9% Latino/Hispanic, and 
4.2% Black [3]. Between 1993 and 2002, less than 5% of those who earned doctoral 
degrees in mathematics were Black, Latino/Hispanic, or Indigenous, even though 
those communities made up a quarter of the general population of the United States 
at that time [17]. 

Vitulli [35] examined the representation of women being hired by mathematics 
departments, based upon data from annual surveys conducted by the American 
Mathematical Society (AMS). Prior to 2012,1 the AMS reported this data by 
dividing departments into three groups based on the reputational rankings in 
the 1995 (or previously, 1982) National Research Council report on doctoral 
departments [24, 25]. Group I contained the highest rated 25.9% of the departments. 
Group II was the next highest 30.3%, while Group III contained the remaining 
departments. Vitulli found that from 1991 to 2011, 20.5% of the faculty hired 
by Group I departments were women, while 26.3% of the faculty hired by the 
remaining departments were women. 

We acknowledge that the research discussed in this section is just a small sample 
of the literature analyzing the demographics and diversity of the mathematical 
sciences community. 

2.2 The Existence of Hierarchy in Mathematics and Science 

Recently, researchers have used available data on faculty positions at institutions 
of higher education in the United States to document the existence of hierarchies 
in faculty-hiring networks in academia. These hierarchical structures [15] in  
mathematics and science demonstrate that some institutions have greater influence

1 The AMS changed how they report this data in 2012, as the newest National Research Council 
report no longer provided a total ordering of departments, instead reporting multiple measures for 
each department. 
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on faculty hiring than others [21]; this is the essential characteristic of what we 
call Wapman-prestige. Institutions nearer the top of the hierarchy that are “more 
prestigious” (i.e., they have greater Wapman-prestige) are more likely to have 
graduating doctoral students go on to obtain faculty positions at institutions that 
are “less prestigious” and lower in the hierarchy. Clauset et al. [8] demonstrated 
the existence of hierarchy in faculty hiring in a study involving departments in 
computer science, business, and history. Wapman et al. [37] expanded this analysis 
to cover 295,089 faculty in 10,612 departments at 368 PhD-granting institutions 
and all academic disciplines for the years 2011–2020. FitzGerald et al. [10] 
complements Wapman et al.’s research and partially replicated their results by 
using data from the Mathematics Genealogy Project to restrict their analysis to 
mathematics faculty. These results confirm that hierarchies exist in faculty-hiring 
networks in the mathematical sciences. 

2.3 Evidence of Inequality in Mathematics and Science 

There are multiple research articles that use quantitative tools and techniques to 
analyze and highlight examples of inequality in the mathematics community. Topaz 
et al. [34] analyzed the editorial boards of 435 mathematical science journals and 
found that women accounted for a mere 8.9% of editorial positions. Editorial 
positions play important gatekeeping roles and represent status in the mathemat-
ics community, so the underrepresentation of women in this area demonstrates 
inequality based on gender in the area of power over knowledge production. 
Brisbin and Whitcher [2] found that women are underrepresented as authors among 
papers in the mathematical sciences uploaded to the arXiv preprint repository 
and that there are certain subfields (particularly concentrated within “pure” or 
theoretical mathematics) with even larger discrepancies. Researchers have analyzed 
data describing different aspects of academic activity and demonstrated myriad 
ways that gender can negatively mediate opportunity for advancement, participation, 
and achievement in science and mathematics [16, 18, 30, 33]. Schlenker [32] 
notes that fields with applications to the social or physical sciences such as 
numerical analysis, mathematical modeling, or statistics (i.e., fields seen as being 
in applied mathematics) seem to be viewed by some as having low status in the 
wider mathematical community. A large study investigating class backgrounds in 
academia by Morgan et al. [19] found that faculty are much more likely than the 
general population to have a parent with a PhD, with the effect being even more 
pronounced at institutions in the top quintile of U.S. News & World Report rankings.
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3 Data and Methods 

In this section, we will describe the data and explain the methodology used to obtain 
our results. Our data and code are publicly available at [4]. We utilized two datasets, 
one sourced from Wapman et al. [36] and the second from awards made by the 
Division of Mathematical Sciences (DMS) at the US National Science Foundation 
(NSF) between 2011 and 2020 [26]. 

The Wapman et al. dataset required some nuance to interpret. The dataset 
consisted of a census of tenured or tenure-track faculty employed at all PhD-
granting institutions in the United States from the years 2011–2020. Faculty were 
only included in this sample if they were employed in the majority of the years 
under review. This dataset is centered on departments, rather than on faculty, and 
these departments are each assigned to a field such as “Mathematics.” In particular, 
a department may be accounted for in multiple fields; a “Department of Mathematics 
and Statistics” would have its faculty included twice, in the fields of “Mathematics” 
and “Statistics.” 

Because our goal is to quantify and document inequality in the mathematics 
community as a whole, we choose to define the mathematical sciences as broadly 
as possible (see [5]). This choice results in a reduction of Wapman et al.’s original 
dataset of 295,089 faculty in all academic disciplines offering PhDs in the United 
States to 9814 faculty that are distributed among the fields of mathematics, statistics, 
or operations research (Table 1). We adopt the convention of capitalizing these three 
terms when referring to these fields present in the data throughout the rest of this 
chapter. 

In our analysis, we incorporate the department prestige rankings from Wapman 
et al. [36], which we refer to as Wapman-prestige. Because of the way these are 
computed (a department has greater Wapman-prestige if its PhD graduates are 
hired by departments that have greater Wapman-prestige), some departments do 
not have a Wapman-prestige ranking. This could happen if the department does 
not have a PhD program in one of the three fields of mathematics, statistics, or 
operations research (recall the Wapman dataset began with institutions that grant 
PhDs) or if none of its PhD graduates were hired by departments with Wapman-
prestige rankings. In mathematics, for example, there are 223 departments listed, but 
only 161 of these have a Wapman-prestige ranking. Departments without Wapman-
prestige rankings were not included in the data analyses involving Wapman-prestige 
below but were included in the analysis of NSF funding later in the chapter. Figure 1 

Table 1 Faculty present in the Wapman et al. dataset in the fields of mathematics, statistics, and 
operations research 

Field Departments Faculty members Percentage of women 

Mathematics 223 7328 16.8% 

Statistics 122 2576 20.9% 

Operations Research 51 1034 19.3%
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Fig. 1 Flow diagram depicting number of organizations and institutions used for data analysis 

displays the various sizes of the datasets used in our analysis in this chapter that are 
also presented in Table 1. 

Since the Group I departments—in the groupings used by the AMS historically 
to divide departments by perceived quality (see Sect. 2.1 above)—constituted about 
25% of departments, in our analysis, we consider the upper quartile (in terms of 
Wapman-prestige rankings) as “elite” departments and compare this group to the 
remaining 75% of departments, which we refer to as “non-elite.” 

Unfortunately, the Wapman et al. dataset only included gender as a binary 
variable (male/female). In fact, gender is self-reported for a small percentage (6%) 
of faculty in their initial dataset. They then attempted to infer the gender of the 
remaining faculty based on their names and the use of software that claims to assign 
gender based on names relatively accurately; ultimately, binary gender was ascribed 
to a total of 85% of the faculty listed in their dataset. We include only these faculty 
who were ascribed a binary gender in our analyses, which eliminates roughly 15% 
of the total due to the inability to accurately ascribe a gender to these data entries. 

We separately obtained data from the NSF publicly accessible database about 
awards made by the Division of Mathematical Sciences (DMS) in the Directorate 
of Mathematical and Physical Sciences (MPS) from 2011 to 2020 [26]. These data 
were aggregated by institution. Since the institution names in the Wapman et al. 
dataset typically did not match the formal organization names listed by the NSF, 
we manually aligned these in order to compare the two datasets. On average, DMS
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awarded $235 million per year toward achieving its mission to support “a wide 
range of research in mathematics and statistics aimed at developing and exploring 
the properties and applications of mathematical structures” [27]. We removed from 
this dataset awards made to individuals (e.g., fellowships for post-docs and graduate 
students) as well as awards through the Mathematical Sciences Research Institutes 
program, which support research institutes separate from mathematics departments 
(though most, but not all, are hosted at PhD-granting institutions with mathematics 
departments). 

Of the awards to institutions, 80% were matched to the departments of interest 
in the following analysis. The NSF, and DMS in particular, is the primary source 
of funding for mathematics research in the United States [27]. While some 
mathematicians (such as several authors of this chapter) receive funding from NSF 
divisions other than DMS and directorates other than MPS (e.g., the Division of 
Undergraduate Education and the Directorate for STEM Education) as well as from 
other federal agencies (e.g., the National Institutes of Health), we consider DMS 
funding a reasonable measure for overall financial support of mathematics by the 
federal government. 

There are two major caveats to our use of the NSF DMS funding data. First, 
NSF awards are made to institutions rather than specifically to departments, which 
is the unit of analysis provided by the Wapman et al. data. Second, since faculty in 
Statistics and Operations Research typically have more varied sources of funding, 
we only considered the field of mathematics in our analyses of funding discussed 
below. 

4 Results 

In this section, we present the results of our research into the distribution of faculty 
and funding at mathematical sciences PhD-granting institutions in the United States. 
In Fig. 2, the percentage of women in the fields of mathematics, statistics, and 
operations research from 2011 to 2020 is given. We note that the percentage of 
women in mathematics lags behind operations research and statistics throughout 
the time period of the dataset, mirroring the lower percentage of women that 
earn PhDs in mathematics versus the other two fields [12]. We further note the 
percentage of women in mathematics, statistics, and operations research is far below 
the percentage of women in Academia as a whole for the time period covered by the 
dataset. 

Next, we computed the percentages of faculty in each department inferred to be 
women and plotted these according to Wapman-prestige rank in the fields of math-
ematics, statistics, and operations research in Fig. 3. To compute this percentage, 
we used as a denominator the total number of faculty in a department for which 
a gender was inferred, in effect removing from our sample any faculty members 
whose gender could not be inferred. In Fig. 3, the blue circles are clustered in the 
lower-left corner of all three subfigures; this corresponds to the data demonstrating
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Fig. 2 Fraction of women in the fields of mathematics, statistics, and operations research, as well 
as academia as a whole, over the 10-year period of the dataset 

Fig. 3 Percentage of women by department in the fields of mathematics, statistics, and operations 
research. Color and shape distinguish the upper quartile of Wapman-prestige (blue circles) from 
the lower three quartiles (orange squares) 

that elite departments (in the top quartile of Wapman-prestige) also have a low 
percentage of women (below 20% for mathematics). 

In order to address RQ1, we then considered the elite institutions as a group and 
calculated the percentage of faculty at these institutions that are women (Table 2); 
in each case, we see that the percentage of women among these elite institutions 
is lower than among non-elite institutions. A chi-squared test for each field was 
conducted, finding only the difference in mathematics to be significant (p < 0.001.). 
We also conducted a Kendall tau test to determine if there is an association between 
the percentage of women and Wapman-prestige rank of mathematics departments; 
we found a significant negative association between Wapman-prestige rank and rank 
by percentage of women (τ = −0.23., p < 0.001.). In other words, higher Wapman-
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Table 2 The percentage of faculty at elite and non-elite institutions who are women in each field 

Percentage of women Percentage of women 

Field among elite institutions among non-elite institutions 

Mathematics 12.5% 18.1% 

Statistics 21.3% 21.6% 

Operations research 17.0% 18.7% 

Fig. 4 Average annual grant funding for mathematics departments by the prestige rank of the 
department, displayed by total funding to the department (a) and on a per capita basis accounting 
for the varying number of faculty in each department (b) 

prestige of a Mathematics department is associated with having a lower percentage 
of women. 

To address RQ2, we explored the distribution of DMS funding to the 161 
mathematics departments with Wapman-prestige rankings from 2011 to 2020. The 
elite institutions (i.e., the upper quartile by Wapman-prestige) were awarded in 
aggregate $119M per year in grant funding, while the non-elite institutions, of which 
there are three times as many, were awarded only $70M in aggregate of NSF money 
per year. We plotted this funding by Wapman-prestige of each department in Fig. 4 
on both a total and per-faculty basis. 

We also computed the total amount of funding received by elite (top quartile 
by Wapman-prestige) and non-elite (lower three quartiles by Wapman-prestige) 
departments over the time period in question. Elite departments received 64.7% of 
the total funding in our dataset, compared to 35.3% for the non-elite departments 
(despite these being thrice as numerous). Here we also conducted a Kendall tau 
test, finding a significant positive relationship between Wapman-prestige and DMS 
funding (τ = 0.68., p < 0.001.). In addition, we conducted a Kendall tau test for a 
relationship between Wapman-prestige and DMS funding per faculty to account for 
variance in department sizes; this was also significant (τ = 0.70., p < 0.001. ). In 
other words, higher Wapman-prestige is associated with more DMS funding.
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Fig. 5 Average annual grant funding for mathematics departments by the percentage of women 
faculty in the department. The upper quartile (by prestige) departments are represented by blue 
circles, while the remainder are orange squares 

Another metric that can be used to quantify inequality in NSF DMS funding 
received by mathematics departments in the United States is the Gini coefficient, 
a well-known measure of inequality often used to characterize wealth inequality 
on a scale from 0 to 1. A uniform distribution of wealth would result in a Gini 
coefficient value of 0, and a case where one individual holds all the wealth would 
result in a Gini coefficient of 1. The Gini coefficient of NSF DMS funding for the 
mathematics departments in our dataset is 0.63. For more information on the Gini 
coefficient, refer to [20]. 

We also analyzed the full DMS-funded portfolio (excluding fellowships given to 
people instead of institutions) to avoid a possible sampling effect due to our focus 
on PhD-granting institutions. In this more comprehensive dataset, the top 20% hold 
86.1% of all DMS funding. The Gini coefficient of this distribution is 0.80. Thus, 
the larger set of all DMS funding recipients demonstrates greater inequality than the 
subset of PhD-granting institutions. 

To address RQ3, we plotted the annual grant funding received by mathematics 
departments against the percentage of women in those departments in Fig. 5. We  
note an interesting effect in Fig. 5, where none of the 29 departments (which are all 
non-elite with respect to Wapman-prestige) with at least 25% women received more 
than $1.1M in average annual funding from the DMS. We conducted a Kendall 
tau test to determine if there is an association between annual funding received 
from DMS and the percentage of women in mathematics departments and found a 
significant negative relationship (τ = −0.22., p < 0.001.). 

In addition, we conducted a Kendall tau test for a relationship between DMS 
funding per faculty and percentage of women to account for variance in department
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sizes; this was also significant (τ = −0.21., p < 0.001. ). In other words, a higher 
percentage of women in a mathematics department is associated with less annual 
DMS funding. 

5 Discussion 

In this section, we shall discuss the results presented above, which demonstrate that 
gender-based inequalities exist in faculty composition with respect to gender and the 
distribution of federal funding to mathematical sciences PhD-granting institutions 
in the United States. 

5.1 Gender-Based Inequality in the Mathematical Sciences 

The data shows that almost all PhD-granting institutions have mathematics depart-
ments that are composed of faculty that are disproportionately male. In fact, not 
a single mathematics department represented in this dataset was majority women. 
We found that the underrepresentation of women is more pronounced among elite 
mathematics departments (recall that we defined “elite” departments as those in 
the upper quartile of departments in the prestige ranking generated by Wapman et 
al.). We believe in the fundamental principle that mathematical talent is distributed 
equally among all groups of people who do mathematics. In the context of this 
chapter, we therefore assume an equal distribution of mathematical talent among 
men and women. Under that assumption, the results presented here highlight the 
idea that even if mathematical talent is evenly distributed, the opportunities to 
deploy, use, and leverage that talent in a mathematical sciences department in a 
PhD-granting institution are not. 

Our analysis of NSF DMS funding identifies inequality in the amount of finan-
cial support for mathematics PhD-granting departments depending on Wapman-
prestige. Pareto models, also popularized as the “20/80” economic model, predict 
that approximately 80% of assets are held, gained, or earned by only 20% of the 
population being studied [29]. We found that in the elite institutions, the top 25% in 
our dataset by Wapman-prestige ranking garnered 65% of the total funds given to 
the subset of PhD-granting institutions with a Wapman-prestige ranking. When we 
examine all NSF DMS funding, the top 20% of awardees receive 86% of all funds, 
with a Gini coefficient of 0.8. This result demonstrates a larger inequality than the 
classic “20/80” proportion.
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5.2 Inequity =. Inequality +. Power 

We argue here that the gender-based inequalities presented earlier in this chapter 
are in part due to underlying mechanisms and societal processes in the institutions 
and systems present in the mathematical sciences in the United States. We draw on 
Hasty et al.’s anthropological definition of inequity as “the unequal distribution of 
resources due to an unjust power imbalance. It is a type of inequality caused by 
this unequal distribution, often as a result of injustices against historically excluded 
groups of people” [13]. 

Earlier in this chapter, we quantified and documented the “unequal distribution 
of resources” from the NSF awarded to mathematics departments at PhD-granting 
institutions in the United States. Now we examine the underlying mechanisms that 
result in these unequal allocations. The procedures and policies that NSF uses to 
determine which principal investigators and which institutions receive funding may 
actually reinforce inequity in the mathematical sciences [1]. NSF uses a process 
they call merit review, where anonymous reviewers are asked to read, rate, and 
review funding proposals submitted to the agency. Analysis of panel decisions in 
science funding in the Netherlands indicated that gender-based bias was moderated 
by a two-stage review system [1]. In this system, the first stage of reviews is a filter 
pass in which reviews favored proposals led by men; however, the second-stage final 
reviews resulted in equal funding. A 2020 analysis of NSF funding by division noted 
that submission rates by women to the MPS (Mathematical and Physical Sciences) 
directorate were increasing but were still one of the lowest in the agency, on par with 
the CISE (Computer and Information Science and Engineering) directorate [30]. 
Rissler et al. also note that the submission rate discrepancy cannot be explained 
by the proportion of women at institutions of various Carnegie classification types 
alone. However, our results suggest that considering the Carnegie “Very High 
Research Activity” institutions as a single group is too coarse and that important 
differences in gender representation among these institutions exist and are mediated 
by Wapman-prestige (see Sect. 4). 

The NSF merit review process incorporates mechanisms that favor institutional 
prestige. NSF panels are instructed to assess the “intellectual merit” and “broader 
impacts” of all proposals under five elements [28]. Two of these elements in 
particular may bolster inequity in the mathematical sciences. First, reviewers are 
asked, “How well qualified is the individual, team, or organization?” This question is 
likely to skew reviewers toward considering institutional reputations since the infor-
mation provided about qualifications typically includes individuals’ institutional 
affiliation(s). Second, reviewers are asked, “Are there adequate resources available 
to the PI (either at the home organization or through collaborations) to carry out the 
proposed activities?” This second question is especially likely to skew reviewers to 
more positively rate proposals from well-resourced institutions. 

The cliché “The rich get richer” is a colloquial distillation of how systems dis-
proportionately allocate resources towards prestige. Prestigious and well-resourced 
institutions often provide their faculty with significant advantages in the grant
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award process. For example, well-resourced universities often have significant funds 
internally for pilot projects that strengthen submissions to NSF. They have grant 
departments that assist in the writing and administration of grants, funded by high 
indirect cost rates. They also have research support teams devoted to data gathering 
and processing, as well as communications teams devoted to disseminating the 
results. We also note that expectations in obtaining grant funds vary widely between 
departments and institutions and are often higher at the elite institutions (those in the 
top quartile using Wapman-prestige) in our dataset. This likely affects the number 
of proposals that are submitted by different institutions along with how well they 
are reviewed. 

In short, the effect we are seeing in the unequal allocation of resources in the 
mathematical sciences community via NSF DMS funding is likely a result of a 
complicated collection of processes that reinforce and exacerbate the status quo. 
Hasty’s definition of inequity applied to gender-based inequity in the mathematical 
sciences in the United States requires us to both document gender-based inequalities 
and find evidence that those inequalities are the result of gender-based injustice. 
In addition to the processes of gender bias in NSF proposal reviews and how 
institutional prestige biases the merit review process, we also note the long history 
of erasure, injustice, and exclusion of women from mathematics [31]. We therefore 
argue that we have not only quantified and documented gender-based inequalities 
in the mathematical sciences but have also shown the existence of gender-based 
inequity in the mathematical sciences. 

5.3 Limitations 

There are a number of limitations that accompany the research presented in this 
chapter that we want to highlight below. The primary limitation is that there is 
a paucity of publicly available, comprehensive, self-reported demographic data 
about the mathematics community. The data we used was part of a dataset shared 
publicly by Wapman et al. [36] after they had processed it, and the raw data was 
not available to us. Their methodology of determining Wapman-prestige means 
that only PhD-granting departments are represented in the prestige data; a large 
number of faculty in the mathematical sciences who are at community colleges and 
predominantly undergraduate institutions are not included. Additionally, because of 
the way disciplines in the mathematical sciences are defined in the Wapman et al. 
dataset, faculty who are in “Mathematics and Statistics” departments are counted in 
“Mathematics” and again in “Statistics.” 

We reiterate here that the dataset [36] consisted of tenured and tenure-track 
faculty who were in the same department for at least 5 of the years between 2011 
and 2020. As a result, we do not have an accurate count of department sizes (which, 
in any event, vary over time) to fully rule this out as a confounding factor. However, 
we did examine funding per faculty member in our analysis above to approximately 
account for this.
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Another important limitation is the way gender is ascribed to individuals in the 
Wapman et al. dataset. Recall that this dataset included gender, but only a small 
percentage were determined by the individuals themselves, with the rest inferred 
based on names. While we acknowledge this practice is common, there are multiple 
issues with name-based gender inference. There is some degree of selection bias in 
which names can be ascribed to a particular (binary) gender; we note, again, that in 
the dataset used here, 15% of entries were omitted due to an inability to confidently 
ascribe them a gender. Furthermore, the reduction of gender to a binary erases the 
experiences of gender-diverse mathematical scientists from this work. 

We also lament the lack of race/ethnicity in the data; there are important 
questions to be answered about the interaction of race/ethnicity and inequity in 
the mathematical sciences. However, Chen et al. [7] explores systemic mecha-
nisms exhaustively in their article “Systemic racial disparities in funding rates at 
the National Science Foundation.” This study thoroughly addresses the systemic 
reinforcing of racial bias within panels and funding distribution decisions of the NSF 
specifically. Chen et al. also note that a gender analysis alone masks intersectional 
issues. They point to a study of NIH grants that found that women of color were 
funded at lower rates than white women [30] and points out the lack of data 
availability to further investigate this at NSF. A similar argument can be made about 
the absence of available data about LGBTQ+ identity. The Wapman et al. dataset is 
limited to only tenured or tenure-track faculty. Without comprehensive demographic 
data, an intersectional analysis involving multiple identity characteristics is not 
possible. As discussed below, we hope other researchers will collect or generate 
additional data that can be used to address important outstanding questions about 
the mathematical sciences discipline. 

6 Future Directions 

There are many other directions in which the research presented here could be 
extended in the future. It is important to study the questions addressed in this chapter 
with respect to other dimensions of diversity, particularly marginalized social 
identities such as race/ethnicity, sexual orientation, national origin, and disability 
status, among others. This future work should be done in a way that allows analysis 
using intersections of multiple identity characteristics. 

The addition of geographic location to the analysis of the gender diversity of 
PhD-granting institutions as well as of the distribution of federal funding is a 
possible direction of future research. 

Another future direction is to expand this work to a wider range of institu-
tions and faculty appointments. A study encompassing all types of institutions, 
and particularly community colleges, minority-serving institutions, and primarily 
undergraduate institutions, is necessary. Additionally, future work should investigate 
related questions about all types of faculty employed at these institutions, especially 
the increasing percentage of non-tenure track faculty.
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This work’s primary goal has been to quantify and document gender-based 
inequalities in the mathematical sciences. Future work could involve developing 
mathematical models that are informed by existing data documenting inequal-
ity in the mathematical sciences in order to examine, expose, and explicate 
the mechanisms that create and maintain this imbalance. For example, the data 
[3, 12, 14] showing the underrepresentation of women in new hires versus their 
underrepresentation in tenure-stream positions in PhD-granting institutions raises 
some interesting questions that could also be addressed in future research. 

We conclude by inviting interested researchers to join us in the ongoing 
MetaMath project to use mathematics and data science to analyze the mathematical 
sciences discipline itself in order to promote social justice and enhance equity in the 
mathematical sciences. 
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Appendix A WiSDM 2023: 
Projects and Participants 

WiSDM is a “Women in Data Science and Mathematics” Research Collaboration 
Workshop that is intended to take place every two years with the goal of bringing 
together, for one-week, women at all stages of their careers, from graduate students 
to senior researchers, to collaborate on problems in data science. WiSDM 2017 
and WiSDM 2019 workshops were held at the Institute for Computational and 
Experimental Research in Mathematics (ICERM), Brown University. After a hiatus 
due to the COVID-19 pandemic, the workshops were reinitiated in 2023, when 
WiSDM 2023 was held at the Institute for Pure & Applied Mathematics (IPAM), on 
the campus of the University of California, Los Angeles, during August 7–11. This 
third edition was organized by top researchers in diverse fields of mathematics and 
included 42 participants. A summary of the projects in WiSDM 2023, together with 
a list of project leads with current affiliations and participants with their affiliations 
at the time of the workshop, is included next. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
C. Garcia-Cardona, H. Lee (eds.), Advances in Data Science, Association for 
Women in Mathematics Series 37, https://doi.org/10.1007/978-3-031-87804-6
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354 Appendix A WiSDM 2023: Projects and Participants 

A.1 WiSDM 2023 Organizing Committee 

Andrea Bertozzi: University of California, Los Angeles 
Kathryn Leonard: Occidental College 
Deanna Needell: University of California, Los Angeles 
Linda Ness: Rutgers University 

A.2 Project Descriptions 

A.2.1 Optimizing NLP Embedding Techniques for Embedded 
Systems 

Description Text embeddings are a way of transforming language into numerical 
representations that can be used in deep learning architectures for language trans-
lation and generation, text summarization, and sentiment analysis for a plethora of 
natural language processing (NLP) use cases. In NLP, embeddings are typically 
generated to represent semantic relationships between words or phrases; however, 
the size of the embedding is usually limited by the temporal and computational 
constraints imposed by model training and inferencing requirements. Embedded 
systems, i.e., programmable devices used to perform specific tasks in computation-
ally limited remote environments, typically impose the most stringent computational 
resources with the goal of optimizing output for a specific task. More and more, 
embedded systems applications call for online NLP tasks to build a common 
operating picture in tactical environments. The goal of this project is to generate 
a representative number of embedded use cases that require on-board NLP and 
to outline prescriptive methods for optimal text embedding generation that will 
fulfill the requirements of the embedded system while meeting or exceeding the 
processing limitations imposed by the computational constraints of each use case. 

Leads: Karolyn Babalola (Booz Allen Hamilton) 

Participants: Sanchita Ghosh (Texas Tech University), Arnaja Mitra (The Univer-
sity of Texas at Dallas), Chathurangi Pathiravasan (John Hopkins University), and 
Jing Qin (University of Kentucky) 

A.2.2 Geometric Signatures of (Hierarchical) Data 

Description Building trees to represent or to fit distances is a critical component of 
phylogenetic analysis, metric embeddings, approximation algorithms, and computa-
tional biology. It is, however, a challenging problem; indeed, many of the tree fitting
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problem formulations are hard (in a formal sense). Much of the previous algorithmic 
work has focused on generic metric spaces (i.e., those with no a priori constraints). 
These spaces do not capture the nature of datasets, especially those datasets that 
capture some sense of hierarchy. This project will explore two types of geometric 
signatures of (hierarchical) data and graphs, delta-hyperbolicity and average delta-
hyperbolicity. We will compute these quantities for a variety of important test 
datasets and devise faster, approximate algorithms along the way. 

Leads: Anna Gilbert (Yale University) 

Participants: Katarzyna Jankiewicz (University of California, Santa Cruz), Man-
asa Kesapragada (University of California, Santa Cruz), Marzieh Khodaei (Florida 
State University), Anna Konstorum (Institute for Defense Analysis), and Nazia 
Riasat (North Dakota State University) 

A.2.3 Dimension Reduction and Machine Learning for 
Tensors 

Description Data is now not only everywhere but in such vast quantities that it 
makes computing quite challenging and often impossible. Moreover, the structure 
of data is often complicated and multi-modal. For this reason, the algebraic tensor 
structure has become important in data science and computational methods. There 
are several tensor dimension reduction techniques that do not require the tensor to 
be transformed to a vector or matrix, and these can be used for machine learning and 
reconstruction tasks. In this project, we will study these techniques and develop new 
methods that work in the dimension reduced space directly. Applications range from 
imaging to medicine, and we will apply our approaches to both real and synthetic 
problems. 

Leads: Deanna Needell (University of California, Los Angeles), with Jamie 
Haddock (Harvey Mudd College) 

Participants: Alejandra Castillo (Oregon State University), Iryna Hartsock (Uni-
versity of Florida), Paulina Hoyos Restrepo (The University of Texas at Austin), 
Lara Kassab (University of California, Los Angeles), Alona Kryshchenko (Califor-
nia State University Channel Islands), Kamila Larripa (California State Polytechnic 
University, Humboldt), Shambhavi Suryanarayanan (Princeton University), and 
Karamatou Yacoubou Dijma (Wellesley College)
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A.2.4 Graph-Based Active Learning 

Description This project will be about semi-supervised active learning using a 
graph approach. Graph-based machine learning algorithms use pairwise compar-
isons between pieces of data to construct a similarity graph. This project will focus 
on the “active learning” problem in which specific data points are selected for labels 
as part of the training data. The algorithm selects the points, and a “human in the 
loop” labels the data. We will consider a variety of high-dimensional remote sensing 
data such as hyperspectral images, LIDAR, and SAR data. 

Leads: Andrea Bertozzi (University of California, Los Angeles), with Harlin Lee 
(University of North Carolina at Chapel Hill) 

Participants: Malvina Bozhidarova (University of Nottingham), Shuang Li (Uni-
versity of California, Los Angeles), Anna Ma (University of California, Irvine), 
Namrata Nadagouda (Geoergia Institute of Technology), and Joana Perdomo 
(Raytheon) 

A.2.5 Feature Learning and Optimization Techniques for 
Machine Learning Tasks 

Description Graph-based techniques, which embed datasets into a weighted sim-
ilarity graph with vertices and edges, form powerful and popular approaches 
for their ability to capture the structure of the data and pairwise information. 
However, the success of graph-based approaches depends greatly on the quality 
of the features of the data used to construct the graph and the computational 
complexity for dealing with high-dimensional data. This project aims to integrate 
quality feature learning into graph-based methods to facilitate data classification 
task. One example of procedures that can be used to obtain high-quality features 
is autoencoders, which can be of various structures and levels of complexity; 
such approaches are unsupervised and thus do not require any labeled data. The 
research will also develop advanced optimization-based models such as auction 
dynamics learning methods, maximum flow, and spectral approaches for scalable 
computational efficiency. This project will be supplemented with applications in 
data science, such as hyperspectral and medical imaging. 

Leads: Yifei Lou (University of North Carolina at Chapel Hill), with Cristina 
Garcia-Cardona (Los Alamos National Laboratory) 

Participants: Haiyan Cheng (Willamette University), Weihong Guo (Case West-
ern Reserve University), Sara Hahner (Fraunhofer Institute for Scientific Computing 
and Algorithms), Yuan Liu (Wichita State University), Michela Marini (University 
of Houston), and Sui Tang (University of California, Santa Barbara)
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A.2.6 Geometric Supervised Dimension Reduction with Path 
Metrics 

Description This project will explore new approaches for constructing kernel 
matrices, a critical task for manifold learning and neural style transfer (i.e., using 
deep neural networks to learn and transfer the style of an image/audio to another). 
In supervised learning, a major challenge is how to efficiently incorporate the 
information carried by the response variables into the kernel matrix. Existing 
methods based on the Euclidean dissimilarity between pairwise responses are well 
explored but unsuitable for nonlinear data. This project will explore the benefits 
of using geometric measures on both the input features and the response variables. 
In particular, we will focus on the power-weighted shortest path metric, which is a 
data-driven metric enjoying a rich geometric framework and desirable properties for 
clustering and dimension reduction. The resulting kernel matrix will be built based 
on the combination of local gradient information of the labels with power-weighted 
shortest path distances to stretch the data in directions useful for prediction. The 
resulting kernels will be evaluated in the context of data visualization and style 
learning using generative adversarial networks. 

Leads: Anna Little (University of Utah) and Rongrong Wang (Michigan State 
University) 

Participants: Jannatul Chhoa (University of Houston), Longxiu Huang (Michigan 
State University), Aimee Maurais (Massachusetts Institute of Technology), Kirsten 
Morris (University of Nebraska–Lincoln), Maria van der Walt (Westmont College), 
and Geetika Verma (RMIT University, Melbourne)
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